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Chapter 1

Markov Chains

This chapter introduces Markov chains1, a special kind of random process which is said to have “no memory”: the

evolution of the process in the future depends only on the present state and not on where it has been in the past. In

order to be able to study Markov chains, we first need to introduce the concept of a stochastic process.

1.1 Stochastic processes

Definition 1.1 (Stochastic process). A stochastic processX is a family {Xt : t ∈ T} of random variables

Xt : Ω → S. T is hereby called theindex set(“time”) and S is called thestate space.

We will soon focus on stochasticprocesses in discrete time, i.e. we assume thatT ⊂ N or T ⊂ Z. Other choices

would beT = [0,∞) or T = R (processes in continuous time) or T = R× R (spatial process).

An example of a stochastic process in discrete time would be the sequence of temperatures recorded every

morning at Braemar in the Scottish Highlands. Another example would be the price of a share recorded at the

opening of the market every day. During the day we can trace the share price continuously, which would constitute

a stochastic process in continuous time.

We can distinguish between processes not only based on theirindex setT , but also based on their state spaceS,

which gives the “range” of possible values the process can take. An important special case arises if the state space

S is a countable set. We shall then callX a discrete process. The reasons for treating discrete processes separately

are the same as for treating discrete random variables separately: we can assume without loss of generality that the

state space are the natural numbers. This special case will turn out to be much simpler than the case of a general

state space.

Definition 1.2 (Sample Path). For a given realisationω ∈ Ω the collection{Xt(ω) : t ∈ T} is called thesample

pathof X at ω.

If T = N0 (discrete time) the sample path is a sequence; ifT = R (continuous time) the sample path is a function

from R to S.

Figure 1.1 shows sample paths both of a stochastic process indiscrete time (panel (a)), and of two stochastic

processes in continuous time (panels (b) and (c)). The process in panel (b) has a discrete state space, whereas the

process in panel (c) has the real numbers as its state space (“continuous state space”). Note that whilst certain

stochastic processes have sample paths that are (almost surely) continuous or differentiable, this does not need to

be the case.

1 named after the Andrey Andreyevich Markov (1856–1922), a Russian mathematician.
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Figure 1.1. Examples of sample paths of stochastic processes.

A stochastic process is not only characterised by the marginal distributions ofXt, but also by the dependency

structure of the process. This dependency structure can be expressed by thefinite-dimensional distributionsof the

process:

P(Xt1 ∈ A1, . . . ,Xtk
∈ Ak)

wheret1, . . . , tk ∈ T , k ∈ N, andA1, . . . , Ak are measurable subsets ofS. In the case ofS ⊂ R the finite-

dimensional distributions can be represented using their joint distribution functions

F(t1,...,tk)(x1, . . . , xk) = P(Xt1 ∈ (−∞, x1], . . . ,Xtk
∈ (−∞, xk]).

This raises the question whether a stochastic processX is fully described by its finite dimensional distributions.

The answer to this is given by Kolmogorov’s existence theorem. However, in order to be able to formulate the

theorem, we need to introduce the concept of a consistent family of finite-dimensional distributions. To keep things

simple, we will formulate this condition using distributions functions. We shall call a family of finite dimensional

distribution functionsconsistentif for any collection of timest1, . . . tk, for all j ∈ {1, . . . , k}

F(t1,...,tj−1,tj ,tj+1,...,tk)(x1, . . . , xj−1,+∞, xj+1, . . . , xk) = F(t1,...,tj−1,tj+1,...,tk)(x1, . . . , xj−1, xj+1, . . . , xk)

(1.1)

This consistency condition says nothing else than that lower-dimensional members of the family have to be the

marginal distributions of the higher-dimensional membersof the family. For a discrete state space, (1.1) corresponds

to∑
xj

p(t1,...,tj−1,tj ,tj+1,...,tk)(x1, . . . , xj−1, xj , xj+1, . . . , xk) = p(t1,...,tj−1,tj+1,...,tk)(x1, . . . , xj−1, xj+1, . . . , xk),

wherep(... )(·) are the joint probability mass functions (p.m.f.). For a continuous state space, (1.1) corresponds to∫
f(t1,...,tj−1,tj ,tj+1,...,tk)(x1, . . . , xj−1, xj , xj+1, . . . , xk) dxj = f(t1,...,tj−1,tj+1,...,tk)(x1, . . . , xj−1, xj+1, . . . , xk)

wheref(... )(·) are the joint probability density functions (p.d.f.).

Without the consistency condition we could obtain different results when computing the same probability using

different members of the family.

Theorem 1.3 (Kolmogorov). LetF(t1,...,tk) be a family of consistent finite-dimensional distribution functions. Then

there exists a probability space and a stochastic processX, such that

F(t1,...,tk)(x1, . . . , xk) = P(Xt1 ∈ (−∞, x1], . . . ,Xtk
∈ (−∞, xk]).

Proof. The proof of this theorem can be for example found in (Gihman and Skohorod, 1974). �
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Thus we can specify the distribution of a stochastic processby writing down its finite-dimensional distributions.

Note that the stochastic processX is not necessarily uniquely determined by its finite-dimensional distributions.

However, the finite dimensional distributions uniquely determine all probabilities relating to events involving an at

most countable collection of random variables. This is however, at least as far as this course is concerned, all that

we are interested in.

In what follows we will only consider the case of a stochasticprocess in discrete time i.e.T = N0 (or Z).

Initially, we will also assume that the state space is discrete.

1.2 Discrete Markov chains

1.2.1 Introduction

In this section we will define Markov chains, however we will focus on the special case that the state spaceS is (at

most) countable. Thus we can assume without loss of generality that the state spaceS is the set of natural numbers

N (or a subset of it): there exists a bijection that uniquely maps each element toS to a natural number, thus we can

relabel the states1, 2, 3, . . ..

Definition 1.4 (Discrete Markov chain). LetX be a stochastic process in discrete time with countable (“discrete”)

state space.X is called aMarkov chain (with discrete state space)if X satisfies theMarkov property

P(Xt+1 = xt+1|Xt = xt, . . . ,X0 = x0) = P(Xt+1 = xt+1|Xt = xt)

This definition formalises the idea of the process dependingon the past only through the present. If we know the

current stateXt, then the next stateXt+1 is independent of the past statesX0, . . . Xt−1. Figure 1.2 illustrates this

idea.2

Xt

t− 1 t t+ 1

Past Future

P
re

se
nt

Figure 1.2. Past, present, and future of a Markov chain att.

Proposition 1.5. The Markov property is equivalent to assuming that for allk ∈ N and all t1 < . . . < tk ≤ t

P(Xt+1 = xt+1|Xtk
= xtk

, . . . ,Xt1 = xt1) = P(Xt+1 = xt+1|Xtk
= xtk

).

Proof. (homework) �

Example 1.1 (Phone line). Consider the simple example of a phone line. It can either be busy (we shall call this state

1) or free (which we shall call0). If we record its state every minute we obtain a stochastic process{Xt : t ∈ N0}.
2 A similar concept (Markov processes) exists for processes in continuous time. See e.g.http://en.wikipedia.org/

wiki/Markov_process.
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If we assume that{Xt : t ∈ N0} is a Markov chain, we assume that probability of a new phone call being ended

is independent of how long the phone call has already lasted.Similarly the Markov assumption implies that the

probability of a new phone call being made is independent of how long the phone has been out of use before.

The Markov assumption is compatible with assuming that the usage pattern changes over time. We can assume that

the phone is more likely to be used during the day and more likely to be free during the night. ⊳

Example 1.2 (Random walk on Z). Consider a so-calledrandom walkon Z starting atX0 = 0. At every time, we

can either stay in the state or move to the next smaller or nextlarger number. Suppose that independently of the

current state, the probability of staying in the current state is1−α−β, the probability of moving to the next smaller

number isα and that the probability of moving to the next larger number is β, whereα, β ≥ 0 with α + β ≤ 1.

Figure 1.3 illustrates this idea. To analyse this process inmore detail we writeXt+1 as

−3

1− α− β

−2

1− α− β

−1

1− α− β

0

1− α− β

1

1− α− β

2

1− α− β

3

1− α− β

α

β

α

β

α

β

α

β

α

β

α

β

α

β

α

β
· · · · · ·

Figure 1.3. Illustration (“Markov graph”) of the random walk onZ.

Xt+1 = Xt + Et,

with theEt being independent and for allt

P(Et = −1) = α P(Et = 0) = 1− α− β P(Et = 1) = β.

It is easy to see that

P(Xt+1 = xt − 1|Xt = xt) = α P(Xt+1 = xt|Xt = xt) = 1− α− β P(Xt+1 = xt + 1|Xt = xt) = β

Most importantly, these probabilities do not change when wecondition additionally on the past{Xt−1 =

xt−1, . . . ,X0 = x0}:

P(Xt+1 = xt+1|Xt = xt,Xt−1 = xt−1 . . . ,X0 = x0)

= P(Et = xt+1 − xt|Et−1 = xt − xt−1, . . . , E0 = x1 − x0,X0 = xo)
Es⊥Et= P(Et = xt+1 − xt) = P(Xt+1 = xt+1|Xt = xt)

Thus{Xt : t ∈ N0} is a Markov chain. ⊳

The distribution of a Markov chain is fully specified by itsinitial distribution P(X0 = x0) and thetransition

probabilitiesP(Xt+1 = xt+1|Xt = xt), as the following proposition shows.

Proposition 1.6. For a discrete Markov chain{Xt : t ∈ N0} we have that

P(Xt = xt,Xt−1 = xt−1, . . . ,X0 = x0) = P(X0 = x0) ·
t−1∏
τ=0

P(Xτ+1 = xτ+1|Xτ = xτ ).

Proof. From the definition of conditional probabilities we can derive that
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P(Xt = xt,Xt−1 = xt−1, . . . ,X0 = x0) = P(X0 = x0)

· P(X1 = x1|X0 = x0)

· P(X2 = x2|X1 = x1,X0 = x0)︸ ︷︷ ︸
=P(X2=x2|X1=x1)

· · ·
· P(Xt = xt|Xt−1 = xt−1, . . . ,X0 = x0)︸ ︷︷ ︸

=P(Xt=xt|Xt−1=xt−1)

=
t−1∏
τ=0

P(Xτ+1 = xτ+1|Xτ = xτ ). �

Comparing the equation in proposition 1.6 to the first equation of the proof (which holds for any sequence of

random variables) illustrates how powerful the Markovian assumption is.

To simplify things even further we will introduce the concept of a homogeneous Markov chain, which is a

Markov chains whose behaviour does not change over time.

Definition 1.7 (Homogeneous Markov Chain). A Markov chain{Xt : t ∈ N0} is said to behomogeneousif

P(Xt+1 = j|Xt = i) = pij

for all i, j ∈ S, and independent oft ∈ N0.

In the following we will assume that all Markov chains are homogeneous.

Definition 1.8 (Transition kernel). The matrixK = (kij)ij with kij = P(Xt+1 = j|Xt = i) is called thetransi-

tion kernel(or transition matrix) of the homogeneous Markov chainX.

We will see that together with the initial distribution, which we might write as a vectorλ0 = (P(X0 = i))(i∈S),

the transition kernelK fully specifies the distribution of a homogeneous Markov chain.

However, we start by stating two basic properties of the transition kernelK:

– The entries of the transition kernel are non-negative (theyare probabilities).

– Each row of the transition kernel sums to1, as∑
j

kij =
∑

j

P(Xt+1 = j|Xt = i) = P(Xt+1 ∈ S|Xt = i) = 1

Example 1.3 (Phone line (continued)). Suppose that in the example of the phone line the probabilitythat someone

makes a new call (if the phone is currently unused) is 10% and the probability that someone terminates an active

phone call is 30%. If we denote the states by0 (phone not in use) and1 (phone in use). Then

P(Xt+1 = 0|Xt = 0) = 0.9 P(Xt+1 = 1|Xt = 0) = 0.1

P(Xt+1 = 0|Xt = 1) = 0.3 P(Xt+1 = 1|Xt = 1) = 0.7,

and the transition kernel is

K =

(
0.9 0.1

0.3 0.7

)
.

The transition probabilities are often illustrated using aso-called Markov graph. The Markov graph for this example

is shown in figure 1.4. Note that knowingK alone is not enough to find the distribution of the states: forthis we

also need to know the initial distributionλ0. ⊳
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0 1
0.3

0.1

0.9 0.7

Figure 1.4. Markov graph for the phone line example.

Example 1.4 (Random walk on Z (continued)). The transition kernel for the random walk onZ is a Toeplitz matrix

with an infinite number of rows and columns:

K =



. . .
.. .

. . .
. . .

. . .
.. .

. . .
. . .

. . . α 1−α−β β 0 0 0
. . .

. . . 0 α 1−α−β β 0 0
. . .

. . . 0 0 α 1−α−β β 0
. . .

. . . 0 0 0 α 1−α−β β
. . .

. . .
.. .

. . .
. . .

. . .
.. .

. . .
. . .


The Markov graph for this Markov chain was given in figure 1.3. ⊳

We will now generalise the concept of the transition kernel,which contains the probabilities of moving from

statei to stepj in one step, to them-step transition kernel, which contains the probabilitiesof moving from statei

to stepj in m steps:

Definition 1.9 ( m-step transition kernel). The matrixK(m) = (k(m)
ij )ij with k

(m)
ij = P(Xt+m = j|Xt = i) is

called them-step transition kernelof the homogeneous Markov chainX.

We will now show that them-step transition kernel is nothing other than them-power of the transition kernel.

Proposition 1.10. LetX be a homogeneous Markov chain, then

i. K(m) = Km, and

ii. P(Xm = j) = (λ′0K
(m))j .

Proof. i. We will first show that form1,m2 ∈ N we have thatK(m1+m2) = K(m1) ·K(m2):

P(Xt+m1+m2 = k|Xt = i) =
∑

j

P(Xt+m1+m2 = k,Xt+m1 = j|Xt = i)

=
∑

j

P(Xt+m1+m2 = k|Xt+m1 = j,Xt = i)︸ ︷︷ ︸
=P(Xt+m1+m2=k|Xt+m1=j)=P(Xt+m2=k|Xt=j)

P(Xt+m1 = j|Xt = i)

=
∑

j

P(Xt+m2 = k|Xt = j)P(Xt+m1 = j|Xt = i)

=
∑

j

K(m1)
ij K(m2)

jk =
(
K(m1)K(m2)

)
i,k

ThusK(2) = K ·K = K2, and by inductionK(m) = Km.

ii. P(Xm = j) =
∑

i

P(Xm = j,X0 = i) =
∑

i

P(Xm = j|X0 = i)︸ ︷︷ ︸
=K

(m)
ij

P(X0 = i)︸ ︷︷ ︸
=(λ0)i

= (λ′0K
m)j �

Example 1.5 (Phone line (continued)). In the phone-line example, the transition kernel is

K =

(
0.9 0.1

0.3 0.7

)
.

Them-step transition kernel is
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K(m) = Km =

(
0.9 0.1

0.3 0.7

)m

=

 3+( 3
5 )

m

4

1−( 3
5 )

m

4
1+( 3

5 )
m

4

3−( 3
5 )

m

4

 .

Thus the probability that the phone is free given that it was free 10 hours ago isP(Xt+10 = 0|Xt = 0) = K
(10)
0,0 =

3+( 3
5 )

10

4 = 7338981
9765625 = 0.7515. ⊳

1.2.2 Classification of states

Definition 1.11 (Classification of states). (a) A statei is said tolead toa statej (“ i  j”) if there is anm ≥ 0

such that there is a positive probability of getting from state i to statej in m steps, i.e.

k
(m)
ij = P(Xt+m = j|Xt = i) > 0.

(b) Two statesi andj are said tocommunicate(“ i ∼ j”) if i j andj  i.

From the definition we can derive for statesi, j, k ∈ S:

– i i (ask
(0)
ii = P(Xt+0 = i|Xt = i) = 1 > 0), thusi ∼ i.

– If i ∼ j, then alsoj ∼ i.

– If i  j andj  k, then there existmij ,m2 ≥ 0 such that the probability of getting from statei to statej in

mij steps is positive, i.e.k(mij)
ij = P(Xt+mij

= j|Xt = i) > 0, as well as the probability of getting from statej

to statek in mjk steps, i.e.k(mjk)
jk = P(Xt+mjk

= k|Xt = j) = P(Xt+mij+mjk
= k|Xt+mij

= j) > 0. Thus

we can get (with positive probability) from statei to statek in mij + mjk steps:

k
(mij+mjk)
ik = P(Xt+mij+mjk

= k|Xt = i) =
∑

ι

P(Xt+mij+mjk
= k|Xt+mij

= ι)P(Xt+mij
= ι|Xt = i)

≥ P(Xt+mij+mjk
= k|Xt+mij

= j)︸ ︷︷ ︸
>0

P(Xt+mij
= j|Xt = i)︸ ︷︷ ︸

>0

> 0

Thusi j andj  k imply i k. Thusi ∼ j andj ∼ k also implyi ∼ k

Thus∼ is an equivalence relation and we can partition the state spaceS into communicating classes, such that all

states in one class communicate and no larger classes can be formed. A classC is calledclosedif there are no paths

going out ofC, i.e. for all i ∈ C we have thati j implies thatj ∈ C.

We will see that states within one class have many propertiesin common.

Example 1.6. Consider a Markov chain with transition kernel

K =



1
2

1
4 0 1

4 0 0

0 0 0 1 0 0

0 0 3
4 0 0 1

4

0 0 0 0 1 0

0 3
4 0 0 0 1

4

0 0 1
2 0 0 1

2


The Markov graph is shown in figure 1.5. We have that2 ∼ 4, 2 ∼ 5, 3 ∼ 6, 4 ∼ 5. Thus the communicating

classes are{1}, {2, 4, 5}, and{3, 6}. Only the class{3, 6} is closed. ⊳

Finally, we will introduce the notion of anirreducible chain. This concept will become important when we

analyse the limiting behaviour of the Markov chain.

Definition 1.12 (Irreducibility). A Markov chain is calledirreducibleif it only consists of a single class, i.e. all

states communicate.
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Figure 1.5. Markov graph of the chain of example 1.6. The communicating classes are{1}, {2, 4, 5}, and{3, 6}.

The Markov chain considered in the phone-line example (examples 1.1,1.3, and 1.5) and the random walk onZ
(examples 1.2 and 1.4) are irreducible chains. The chain of example 1.6 is not irreducible.

In example 1.6 the states2, 4 and5 can only be visited in this order: if we are currently in state2 (i.e.Xt = 2),

then we can only visit this state again at timet + 3, t + 6, . . . . Such a behaviour is referred to as periodicity.

Definition 1.13 (Period). (a) A statei ∈ S is said to haveperiod

d(i) = gcd{m ≥ 1 : K
(m)
ii > 0},

wheregcd denotes the greatest common denominator.

(b) If d(i) = 1 the statei is calledaperiodic.

(c) If d(i) > 1 the statei is calledperiodic.

For a periodic statei, the number of steps required to possibly get back to this state must be a multiple of the

periodd(i).

To analyse the periodicity of a statei we must check the existence of paths of positive probabilityand of length

m going from the statei back toi. If no path of lengthm exists, thenK(m)
ii = 0. If there exists a single path of

positive probability of lengthm, thenK
(m)
ii > 0.

Example 1.7 (Example 1.6 continued). In example 1.6 the state2 has periodd(2) = 3, as all paths from2 back to2

have a length which is a multiple of3, thus

K
(3)
22 > 0, K

(6)
22 > 0, K

(9)
22 > 0, . . .

All otherK(m)
22 = 0 (m

3 6∈ N0), thus the period isd(2) = 3 (3 being the greatest common denominator of3, 6, 9, . . .).

Similarly d(4) = 3 andd(5) = 3.

The states3 and6 are aperiodic, as there is a positive probability of remaining in these states, thusK(m)
33 > 0

andK
(m)
66 > 0 for all m, thusd(3) = d(6) = 1. ⊳

In example 1.6 all states within one communicating class hadthe same period. This holds in general, as the

following proposition shows:

Proposition 1.14. (a) All states within a communicating class have the same period.

(b) In an irreducible chain all states have the same period.

Proof. (a) Supposei ∼ j. Thus there are paths of positive probability between thesetwo states. Suppose we can

get fromi to j in mij steps and fromj to i in mji steps. Suppose also that we can get fromj back toj in mjj

steps. Then we can get fromi back toi in mij +mji steps as well as inmij +mjj +mji steps. Thusmij +mji

andmij + mjj + mji must be divisible by the periodd(i) of statei. Thusmjj is also divisible byd(i) (being

the difference of two numbers divisible byd(i)).
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The above argument holds for any path betweenj andj, thus the length of any path fromj back toj is divisible

by d(i). Thusd(i) ≤ d(j) (d(j) being the greatest common denominator).

Repeating the same argument with the rôles ofi andj swapped gives usd(j) ≤ d(i), thusd(i) = d(j).

(b) An irreducible chain consists of a single communicatingclass, thus (b) is implied by (a). �

1.2.3 Recurrence and transience

If we follow the Markov chain of example 1.6 long enough, we will eventually end up switching between state3

and6 without ever coming back to the other states Whilst the states3 and6 will be visited infinitely often, the other

states will eventually be left forever.

In order to formalise these notions we will introduce thenumber of visitsin state i:

Vi =
+∞∑
t=0

1{Xt=i}

The expected number of visits in statei given that we start the chain ini is

E(Vi|X0 = i) = E

(
+∞∑
t=0

1{Xt=i}
∣∣∣X0 = i

)
=

+∞∑
t=0

E(1{Xt=i}|X0 = i) =
+∞∑
t=0

P(Xt = i|Xo = i) =
+∞∑
t=0

k
(t)
ii

Based on whether the expected number of visits in a state is infinite or not, we will classify states as recurrent

or transient:

Definition 1.15 (Recurrence and transience). (a) A statei is calledrecurrentif E(Vi|X0 = i) = +∞.

(b) A statei is calledtransientif E(Vi|X0 = i) < +∞.

One can show that a recurrent state will (almost surely) be visited infinitely often, whereas a transient state will

(almost surely) be visited only a finite number of times.

In proposition 1.14 we have seen that within a communicatingclass either all states are aperiodic, or all states

are periodic. A similar dichotomy holds for recurrence and transience.

Proposition 1.16. Within a communicating class, either all states are transient or all states are recurrent.

Proof. Supposei ∼ j. Then there exists a path of lengthmij leading fromi to j and a path of lengthmji from j

back toi, i.e.k(mij)
ij > 0 andk

(mji)
ji > 0.

Suppose furthermore that the statei is transient, i.e.E(Vi|X0 = i) =
+∞∑
t=0

k
(t)
ii < +∞.

This implies

E(Vj |X0 = j) =
+∞∑
t=0

k
(t)
jj =

1

k
(mij)
ij k

(mji)
ji

+∞∑
t=0

k
(mij)
ij k

(t)
jj k

(mji)
ji︸ ︷︷ ︸

≤k
(m+t+n)
ii

≤ 1

k
(mij)
ij k

(mji)
ji

+∞∑
t=0

k(mij+t+mji)

≤ 1

k
(mij)
ij k

(mji)
ji

+∞∑
s=0

k
(s)
ii < +∞,

thus statej is be transient as well. �

Finally we state without proof two simple criteria for determining recurrence and transience.

Proposition 1.17. (a) Every class which is not closed is transient.

(b) Every finite closed class is recurrent.

Proof. For a proof see (Norris, 1997, sect. 1.5). �
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Example 1.8 (Examples 1.6 and 1.7 continued). The chain of example 1.6 had three classes:{1}, {2, 4, 5}, and

{3, 6}. The classes{1} and{2, 4, 5} are not closed, so they are transient. The class{3, 6} is closed and finite, thus

recurrent. ⊳

Note that an infinite closed class is not necessarily recurrent. The random walk onZ studied in examples 1.2

and 1.4 is only recurrent if it is symmetric, i.e.α = β, otherwise it drifts off to−∞ or +∞. An interesting result is

that a symmetric random walk onZp is only recurrent ifp ≤ 2 (see e.g. Norris, 1997, sect. 1.6).

1.2.4 Invariant distribution and equilibrium

In this section we will study the long-term behaviour of Markov chains. A key concept for this is the invariant

distribution.

Definition 1.18 (Invariant distribution). Letµ = (µi)i∈S be a probability distribution on the state spaceS, and let

X be a Markov chain with transition kernelK. Thenµ is called theinvariant distribution(or stationary distribution)

of the Markov chainX if3

µ′K = µ′.

If µ is the stationary distribution of a chain with transition kernelK, then

µ′ = µ′︸︷︷︸
=µ′K

K = µ′K2 = . . . = µ′Km = µ′K(m)

for all m ∈ N. Thus ifX0 in drawn fromµ, then allXm have distributionµ: according to proposition 1.10

P(Xm = j) = (µ′K(m))j = (µ)j

for all m. Thus, if the chain hasµ as initial distribution, the distribution ofX will not change over time.

Example 1.9 (Phone line (continued)). In example 1.1,1.3, and 1.5 we studied a Markov chain with thetwo states0

(“free”) and1 (“in use”) and which modeled whether a phone is free or not. Its transition kernel was

K =

(
0.9 0.1

0.3 0.7

)
.

To find the invariant distribution, we need to solveµ′K = µ′ for µ, which is equivalent to solving the following

system of linear equations:

(K′ − I)µ = 0, i.e.

(
−0.1 0.3

0.1 −0.3

)
·
(

µ0

µ1

)
=

(
0

0

)
It is easy to see that the corresponding system is under-determined and that−µ0 + 3µ1 = 0, i.e.µ = (µ0, µ1)′ ∝
(3, 1), i.e.µ =

(
3
4 , 1

4

)′
(asµ has to be a probability distribution, thusµ0 + µ1 = 1). ⊳

Not every Markov chain has an invariant distribution. The random walk onZ (studied in examples 1.2 and 1.4)

for example does not have an invariant distribution, as the following example shows:

Example 1.10 (Random walk on Z (continued)). The random walk onZ had the transition kernel (see example 1.4)

K =



. . .
.. .

. . .
. . .

. . .
.. .

. . .
. . .

. . . α 1−α−β β 0 0 0
. . .

. . . 0 α 1−α−β β 0 0
. . .

. . . 0 0 α 1−α−β β 0
. . .

. . . 0 0 0 α 1−α−β β
. . .

. . .
.. .

. . .
. . .

. . .
.. .

. . .
. . .


3 i.e.µ is the left eigenvector ofK corresponding to the eigenvalue1.
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As α+(1−α−β)+β = 1 we have forµ = (. . . , 1, 1, 1, . . .)′ thatµ′K = µ′, howeverµ cannot be renormalised

to become a probability distribution. ⊳

We will now show that if a Markov chain is irreducible and aperiodic, its distribution will in the long run tend

to the invariant distribution.

Theorem 1.19 (Convergence to equilibrium). LetX be an irreducible and aperiodic Markov chain with invariant

distributionµ. Then

P(Xt = i) t→+∞−→ µi

for all statesi.

Outline of the proof. We will explain the outline of the proof using the idea of coupling.

Suppose thatX has initial distributionλ and transition kernelK. Define a new Markov chainY with initial

distributionµ and same transition kernelK. Let T be the first time the two chains “meet” in the statei, i.e.

T = min{t ≥ 0 : Xt = Yt = i}

Then one can show thatP(T < ∞) = 1 and define a new processZ by

Zt =

{
Xt if t ≤ T

Yt if t > T

Figure 1.6 illustrates this new chainZ. One can show thatZ is a Markov chain with initial distributionλ (as

T

Yt

Zt

Xt

Yt

Xt

t

Figure 1.6. Illustration of the chainsX (−−−), Y (— —) andZ (thick line) used in the proof of theorem 1.19.

X0 = Z0) and transition kernelK (as bothX andY have the transition kernelK). ThusX andZ have the same

distribution and for allt ∈ N0 we have thatP(Xt = j) = P(Zt = j) for all statesj ∈ S.

The chainY has its invariant distribution as initial distribution, thusP(Yt = j) = µj for all t ∈ N0 andj ∈ S.

As t → +∞ the probability of{Yt = Zt} tends to1, thus

P(Xt = j) = P(Zt = j) → P(Yt = j) = µj .

A more detailed proof of this theorem can be found in (Norris,1997, sec. 1.8).

Example 1.11 (Phone line (continued)). We have shown in example 1.9 that the invariant distributionof the Markov

chain modeling the phone line isµ =
(

3
4 , 1

4

)
, thus according to theorem 1.19P(Xt = 0) → 3

4 andP(Xt = 1) →
1
4 . Thus, in the long run, the phone will be free 75% of the time. ⊳

Example 1.12. This example illustrates that the aperiodicity condition in theorem 1.19 is necessary.

Consider a Markov chainX with two statesS = {1, 2} and transition kernel
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K =

(
0 1

1 0

)
.

This Markov chains switches deterministically, thus goes either 1, 0, 1, 0, . . . or 0, 1, 0, 1, . . .. Thus it is

periodic with period2.

Its invariant distribution isµ′ =
(

1
2 , 1

2

)
, as

µ′K =
(

1
2
,
1
2

)(
0 1

1 0

)
=
(

1
2
,
1
2

)
= µ′.

However if the chain is started inX0 = 1, i.e.λ = (1, 0), then

P(Xt = 0) =

{
1 if t is odd

0 if t is even
, P(Xt = 1) =

{
0 if t is odd

1 if t is even
,

which is different from the invariant distribution, under which all these probabilities would be12 . ⊳

1.2.5 Reversibility and detailed balance

In our study of Markov chains we have so far focused on conditioning on the past. For example, we have defined

the transition kernel to consist ofkij = P(Xt+1 = j|Xt = i). What happens if we analyse the distribution ofXt

conditional on the future, i.e we turn the universal clock backwards?

P(Xt = j|Xt+1 = i) =
P(Xt = j,Xt+1 = i)

P(Xt+1 = i)
= P(Xt+1 = i|Xt = j) · P(Xt = j)

P(Xt+1 = i)
This suggests defining a new Markov chain which goes back in time. As the defining property of a Markov

chain was that the past and future are conditionally independent given the present, the same should hold for the

“backward chain”, just with the rôles of past and future swapped.

Definition 1.20 (Time-reversed chain). For τ ∈ N let {Xt : t = 0, . . . , τ} be a Markov chain. Then{Yt : t =

0, . . . , τ} defined byYt = Xτ−t is called thetime-reversed chaincorresponding toX.

We have that

P(Yt = j|Yt−1 = i) = P(Xτ−t = j|Xτ−t+1 = i) = P(Xs = j|Xs+1 = i) =
P(Xs = j,Xs+1 = i)

P(Xs+1 = i)

= P(Xs+1 = i|Xs = j) · P(Xs = j)
P(Xs+1 = i)

= kji · P(Xs = j)
P(Xs+1 = i)

,

thus the time-reversed chain is in general not homogeneous,even if the forward chainX is homogeneous.

This changes however if the forward chainX is initialised according to its invariant distributionµ. In this case

P(Xs+1 = i) = µi andP(Xs = j) = µj for all s, and thusY is a homogeneous Markov chain with transition

probabilities

P(Yt = j|Yt−1 = i) = kji · µj

µi
. (1.2)

In general, the transition probabilities for the time-reversed chain will thus be different from the forward chain.

Example 1.13 (Phone line (continued)). In the example of the phone line (examples 1.1, 1.3, 1.5, 1.9,and 1.11) the

transition matrix was

K =

(
0.9 0.1

0.3 0.7

)
.

The invariant distribution wasµ =
(

3
4 , 1

4

)′
.

If we use the invariant distributionµ as initial distribution forX0, then using (1.2)
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P(Yt = 0|Yt−1 = 0) = k00 · µ0

µ0
= k00 = P(Xt = 0|Xt−1 = 1)

P(Yt = 0|Yt−1 = 1) = k01 · µ0

µ1
= 0.1 ·

3
4
1
4

= 0.3 = k10 = P(Xt = 0|Xt−1 = 1)

P(Yt = 1|Yt−1 = 0) = k10 · µ1

µ0
= 0.3 ·

1
4
3
4

= 0.1 = k01 = P(Xt = 1|Xt−1 = 0)

P(Yt = 1|Yt−1 = 1) = k11 · µ1

µ1
= k11 = P(Xt = 1|Xt−1 = 1)

Thus in this case both the forward chainX and the time-reversed chainY have the same transition probabilities.

We will call such chainstime-reversible, as their dynamics do not change when time is reversed. ⊳

We will now introduce a criterion for checking whether a chain is time-reversible.

Definition 1.21 (Detailed balance). A transition kernelK is said to be indetailed balancewith a distributionµ if

for all i, j ∈ S

µikij = µjkji.

It is easy to see that Markov chain studied in the phone line example (see example 1.13) satisfies the detailed-

balance condition.

The detailed-balance condition is a very important conceptthat we will require when studying Markov Chain

Monte Carlo (MCMC) algorithms later. The reason for its relevance is the following theorem, which says that if a

Markov chain is in detailed balance with a distributionµ, then the chain is time-reversible, and, more importantly,

µ is the invariant distribution. The advantage of the detailed-balance condition over the condition of definition 1.18

is that the detailed-balance condition is often simpler to check, as it does not involve a sum (or a vector-matrix

product).

Theorem 1.22. LetX be a Markov chain with transition kernelK which is in detailed balance with some distribu-

tion µ on the states of the chain. Then

i. µ is the invariant distribution ofX.

ii. If initialised according toµ, X is time-reversible, i.e. bothX and its time reversal have the same transition

kernel.

Proof. i. We have that

(µ′K)i =
∑

j

µjkji︸ ︷︷ ︸
=µikij

= µi

∑
j

kij︸ ︷︷ ︸
=1

= µi,

thusµ′K = µ′, i.e.µ is the invariant distribution.

ii. Let Y be the time-reversal ofX, then using (1.2)

P(Yt = j|Yt−1 = i) =

µikij︷ ︸︸ ︷
µjkji

µi
= kij = P(Xt = j|Xt−1 = i),

thusX andY have the same transition probabilities. �

Note that not every chain which has an invariant distribution is time-reversible, as the following example shows:

Example 1.14. Consider the following Markov chain onS = {1, 2, 3} with transition matrix

K =


0 0.8 0.2

0.2 0 0.8

0.8 0.2 0


The corresponding Markov graph is shown in figure 1.7: The stationary distribution of the chain isµ =

(
1
3 , 1

3 , 1
3

)
.
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Figure 1.7. Markov graph for the Markov chain of example 1.14.

However the distribution is not time-reversible. Using equation (1.2) we can find the transition matrix of the time-

reversed chainY , which is 
0 0.2 0.8

0.8 0 0.2

0.2 0.8 0

 ,

which is equal toK′, rather thanK. Thus the chainsX and its time reversalY have different transition kernels.

When going forward in time, the chain is much more likely to go clockwise in figure 1.7; when going backwards in

time however, the chain is much more likely to go counter-clockwise. ⊳

1.3 General state space Markov chains

So far, we have restricted our attention to Markov chains with a discrete (i.e. at most countable) state spaceS. The

main reason for this was that this kind of Markov chain is mucheasier to analyse than Markov chains having a more

general state space.

However, most applications of Markov Chain Monte Carlo algorithms are concerned with continuous random

variables, i.e. the corresponding Markov chain has a continuous state spaceS, thus the theory studied in the preced-

ing section does not directly apply. Largely, we defined mostconcepts for discrete state spaces by looking at events

of the type{Xt = j}, which is only meaningful if the state space is discrete.

In this section we will give a brief overview of the theory underlying Markov chains with general state spaces.

Although the basic principles are not entirely different from the ones we have derived in the discrete case, the study

of general state space Markov chains involves many more technicalities and subtleties, so that we will not present

any proofs here. The interested reader can find a more rigorous treatment in (Meyn and Tweedie, 1993), (Nummelin,

1984), or (Robert and Casella, 2004, chapter 6).

Though this section is concerned with general state spaces we will notationally assume that the state space is

S = Rd.

First of all, we need to generalise our definition of a Markov chain (definition 1.4). We defined a Markov chain

to be a stochastic process in which, conditionally on the present, the past and the future are independent. In the

discrete case we formalised this idea using the conditionalprobability of{Xt = j} given different collections of

past events.

In a general state space it can be that all events of the type{Xt = j} have probability 0, as it is the case for

a process with a continuous state space. A process with a continuous state space spreads the probability so thinly

that the probability of exactly hitting one given state is0 for all states. Thus we have to work with conditional

probabilities of sets of states, rather than individual states.

Definition 1.23 (Markov chain). Let X be a stochastic process in discrete time with general state spaceS. X is

called aMarkov chainif X satisfies theMarkov property

P(Xt+1 ∈ A|X0 = x0, . . . ,Xt = xt) = P(Xt+1 ∈ A|Xt = xt)

for all measurable setsA ⊂ S.
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If S is at most countable, this definition is equivalent to definition 1.4.

In the following we will assume that the Markov chain ishomogeneous, i.e. the probabilitiesP(Xt+1 ∈ A|Xt =

xt) are independent oft. For the remainder of this section we shall also assume that we can express the probability

from definition 1.23 using atransition kernelK : S × S → R+
0 :

P(Xt+1 ∈ A|Xt = xt) =
∫

A

K(xt, xt+1) dxt+1 (1.3)

where the integration is with respect to a suitable dominating measure, i.e. for example with respect to the Lebesgue

measure ifS = Rd.4 The transition kernelK(x, y) is thus just the conditional probability density ofXt+1 given

Xt = xt.

We obtain the special case of definition 1.8 by settingK(i, j) = kij , wherekij is the(i, j)-th element of the

transition matrixK. For a discrete state space the dominating measure is the counting measure, so integration just

corresponds to summation, i.e. equation (1.3) is equivalent to

P(Xt+1 ∈ A|Xt = xt) =
∑

xt+1∈A

kxtxt+1 .

We have for measurable setA ⊂ S that

P(Xt+m ∈ A|Xt = xt) =
∫

A

∫
S

· · ·
∫

S

K(xt, xt+1)K(xt+1, xt+2) · · ·K(xt+m−1, xt+m) dxt+1 · · · dxt+m−1dxt+m,

thus them-step transition kernel is

K(m)(x0, xm) =
∫

S

· · ·
∫

S

K(x0, x1) · · ·K(xm−1, xm) dxm−1 · · · dx1

Them-step transition kernel allows for expressing them-step transition probabilities more conveniently:

P(Xt+m ∈ A|Xt = xt) =
∫

A

K(m)(xt, xt+m) dxt+m

Example 1.15 (Gaussian random walk on R). Consider the random walk onR defined by

Xt+1 = Xt + Et,

whereEt ∼ N(0, 1), i.e. the probability density function ofEt is φ(z) =
1√
2π

exp
(
−z2

2

)
. This is equivalent to

assuming that

Xt+1|Xt = xt ∼ N(xt, 1).

We also assume thatEt is independent ofX0, E1, . . . , Et−1. Suppose thatX0 ∼ N(0, 1). In contrast to the random

walk onZ (introduced in example 1.2) the state space of the Gaussian random walk isR. In complete analogy with

example 1.2 we have that

P(Xt+1 ∈ A|Xt = xt, . . . ,X0 = x0) = P(Et ∈ A− xt|Xt = xt, . . . ,X0 = x0)

= P(Et ∈ A− xt) = P(Xt+1 ∈ A|Xt = xt),

whereA− xt = {a− xt : a ∈ A}. ThusX is indeed a Markov chain. Furthermore we have that

P(Xt+1 ∈ A|Xt = xt) = P(Et ∈ A− xt) =
∫

A

φ(xt+1 − xt) dxt+1

Thus the transition kernel (which is nothing other than the conditional density ofXt+1|Xt = xt) is thus

K(xt, xt+1) = φ(xt+1 − xt)

To find them-step transition kernel we could use equation (1.3). However, the resulting integral is difficult to

compute. Rather we exploit the fact that

4 A more correct way of stating this would beP(Xt+1 ∈ A|Xt = xt) =
R

A
K(xt, dxt+1).
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Xt+m = Xt + Et + . . . + Et+m−1︸ ︷︷ ︸
∼N(0,m)

,

thusXt+m|Xt = xt ∼ N(xt,m).

P(Xt+m ∈ A|Xt = xt) = P(Xt+m −Xt ∈ A− xt) =
∫

A

1√
m

φ

(
xt+m − xt√

m

)
dxt+m

Comparing this with (1.3) we can identify

K(m)(xt, xt+m) =
1√
m

φ

(
xt+m − xt√

m

)
asm-step transition kernel. ⊳

In section 1.2.2 we defined a Markov chain to be irreducible ifthere is a positive probability of getting from any

statei ∈ S to any other statej ∈ S, possibly via intermediate steps.

Again, we cannot directly apply definition 1.12 to Markov chains with general state spaces: it might be — as

it is the case for a continuous state space — that the probability of hitting a given state is0 for all states. We will

again resolve this by looking at sets of states rather than individual states.

Definition 1.24 (Irreducibility). Given a distributionµ on the statesS, a Markov chain is said to beµ-irreducible

if for all setsA with µ(A) > 0 and for allx ∈ S, there exists anm ∈ N0 such that

P(Xt+m ∈ A|Xt = x) =
∫
A

K(m)(x, y) dy > 0.

If the number of stepsm = 1 for all A, then the chain is said to bestronglyµ-irreducible.

Example 1.16 (Gaussian random walk (continued)). In example 1.15 we had thatXt+1|Xt = xt ∼ N(xt, 1). As

the range of the Gaussian distribution isR, we have thatP(Xt+1 ∈ A|Xt = xt) > 0 for all setsA of non-zero

Lebesgue measure. Thus the chain is strongly irreducible with the respect to any continuous distribution. ⊳

Extending the concepts of periodicity, recurrence, and transience studied in sections 1.2.2 and 1.2.3 from the

discrete case to the general case requires additional technical concepts likeatomsandsmall sets, which are beyond

the scope of this course (for a more rigorous treatment of these concepts see e.g. Robert and Casella, 2004, sections

6.3 and 6.4). Thus we will only generalise the concept of recurrence.

In section 1.2.3 we defined a discrete Markov chain to be recurrent, if all states are (on average) visited infinitely

often. For more general state spaces, we need to consider thenumber of visits to a set of states rather than single

states. LetVA =
∑+∞

t=0 1{Xt∈A} be the number of visits the chain makes to states in the setA ⊂ S. We then define

the expected number of visits inA ⊂ S, when we start the chain inx ∈ S:

E(VA|X0 = x) = E

(
+∞∑
t=0

1{Xt∈A}
∣∣∣X0 = x

)
=

+∞∑
t=0

E(1{Xt∈A}|X0 = x) =
+∞∑
t=0

∫
A

K(t)(x, y) dy

This allows us to define recurrence for general state spaces.We start with defining recurrence of sets before extend-

ing the definition of recurrence of an entire Markov chain.

Definition 1.25 (Recurrence). (a) A setA ⊂ S is said to berecurrentfor a Markov chainX if for all x ∈ A

E(VA|X0 = x) = +∞,

(b) A Markov chain is said to berecurrent, if

i. The chain isµ-irreducible for some distributionµ.

ii. Every measurable setA ⊂ S with µ(A) > 0 is recurrent.
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According to the definition a set is recurrent if on average itis visited infinitely often. This is already the case if

there is a non-zero probability of visiting the set infinitely often. A stronger concept of recurrence can be obtained

if we require that the set is visited infinitely often with probability 1. This type of recurrence is referred to asHarris

recurrence.

Definition 1.26 (Harris Recurrence). (a) A setA ⊂ S is said to beHarris-recurrentfor a Markov chainX if for

all x ∈ A

P(VA = +∞|X0 = x) = 1,

(b) A Markov chain is said to beHarris-recurrent, if

i. The chain isµ-irreducible for some distributionµ.

ii. Every measurable setA ⊂ S with µ(A) > 0 is Harris-recurrent.

It is easy to see that Harris recurrence implies recurrence.For discrete state spaces the two concepts are equiva-

lent.

Checking recurrence or Harris recurrence can be very difficult. We will state (without) proof a proposition

which establishes that if a Markov chain is irreducible and has a unique invariant distribution, then the chain is also

recurrent.

However, before we can state this proposition, we need to define invariant distributions for general state spaces.

Definition 1.27 (Invariant Distribution). A distributionµ with density functionfµ is said to be theinvariant distri-

butionof a Markov chainX with transition kernelK if

fµ(y) =
∫

S

fµ(x)K(x, y) dx

for almost ally ∈ S.

Proposition 1.28. Suppose thatX is aµ-irreducible Markov chain havingµ as unique invariant distribution. Then

X is also recurrent.

Proof. see (Tierney, 1994, theorem 1) or (Athreya et al., 1992) �

Checking the invariance condition of definition 1.27 requires computing an integral, which can be quite cum-

bersome. A simpler (sufficient, but not necessary) condition is, just like in the case discrete case, detailed balance.

Definition 1.29 (Detailed balance). A transition kernelK is said to be indetailed balancewith a distributionµ

with densityfµ if for almost allx, y ∈ S

fµ(x)K(x, y) = fµ(y)K(y, x).

In complete analogy with theorem 1.22 one can also show in thegeneral case that if the transition kernel of a

Markov chain is in detailed balance with a distributionµ, then the chain is time-reversible and hasµ as its invariant

distribution. Thus theorem 1.22 also holds in the general case.

1.4 Ergodic theorems

In this section we will study the question whether we can use observations from a Markov chain to make inferences

about its invariant distribution. We will see that under some regularity conditions it is even enough to follow a single

sample path of the Markov chain.

For independent identically distributed data the Law of Large Numbers is used to justify estimating the expected

value of a functional using empirical averages. A similar result can be obtained for Markov chains. This result is

the reason why Markov Chain Monte Carlo methods work: it allows us to set up simulation algorithms to generate

a Markov chain, whose sample path we can then use for estimating various quantities of interest.
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Theorem 1.30 (Ergodic Theorem). Let X be aµ-irreducible, recurrentRd-valued Markov chain with invariant

distributionµ. Then we have for any integrable functiong : Rd → R that with probability1

lim
t→∞

1
t

t∑
i=1

g(Xi) → Eµ(g(X)) =
∫

S

g(x)fµ(x) dx

for almost every starting valueX0 = x. If X is Harris-recurrent this holds for every starting valuex.

Proof. For a proof see (Roberts and Rosenthal, 2004, fact 5), (Robert and Casella, 2004, theorem 6.63), or (Meyn

and Tweedie, 1993, theorem 17.3.2). �

Under additional regularity conditions one can also derivea Central Limit Theorem which can be used to justify

Gaussian approximations for ergodic averages of Markov chains. This would however be beyond the scope of this

course.

We conclude by giving an example that illustrates that the conditions of irreducibility and recurrence are neces-

sary in theorem 1.30. These conditions ensure that the chainis permanently exploring the entire state space, which

is a necessary condition for the convergence of ergodic averages.

Example 1.17. Consider a discrete chain with two statesS = {1, 2} and transition matrix

K =

(
1 0

0 1

)

The corresponding Markov graph is shown in figure 1.8. This chain will remain in its intial state forever. Any

1 2

1 1

Figure 1.8. Markov graph of the chain of example 1.17

distributionµ on{1, 2} is an invariant distribution, as

µ′K = µ′I = µ′

for all µ. However, the chain is not irreducible (or recurrent): we cannot get from state1 to state2 and vice versa.

If the initial distribution isµ = (α, 1− α)′ with α ∈ [0, 1] then for everyt ∈ N0 we have that

P(Xt = 1) = α P(Xt = 2) = 1− α.

By observing one sample path (which is either1, 1, 1, . . . or 2, 2, 2, . . .) we can make no inference about the distri-

bution ofXt or the parameterα. The reason for this is that the chain fails to explore the space (i.e. switch between

the states1 and2). In order to estimate the parameterα we would need to look at more than one sample path.⊳

Note that theorem 1.30 does not require the chain to the aperiodic. In example 1.12 we studied a periodic chain.

Due to the periodicity we could not apply theorem 1.19. We canhowever apply theorem 1.30 to this chain. The

reason for this is that whilst theorem 1.19 was about the distribution of states at a given timet, theorem 1.30 is

about averages, and the periodic behaviour does not affect averages.



Chapter 2

An Introduction to Monte Carlo Methods

2.1 What are Monte Carlo Methods?

This lecture course is concerned with Monte Carlo methods, which are sometimes referred to asstochastic simula-

tion (Ripley (1987) for example only uses this term).

Examples of Monte Carlo methods include stochastic integration, where we use a simulation-based method to

evaluate an integral, Monte Carlo tests, where we resort to simulation in order to compute the p-value, and Markov-

Chain Monte Carlo (MCMC), where we construct a Markov chain which (hopefully) converges to the distribution

of interest.

A formal definition of Monte Carlo methods was given (amongstothers) by Halton (1970). He defined a Monte

Carlo method as “representing the solution of a problem as a parameter of a hypothetical population, and using

a random sequence of numbers to construct a sample of the population, from which statistical estimates of the

parameter can be obtained.”

2.2 Introductory examples

Example 2.1 (A raindrop experiment for computing π). Assume we want to compute an Monte Carlo estimate ofπ

using a simple experiment. Assume that we could produce “uniform rain” on the square[−1, 1]× [−1, 1], such that

the probability of a raindrop falling into a regionR ⊂ [−1, 1]2 is proportional to the area ofR, but independent of

the position ofR. It is easy to see that this is the case iff the two coordinatesX,Y are i.i.d. realisations of uniform

distributions on the interval[−1, 1] (in shortX,Y
i.i.d.∼ U[−1, 1]).

Now consider the probability that a raindrop falls into the unit circle (see figure 2.1). It is

P(drop within circle) =
area of the unit circle

area of the square
=

∫ ∫
{x2+y2≤1}

1 dxdy∫ ∫
{−1≤x,y≤1}

1 dxdy
=

π

2 · 2 =
π

4

In other words,

π = 4 · P(drop within circle),

i.e. we found a way of expressing the desired quantityπ as a function of a probability.

Of course we cannot computeP(drop within circle) without knowingπ, however we can estimate the probability

using our raindrop experiment. If we observen raindrops, then the number of raindropsZ that fall inside the circle

is a binomial random variable:
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1−1

1

−1

Figure 2.1. Illustration of the raindrop experiment for estimatingπ

Z ∼ B(n, p), with p = P(drop within circle).

Thus we can estimatep by its maximum-likelihood estimate

p̂ =
Z

n
,

and we can estimateπ by

π̂ = 4p̂ = 4 · Z

n
.

Assume we have observed, as in figure 2.1, that 77 of the 100 raindrops were inside the circle. In this case, our

estimate ofπ is

π̂ =
4 · 77
100

= 3.08,

which is relatively poor.

However thelaw of large numbersguarantees that our estimateπ̂ converges almost surely toπ. Figure 2.2 shows the

estimate obtained aftern iterations as a function ofn for n = 1, . . . , 2000. You can see that the estimate improves

asn increases.

We can assess the quality of our estimate by computing a confidence interval forπ. As we haveZ ∼ B(100, p) and

p̂ = Z
n , we use the approximation thatZ ∼ N(100p, 100p(1 − p)). Hence,p̂ ∼ N(p, p(1 − p)/100), and we can

obtain a 95% confidence interval forp using this Normal approximation:[
0.77− 1.96 ·

√
0.77 · (1− 0.77)

100
, 0.77 + 1.96 ·

√
0.77 · (1− 0.77)

100

]
= [0.6875, 0.8525],

As our estimate ofπ is four times the estimate ofp, we now also have a confidence interval forπ:

[2.750, 3.410]

In more general, let̂πn = 4p̂n denote the estimate after having observedn raindrops. A(1−2α) confidence interval

for p is then [
p̂n − z1−α

√
p̂n(1− p̂n)

n
, p̂n + z1−α

√
p̂n(1− p̂n)

n

]
,

thus a(1− 2α) confidence interval forπ is[
π̂n − z1−α

√
π̂n(4− π̂n)

n
, π̂n + z1−α

√
π̂n(4− π̂n)

n

]
⊳
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Figure 2.2. Estimate ofπ resulting from the raindrop experiment

Let us recall again the different steps we have used in the example:

– We have written the quantity of interest (in our caseπ) as an expectation.1

– Second, we have replaced this algebraic representation of the quantity of interest by a sample approximation to it.

The law of large numbers guaranteed that the sample approximation converges to the algebraic representation, and

thus to the quantity of interest. Furthermore we used the central limit theorem to assess the speed of convergence.

It is of course of interest whether the Monte Carlo methods offer more favourable rates of convergence than

other numerical methods. We will investigate this in the case of Monte Carlo integration using the following simple

example.

Example 2.2 (Monte Carlo Integration). Assume we want to evaluate the integral∫ 1

0

f(x) dx with f(x) =
1
27
·(−65536x8 + 262144x7 − 409600x6 + 311296x5 − 114688x4 + 16384x3

)
using a Monte Carlo approach.2 Figure 2.3 shows the function forx ∈ [0, 1]. Its graph is fully contained in the unit

square[0, 1]2.

Once more, we can resort to a raindrop experiment. Assume we can produce uniform rain on the unit square. The

probability that a raindrop falls below the curve is equal tothe area below the curve, which of course equals the

integral we want to evaluate (the area of the unit square is 1,so we don’t need to rescale the result).

A more formal justification for this is, using the fact thatf(x) =
∫ f(x)

0
1 dt,

∫ 1

0

f(x) dx =
∫ 1

0

∫ f(x)

0

1 dt dx =
∫ ∫

{(x,t):t≤f(x)}

1dt dx =

∫ ∫
{(x,t):t≤f(x)}

1 dt dx∫ ∫
{0≤x,t≤1}

1dt dx

The numerator is nothing other than the dark grey area under the curve, and the denominator is the area of the

unit square (shaded in light grey in figure 2.3). Thus the expression on the right hand side is the probability that a

1 A probability is a special case of an expectation asP(A) = E(IA).
2 As f is a polynomial we can obtain the result analytically, it is4096

8505
= 212

35·5·7 ≈ 0.4816.
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raindrop falls below the curve.

We have thus re-expressed our quantity of interest as a probability in a statistical model. Figure 2.3 shows the result

obtained when observing 100 raindrops. 52 of them are below the curve, yielding a Monte-Carlo estimate of the

integral of0.52.

If after n raindrops a proportion̂pn is found to lie below the curve, a(1 − 2α) confidence interval for the value of

the integral is [
p̂n − z1−α

√
p̂n(1− pn)

n
, p̂n + z1−α

√
p̂n(1− pn)

n

]
Thus the speed of convergence of our (rather crude) Monte Carlo method isOP(n−1/2). ⊳

10

1

x

Figure 2.3. Illustration of the raindrop experiment to compute
R 1

0
f(x)dx

When using Riemann sums (as in figure 2.4) to approximate the integral from example 2.2 the error is of order

O(n−1).3,4

Recall that our Monte Carlo method was “only” of orderOP(n−1/2). However, it is easy to see that its speed

of convergence is of the same order, regardless of the dimension of the support off . This is not the case for other

(deterministic) numerical integration methods. For a two-dimensional functionf the error made by the Riemann

approximation usingn function evaluations isO(n−1/2). 5

This makes the Monte Carlo methods especially suited for high-dimensional problems. Furthermore the Monte

Carlo method offers the advantage of being relatively simple and thus easy to implement on a computer.

2.3 A Brief History of Monte Carlo Methods

Experimental Mathematics is an old discipline: the Old Testament (1 Kings vii. 23 and 2 Chronicles iv. 2) contains

a rough estimate ofπ (using the columns of King Solomon’s temple). Monte Carlo methods are a somewhat more

recent discipline. One of the first documented Monte Carlo experiments isBuffon’s needleexperiment (see example

2.3 below). Laplace (1812) suggested that this experiment can be used to approximateπ.

3 The error made for each “bar” can be upper bounded by∆2

2
max |f ′(x)|. Letn denote the number evaluations off (and thus

the number of “bars”). As∆ is proportional to1
n

, the error made for each bar isO(n−2). As there aren “bars”, the total

error isO(n−1).
4 The order of convergence can be improved when using the trapezoid rule and (even more) by using Simpson’s rule.
5 Assume we partition both axes intom segments, i.e. we have to evaluate the functionn = m2 times. The error made for

each “bar” isO(m−3) (each of the two sides of the base area of the “bar” is proportional tom−1, so is the upper bound on

|f(x)−f(ξmid)|, yieldingO(m−3)). There are in totalm2 bars, so the total error is onlyO(m−1), or equivalentlyO(n−1/2).
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Figure 2.4. Illustration of numerical integration by Riemann sums

Example 2.3 (Buffon’s needle). In 1733, the Comte de Buffon, George Louis Leclerc, asked thefollowing question

(Buffon, 1733): Consider a floor with equally spaced lines, adistanceδ apart. What is the probability that a needle

of lengthl < δ dropped on the floor will intersect one of the lines?

Buffon answered the question himself in 1777 (Buffon, 1777).

Assume the needle landed such that its angle isθ (see figure 2.5). Then the question whether the needle intersects a

line is equivalent to the question whether a box of widthl sin θ intersects a line. The probability of this happening

is

P(intersect|θ) =
l sin θ

δ
.

Assuming that the angleθ is uniform on[0, π) we obtain

P(intersect) =
∫ π

0

P(intersect|θ) · 1
π

dθ =
∫ π

0

l sin θ

δ
· 1
π

dθ =
l

πδ
·
∫ π

0

sin θ dθ︸ ︷︷ ︸
=2

=
2l

πδ
.

When droppingn needles the expected number of needles crossing a line is thus

2nl

πδ
.

Thus we can estimateπ by

δ δ δ

l sin θ

θ

(a) Illustration of the geometry behind

Buffon’s needle

(b) Results of theBuffon’s needleexperi-

ment using 50 needles. Dark needles inter-

sect the thin vertical lines, light needles do

not.

Figure 2.5. Illustration ofBuffon’s needle
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π ≈ 2nl

Xδ
,

whereX is the number of needles crossing a line.

The Italian mathematician Mario Lazzarini performed Buffon’s needle experiment in 1901 using a needle of length

l = 2.5cm and linesd = 3cm apart (Lazzarini, 1901). Of 3408 needles 1808 needles crossed a line, so Lazzarini’s

estimate ofπ was

π ≈ 2 · 3408 · 2.5
1808 · 3 =

17040
5424

=
355
133

,

which is nothing other than the best rational approximationto π with at most 4 digits each in the denominator and

the numerator.6 ⊳

Historically, the main drawback of Monte Carlo methods was that they used to be expensive to carry out.

Physical random experiments were difficult to perform and sowas the numerical processing of their results.

This however changed fundamentally with the advent of the digital computer. Amongst the first to realise this

potential were John von Neuman and Stanisław Ulam, who were then working for the Manhattan project in Los

Alamos. They proposed in 1947 to use a computer simulation for solving the problem of neutron diffusion in

fissionable material (Metropolis, 1987). Enrico Fermi previously considered using Monte Carlo techniques in the

calculation of neutron diffusion, however he proposed to use a mechanical device, the so-called “Fermiac”, for

generating the randomness. The name “Monte Carlo” goes backto Stanisław Ulam, who claimed to be stimulated

by playing poker (Ulam, 1983). In 1949 Metropolis and Ulam published their results in theJournal of the American

Statistical Association(Metropolis and Ulam, 1949). Nonetheless, in the following30 years Monte Carlo methods

were used and analysed predominantly by physicists, and notby statisticians: it was only in the 1980s — following

the paper by Geman and Geman (1984) proposing the Gibbs sampler — that the relevance of Monte Carlo methods

in the context of (Bayesian) statistics was fully realised.

2.4 Pseudo-random numbers

For any Monte-Carlo simulation we need to be able to reproduce randomness by a computer algorithm, which,

by definition, is deterministic in nature — a philosophical paradox. In the following chapters we will assume that

independent (pseudo-)random realisations from a uniformU[0, 1] distribution7 are readily available. This section

tries to give very brief overview of how pseudo-random numbers can be generated. For a more detailed discussion

of pseudo-random number generators see Ripley (1987) or Knuth (1997).

A pseudo-random number generator (RNG) is an algorithm for whose output theU[0, 1] distribution is a suitable

model. In other words, the number generated by the pseudo-random number generator should have the samerelevant

statistical properties as independent realisations of aU[0, 1] random variable. Most importantly:

– The numbers generated by the algorithm should reproduce independence, i.e. the numbersX1, . . . ,Xn that we

have already generated should not contain any discernible information on the next valueXn+1. This property is

often referred to as the lack of predictability.

– The numbers generated should be spread out evenly across theinterval[0, 1].

In the following we will briefly discuss the linear congruential generator. It is not a particularly powerful gen-

erator (so we discourage you from using it in practise), however it is easy enough to allow some insight into how

pseudo-random number generators work.

6 That Lazzarini’s experiment was that precise, however, casts somedoubt over the results of his experiments (see Badger,

1994, for a more detailed discussion).
7 We will only use theU(0, 1) distribution as a source of randomness. Samples from other distributionscan be derived from

realisations ofU(0, 1) random variables using deterministic algorithms.
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Algorithm 2.1 (Congruential pseudo-random number generator). 1. Choosea,M ∈ N, c ∈ N0, and the initial

value (“seed”)Z0 ∈ {1, . . . M − 1}.
2. Fori = 1, 2, . . .

SetZi = (aZi−1 + c) mod M , andXi = Zi/M .

The integersZi generated by the algorithm are from the set{0, 1, . . . ,M−1} and thus theXi are in the interval

[0, 1).

It is easy to see that the sequence of pseudo-random numbers only depends on the seedZ0. Running the pseudo-

random number generator twice with the same seed thus generates exactly the same sequence of pseudo-random

numbers. This can be a very useful feature when debugging your own code.

Example 2.4. Cosider the choice ofa = 81, c = 35, M = 256, and seedZ0 = 4.

Z1 = (81 · 4 + 35) mod 256 = 359 mod 256 = 103

Z2 = (81 · 103 + 35) mod 256 = 8378 mod 256 = 186

Z3 = (81 · 186 + 35) mod 256 = 15101 mod 256 = 253

. . .

The correspondingXi areX1 = 103/256 = 0.4023438, X2 = 186/256 = 0.72656250, X1 = 253/256 =

0.98828120. ⊳

The main flaw of the congruential generator its “crystalline” nature (Marsaglia, 1968). If the sequence of gen-

erated valuesX1,X2, . . . is viewed as points in ann-dimension cube8, they lie on a finite, and often very small

number of parallel hyperplanes. Or as Marsaglia (1968) put it: “the points [generated by a congruential generator]

are about as randomly spaced in the unitn-cube as the atoms in a perfect crystal at absolute zero.” Thenumber of

hyperplanes depends on the choice ofa, c, andM .

An example for a notoriously poor design of a congruential pseudo-random number generator is RANDU,

which was (unfortunately) very popular in the 1970s and usedfor example in IBM’s System/360 and System/370,

and Digital’s PDP-11. It useda = 216 + 3, c = 0, andM = 231. The numbers generated by RANDU lie on only

15 hyperplanes in the 3-dimensional unit cube (see figure 2.6).

Figure 2.7 shows another cautionary example (taken from Ripley, 1987). The left-hand panel shows a plot of

1,000 realisations of a congruential generator witha = 1229, c = 1, andM = 211. The random numbers lie

on only 5 hyperplanes in the unit square. The right hand panelshows the outcome of the Box-Muller method for

transforming two uniform pseudo-random numbers into a pairof Gaussians (see example 3.2).

Due to this flaw of the congruential pseudo-random number generator, it should not be used in Monte Carlo

experiments. For more powerful pseudo-random number generators see e.g. Marsaglia and Zaman (1991) or Mat-

sumoto and Nishimura (1998). GNU R (and other environments)provide you with a large choice of powerful

random number generators, see the corresponding help page (?RNGkind) for details.

8 The(k + 1)-th point has the coordinates(Xnk+1, . . . , Xnk+n−1).
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Figure 2.6. 300,000 realisations of the RANDU pseudo-random number generatorplotted in 3D. A point corresponds to a triplet

(x3k−2, x3k−1, x3k) for k = 1, . . . , 100000. The data points lie on 15 hyperplanes.
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Chapter 3

Fundamental Concepts: Transformation, Re-

jection, and Reweighting

3.1 Transformation methods

In section 2.4 we have seen how to create (pseudo-)random numbers from the uniform distributionU[0, 1]. One

of the simplest methods of generating random samples from a distribution with cumulative distribution function

(c.d.f.)F (x) = P(X ≤ x) is based on the inverse of the c.d.f..

F−(u) x

1

u

F (x)

Figure 3.1. Illustration of the definition of the generalised inverseF− of a c.d.f.F

The c.d.f. is an increasing function, however it is not necessarily continuous. Thus we define thegeneralised

inverseF−(u) = inf{x : F (x) ≥ u}. Figure 3.1 illustrates its definition. IfF is continuous, thenF−(u) =

F−1(u).

Theorem 3.1 (Inversion Method). LetU ∼ U[0, 1] andF be a c.d.f.. ThenF−(U) has the c.d.f.F .

Proof. It is easy to see (e.g. in figure 3.1) thatF−(u) ≤ x is equivalent tou ≤ F (x). Thus forU ∼ U[0, 1]

P(F−(U) ≤ x) = P(U ≤ F (x)) = F (x),

thusF is the c.d.f. ofX = F−(U). �

Example 3.1 (Exponential Distribution). The exponential distribution with rateλ > 0 has the c.d.f.Fλ(x) = 1 −
exp(−λx) for x ≥ 0. ThusF−

λ (u) = F−1
λ (u) = − log(1 − u)/λ. Thus we can generate random samples from

Expo(λ) by applying the transformation− log(1−U)/λ to a uniformU[0, 1] random variableU . As U and1−U ,

of course, have the same distribution we can use− log(U)/λ as well. ⊳
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The Inversion Method is a very efficient tool for generating random numbers. However very few distributions

possess a c.d.f. whose (generalised) inverse can be evaluated efficiently. Take the example of the Gaussian distribu-

tion, whose c.d.f. is not even available in closed form.

Note however that the generalised inverse of the c.d.f. is just one possible transformation and that there might

be other transformations that yield the desired distribution. An example of such a method is the Box-Muller method

for generating Gaussian random variables.

Example 3.2 (Box-Muller Method for Sampling from Gaussians). When sampling from the normal distribution, one

faces the problem that neither the c.d.f.Φ(·), nor its inverse has a closed-form expression. Thus we cannot use the

inversion method.

It turns out however, that if we consider a pairX1,X2
i.i.d.∼ N(0, 1), as a point(X1,X2) in the plane, then its

polar coordinates(R, θ) are again independent and have distributions we can easily sample from:θ ∼ U[0, 2π], and

R2 ∼ Expo(1/2).

This can be shown as follows. Assume thatθ ∼ U[0, 2π] andR2 ∼ Expo(1/2). Then the joint density of(θ, r2)

is

f(θ,r2)(θ, r2) =
1
2π

1[0,2π](θ) · 1
2

exp
(
−1

2
r2

)
=

1
4π

exp
(
−1

2
r2

)
· 1[0,2π](θ)

To obtain the probability density function of

X1 =
√

R2 · cos(θ), X2 =
√

R2 · sin(θ)

we need to use the transformation of densities formula.

f(X1,X2)(x1, x2) = f(θ,r2)(θ(x1, x2), r2(x1, x2)) ·
∣∣∣∣∣ ∂x1

∂θ
∂x1
∂r2

∂x2
∂θ

∂x2
∂r2

∣∣∣∣∣
−1

=
1
4π

exp
(
−1

2
(x2

1 + x2
2)

2

)
· 2

=
(

1√
2π

exp
(
−1

2
x2

1

))
·
(

1√
2π

exp
(
−1

2
x2

2

))
as ∣∣∣∣∣ ∂x1

∂θ
∂x1
∂r2

∂x2
∂θ

∂x2
∂r2

∣∣∣∣∣ =
∣∣∣∣∣ −r sin(θ) cos(θ)

2r

r cos(θ) sin(θ)
2r

∣∣∣∣∣ =
∣∣∣∣−r sin(θ)2

2r
− r cos(θ)2

2r

∣∣∣∣ = 1
2

ThusX1,X2 ∼ N(0, 1). As their joint density factorises,X1 andX2 are independent, as required.

Thus we only need to generateθ ∼ U[0, 2π], andR2 ∼ Expo(1/2). UsingU1, U2
i.i.d.∼ U[0, 1] and example 3.1

we can generateR =
√

R2 andθ by

R =
√
−2 log(U1), θ = 2πU2,

and thus

X1 =
√
−2 log(U1) · cos(2πU2), X2 =

√
−2 log(U1) · sin(2πU2)

are two independent realisations from aN(0, 1) distribution. ⊳

The idea of transformation methods like the Inversion Method was to generate random samples from a distribu-

tion other than the target distribution and to transform them such that they come from the desired target distribution.

In many situations, we cannot find such a transformation in closed form. In these cases we have to find other ways

of correcting for the fact that we sample from the “wrong” distribution. The next two sections present two such

ideas: rejection sampling and importance sampling.
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3.2 Rejection sampling

The basic idea of rejection sampling is to sample from aninstrumental distribution1 and reject samples that are

“unlikely” under the target distribution.

Assume that we want to sample from a target distribution whose densityf is known to us. The simple idea

underlying rejection sampling (and other Monte Carlo algorithms) is the rather trivial identity

f(x) =
∫ f(x)

0

1 du =
∫ 1

0

10<u<f(x)︸ ︷︷ ︸
=f(x,u)

du

Thusf(x) can be interpreted as the marginal density of a uniform distribution on the area under the densityf(x)

{(x, u) : 0 ≤ u ≤ f(x)}.

Figure 3.2 illustrates this idea. This suggests that we can generate a sample fromf by sampling from the area under

the curve.

10

2.4

u

x

Figure 3.2. Illustration of example 3.3. Sampling from the area under the curve (dark grey) corresponds to sampling from the

Beta(3, 5) density. In example 3.3 we use a uniform distribution of the light grey rectangle as proposal distribution. Empty

circles denote rejected values, filled circles denote accepted values.

Example 3.3 (Sampling from a Beta distribution). TheBeta(a, b) distribution (a, b ≥ 0) has the density

f(x) =
Γ (a + b)
Γ (a)Γ (b)

xa−1(1− x)b−1, for 0 < x < 1,

whereΓ (a) =
∫ +∞
0

ta−1 exp(−t) dt is the Gamma function. Fora, b > 1 theBeta(a, b) density is unimodal with

mode(a − 1)/(a + b − 2). Figure 3.2 shows the density of aBeta(3, 5) distribution. It attains its maximum of

1680/729 ≈ 2.305 atx = 1/3.

Using the above identity we can draw fromBeta(3, 5) by drawing from a uniform distribution on the area under the

density{(x, u) : 0 < u < f(x)} (the area shaded in dark gray in figure 3.2).

In order to sample from the area under the density, we will usea similar trick as in examples 2.1 and 2.2. We will

sample from the light grey rectangle and only keep the samples that fall in the area under the curve. Figure 3.2

illustrates this idea.

Mathematically speaking, we sample independentlyX ∼ U[0, 1] andU ∼ U[0, 2.4]. We keep the pair(X,U) if

U < f(X), otherwise we reject it.

The conditional probability that a pair(X,U) is kept ifX = x is

P(U < f(X)|X = x) = P(U < f(x)) = f(x)/2.4
1 The instrumental distribution is sometimes referred to asproposal distribution.
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As X andU were drawn independently we can rewrite our algorithm as: Draw X from U[0, 1] and acceptX with

probabilityf(X)/2.4, otherwise rejectX. ⊳

The method proposed in example 3.3 is based on bounding the density of the Beta distribution by a box. Whilst

this is a powerful idea, it cannot be directly applied to other distributions, as the density might be unbounded or

have infinite support. However we might be able to bound the density off(x) by M · g(x), whereg(x) is a density

that we can easily sample from.

Algorithm 3.1 (Rejection sampling). Given two densitiesf, g with f(x) < M · g(x) for all x, we can generate a

sample fromf as follows:

1. DrawX ∼ g

2. AcceptX as a sample fromf with probability

f(X)
M · g(X)

,

otherwise go back to step 1.

Proof. We have

P(X ∈ X and is accepted) =
∫
X

g(x)
f(x)

M · g(x)︸ ︷︷ ︸
=P(X is accepted|X=x)

dx =

∫
X f(x) dx

M
, (3.1)

and thus2

P(X is accepted) = P(X ∈ S and is accepted) =
1
M

, (3.2)

yielding

P(x ∈ X |X is accepted) =
P(X ∈ X and is accepted)

P(X is accepted)
=

∫
X f(x) dx/M

1/M
=
∫
X

f(x) dx. (3.3)

Thus the density of the values accepted by the algorithm isf(·). �

Remark 3.2. If we knowf only up to a multiplicative constant, i.e. if we only knowπ(x), wheref(x) = C · π(x),

we can carry out rejection sampling using
π(X)

M · g(X)

as probability of rejectingX, providedπ(x) < M · g(x) for all x. Then by analogy with (3.1) - (3.3) we have

P(X ∈ X and is accepted) =
∫
X

g(x)
π(x)

M · g(x)
dx =

∫
X π(x) dx

M
=

∫
X f(x) dx

C ·M ,

P(X is accepted) = 1/(C ·M), and thus

P(x ∈ X |X is accepted) =

∫
X f(x) dx/(C ·M)

1/(C ·M)
=
∫
X

f(x) dx

Example 3.4 (Rejection sampling from the N(0, 1) distribution using a Cauchy proposal). Assume we want to sam-

ple from theN(0, 1) distribution with density

f(x) =
1√
2π

exp
(
−x2

2

)
using a Cauchy distribution with density

g(x) =
1

π(1 + x2)
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1 2 3 4 5 6−1−2−3−4−5−6

M · g(x)

f(x)

Figure 3.3. Illustration of example 3.3. Sampling from the area under the densityf(x) (dark grey) corresponds to sampling from

theN(0, 1) density. The proposalg(x) is aCauchy(0, 1).

as instrumental distribution.3 The smallestM we can choose such thatf(x) ≤ Mg(x) is M =
√

2π · exp(−1/2).

Figure 3.3 illustrates the results. As before, filled circles correspond to accepted values whereas open circles corre-

spond to rejected values.

Note that it is impossible to do rejection sampling from a Cauchy distribution using aN(0, 1) distribution as

instrumental distribution: there is noM ∈ R such that

1
π(1 + x2)

< M · 1√
2πσ2

exp
(
−x2

2

)
;

the Cauchy distribution has heavier tails than the Gaussiandistribution. ⊳

3.3 Importance sampling

In rejection sampling we have compensated for the fact that we sampled from the instrumental distributiong(x)

instead off(x) by rejecting some of the values proposed byg(x). Importance sampling is based on the idea of

using weights to correct for the fact that we sample from the instrumental distributiong(x) instead of the target

distributionf(x).

Importance sampling is based on the identity

P(X ∈ A) =
∫

A

f(x) dx =
∫

A

g(x)
f(x)
g(x)︸ ︷︷ ︸

=:w(x)

dx =
∫

A

g(x)w(x) dx (3.4)

for all g(·), such thatg(x) > 0 for (almost) allx with f(x) > 0. We can generalise this identity by considering the

expectationEf (h(X)) of a measurable functionh:

Ef (h(X)) =
∫

S

f(x)h(x) dx =
∫

S

g(x)
f(x)
g(x)︸ ︷︷ ︸

=:w(x)

h(x) dx =
∫

S

g(x)w(x)h(x) dx = Eg(w(X) · h(X)), (3.5)

if g(x) > 0 for (almost) allx with f(x) · h(x) 6= 0.

Assume we have a sampleX1, . . . ,Xn ∼ g. Then, providedEg|w(X) · h(X)| exists,

1
n

n∑
i=1

w(Xi)h(Xi)
a.s.

n→∞−→ Eg(w(X) · h(X))

(by the Law of Large Numbers) and thus by (3.5)

1
n

n∑
i=1

w(Xi)h(Xi)
a.s.

n→∞−→ Ef (h(X)).

2 We denote byS the set of all possible valuesX can take, i.e.,
R

S
f(x)dx = 1.

3 There is not much point is using this method is practise. The Box-Muller method is more efficient.
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In other words, we can estimateµ = Ef (h(X)) by

µ̃ =
1
n

n∑
i=1

w(Xi)h(Xi)

Note that whilstEg(w(X)) =
∫

S
f(x)
g(x) g(x) dx =

∫
S

f(x) = 1, the weightsw1(X), . . . , wn(X) do not neces-

sarily sum up ton, so one might want to consider theself-normalisedversion

µ̂ =
1∑n

i=1 w(Xi)

n∑
i=1

w(Xi)h(Xi).

This gives rise to the following algorithm:

Algorithm 3.2 (Importance Sampling). Chooseg such that supp(g) ⊃ supp(f · h).

1. Fori = 1, . . . , n:

i. GenerateXi ∼ g.

ii. Setw(Xi) = f(Xi)
g(Xi)

.

2. Return either

µ̂ =
∑n

i=1 w(Xi)h(Xi)∑n
i=1 w(Xi)

or

µ̃ =
∑n

i=1 w(Xi)h(Xi)
n

The following theorem gives the bias and the variance of importance sampling.

Theorem 3.3 (Bias and Variance of Importance Sampling). (a) Eg(µ̃) = µ

(b) Varg(µ̃) =
Varg(w(X) · h(X))

n

(c) Eg(µ̂) = µ +
µVarg(w(X))− Covg(w(X), w(X) · h(X))

n
+ O(n−2)

(d) Varg(µ̂) =
Varg(w(X) · h(X))− 2µCovg(w(X), w(X) · h(X)) + µ2Varg(w(X))

n
+ O(n−2)

Proof. (a) Eg

(
1
n

n∑
i=1

w(Xi)h(Xi)

)
=

1
n

n∑
i=1

Eg(w(Xi)h(Xi)) = Ef (h(X))

(b) Varg

(
1
n

n∑
i=1

w(Xi)h(Xi)

)
=

1
n2

n∑
i=1

Varg(w(Xi)h(Xi)) =
Varg(w(X)h(X))

n

(c) and (d) see (Liu, 2001, p. 35) �

Note that the theorem implies that in contrast toµ̃ the self-normalised estimatorµ̂ is biased. The self-normalised

estimatorµ̂ however might have a lower variance. In addition, it has another advantage: we only need to know

the density up to a multiplicative constant, as it is often the case in hierarchical Bayesian modelling. Assume

f(x) = C · π(x), then

µ̂ =
∑n

i=1 w(Xi)h(Xi)∑n
i=1 w(Xi)

=

∑n
i=1

f(Xi)
g(Xi)

h(Xi)∑n
i=1

f(Xi)
g(Xi)

=

∑n
i=1

C·π(Xi)
g(Xi)

h(Xi)∑n
i=1

C·π(Xi)
g(Xi)

=

∑n
i=1

π(Xi)
g(Xi)

h(Xi)∑n
i=1

π(Xi)
g(Xi)

,

i.e. the self-normalised estimatorµ̂ does not depend on the normalisation constantC.4 On the other hand, as we

have seen in the proof of theorem 3.3 it is a lot harder to analyse the theoretical properties of the self-normalised

estimator̂µ.

Although the above equations (3.4) and (3.5) hold for everyg with supp(g) ⊃ supp(f · h) and the importance

sampling algorithm converges for a large choice of suchg, one typically only considers choices ofg that lead to

finite variance estimators. The following two conditions are each sufficient (albeit rather restrictive) for a finite

variance of̃µ:

4 By complete analogy one can show that is enough to knowg up to a multiplicative constant.
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– f(x) < M · g(x) andVarf (h(X)) < +∞.

– S is compact,f is bounded above onS, andg is bounded below onS.

Note that under the first condition rejection sampling can also be used to sample fromf .

So far we have only studied whether a distributiong leads to a finite-variance estimator. This leads to the

question which instrumental distribution isoptimal, i.e. for which choiceVar(µ̃) is minimal. The following theorem

answers this question:

Theorem 3.4 (Optimal proposal). The proposal distributiong that minimises the variance of̃µ is

g∗(x) =
|h(x)|f(x)∫

S
|h(t)|f(t) dt

.

Proof. We have from theroem 3.3 (b) that

n·Varg(µ̃) = Varg (w(X) · h(X)) = Varg

(
h(X) · f(X)

g(X)

)
= Eg

((
h(X) · f(X)

g(X)

)2
)
−
(
Eg

(
h(X) · f(X)

g(X)

)
︸ ︷︷ ︸

=Eg(µ̃)=µ

)2

.

Thus we only have to minimiseEg

((
h(X)·f(X)

g(X)

)2
)

. When plugging ing⋆ we obtain:

Eg⋆

((
h(X) · f(X)

g⋆(X)

)2
)

=
∫

S

h(x)2 · f(x)2

g⋆(x)
dx =

(∫
S

h(x)2 · f(x)2

|h(x)|f(x)
dx

)
·
(∫

S

|h(t)|f(t) dt

)

=
(∫

S

|h(x)|f(x) dx

)2

On the other hand, we can apply the Jensen inequality5 toEg

((
h(X)·f(X)

g(X)

)2
)

yielding

Eg

((
h(X) · f(X)

g(X)

)2
)
≥
(
Eg

( |h(X)| · f(X)
g(X)

))2

=
(∫

S

|h(x)|f(x) dx

)2

.

�

An important corollary of theorem 3.4 is that importance sampling can besuper-efficient, i.e. when using the

optimalg⋆ from theorem 3.4 the variance ofµ̃ is less than the variance obtained when sampling directly fromf :

n ·Varf

(
h(X1) + . . . + h(Xn)

n

)
= Ef (h(X)2)− µ2

≥ (Ef |h(X)|)2 − µ2 =
(∫

S

|h(x)|f(x) dx

)2

− µ2 = n ·Varg⋆(µ̃)

by Jensen’s inequality. Unlessh(X) is (almost surely) constant the inequality is strict. Thereis an intuitive expla-

nation to the super-efficiency of importance sampling. Using g⋆ instead off causes us to focus on regions of high

probability where|h| is large, which contribute most to the integralEf (h(X)).

Theorem 3.4 is, however, a rather formal optimality result.When usingµ̃ we need to know the normalisation

constant ofg⋆, which is exactly the integral we are looking for. Further weneed to be able to draw samples fromg⋆

efficiently. The practically important corollary of theorem 3.4 is that we should choose an instrumental distribution

g whose shape is close to the one off · |h|.

Example 3.5 (Computing Ef |X| for X ∼ t3). Assume we want to computeEf |X| for X from at-distribution with

3 degrees of freedom (t3) using a Monte Carlo method. Three different schemes are considered

5 If X is real-valued random variable, andψ a convex function, thenψ(E(X)) ≤ E(ψ(X)).
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– SamplingX1, . . . ,Xn directly fromt3 and estimatingEf |X| by

1
n

∑
i=1

n|Xi|.

– Alternatively we could use importance sampling using at1 (which is nothing other than a Cauchy distribution)

as instrumental distribution. The idea behind this choice is that the densitygt1(x) of a t1 distribution is closer to

f(x)|x|, wheref(x) is the density of at3 distribution, as figure 3.4 shows.

– Third, we will consider importance sampling using aN(0, 1) distribution as instrumental distribution.

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

|x| · f(x) (Target)
f(x) (direct sampling)
gt1(x) (IS t1)
gN(0,1)(x) (IS N(0, 1))

Figure 3.4. Illustration of the different instrumental distributions in example 3.5.

Note that the third choice yields weights of infinite variance, as the instrumental distribution (N(0, 1)) has lighter

tails than the distribution we want to sample from (t3). The right-hand panel of figure 3.5 illustrates that this choice

yields a very poor estimate of the integral
∫ |x|f(x) dx.

Sampling directly from thet3 distribution can be seen as importance sampling with all weightswi ≡ 1, this choice

clearly minimises the variance of the weights. This howeverdoes not imply that this yields an estimate of the

integral
∫ |x|f(x) dx of minimal variance. Indeed, after 1500 iterations the empirical standard deviation (over 100

realisations) of the direct estimate is0.0345, which is larger than the empirical standard deviation ofµ̃ when using

a t1 distribution as instrumental distribution, which is0.0182. So using at1 distribution as instrumental distribution

is super-efficient (see figure 3.5).

Figure 3.6 somewhat explains why thet1 distribution is a far better choice than theN(0, 1) distributon. As the

N(0, 1) distribution does not have heavy enough tails, the weight tends to infinity as|x| → +∞. Thus large|x| get

large weights, causing the jumps of the estimateµ̃ shown in figure 3.5. Thet1 distribution has heavy enough tails,

so the weights are small for large values of|x|, explaining the small variance of the estimateµ̃ when using at1

distribution as instrumental distribution. ⊳

Example 3.6 (Partially labelled data). Suppose that we are given count data from observations in twogroups, such

that

Yi ∼ Poi(λ1) if the i-th observation is from group 1

Yi ∼ Poi(λ2) if the i-th observation is from group 2

The data is given in the table 3.1. Note that only the first ten observations are labelled, the group label is missing

for the remaining ten observations.

We will use aGamma(α, β) distribution as (conjugate) prior distribution forλj , i.e. the prior density ofλj is
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Group CountYi Group CountYi Group CountYi Group CountYi

1 3 2 14 * 15 * 21

1 6 2 12 * 4 * 11

1 3 2 11 * 1 * 3

1 5 2 19 * 6 * 7

1 9 2 18 * 11 * 18

Table 3.1. Data of example 3.6.

f(λj) =
1

Γ (α)
λα−1

j βα
j exp(−βλj).

Furthermore, we believe that a priori each observation is equally likely to stem from group 1 or group 2.

We start with analysing the labelled data only, ignoring the10 unlabelled observations. In this case, we can analyse

the two groups separately. In group1 we have that the joint distribution ofY1, . . . , Y5, λ1 is given by

f(y1, . . . , y5, λ1) = f(y1, . . . , y5|λ1)f(λ1) =

(
5∏

i=1

exp(−λ1)λ
yi

1

yi!

)
· 1
Γ (α)

λα−1
1 βα exp(−βλ)

=
1∏5

i=1 yi!
· 1
Γ (α)

λ
α+

P5
i=1 yi

1 βα exp(−(β + 5)λ1) ∝ λ
α+

P5
i=1 yi

1 exp(−(β + 5)λ1)

The posterior distribution ofλ1 given the data from group 1 is

f(λ1|y1, . . . , y5) =
f(y1, . . . , y5, λ1)∫

λ
f(y1, . . . , y5, λ) dλ

∝ f(y1, . . . , y5, λ1)

∝λ
α+

P5
i=1 yi

1 exp(−(β + 5)λ1)

Comparing this to the density of the Gamma distribution we obtain that

λ1|Y1, . . . , Y5 ∼ Gamma

(
α +

5∑
i=1

yi, β + 5

)
,

and similarly

λ2|Y6, . . . , Y10 ∼ Gamma

(
α +

10∑
i=6

yi, β + 5

)
.

Thus, when only using the labelled data, we do not have to resort to Monte Carlo methods for finding the posterior

distribution.

This however is not the case any more once we also want to include the unlabelled data. The conditional density of

Yi|λ1, λ2 for an unlabelled observation (i > 10) is

f(yi|λ1, λ2) =
1
2

exp(−λ1)λ
yi

1

yi!
+

1
2

exp(−λ2)λ
yi

2

yi!

The posterior density for the entire sample (using both labelled and unlabelled data) is

f(λ1, λ2|y1, . . . , y20)∝ f(λ1)f(y1, . . . , y5|λ1)︸ ︷︷ ︸
∝f(λ1|y1,...,y5)

f(λ2)f(y6, . . . , y10|λ2)︸ ︷︷ ︸
∝f(λ2|y6,...,y10)

· f(y11, . . . , y20|λ1, λ2)︸ ︷︷ ︸
=

Q20
i=11 f(yi|λ1,λ2)

∝ f(λ1|y1, . . . , y5)f(λ2|y6, . . . , y10)
20∏

i=11

f(yi|λ1, λ2)

This suggests using importance sampling with the product ofthe distributions ofλ1|Y1, . . . , Y5 andλ2|Y6, . . . , Y10

as instrumental distributions, i. e. use

g(λ1, λ2) = f(λ1|y1, . . . , y5)f(λ2|y6, . . . , y10).

The target distribution isf(λ1, λ2|y1, . . . , y20), thus the weights are
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w(λ1, λ2) =
f(λ1, λ2|y1, . . . , y20)

g(λ1, λ2)
(3.6)

∝ f(λ1|y1, . . . , y5)f(λ2|y6, . . . , y10)
∏20

i=11 f(yi|λ1, λ2)
f(λ1|y1, . . . , y5)f(λ2|y6, . . . , y10)

=
20∏

i=11

f(yi|λ1, λ2) =
20∏

i=11

(
1
2

exp(−λ1)λ
yi

1

yi!
+

1
2

exp(−λ2)λ
yi

2

yi!

)
Thus we can draw a weighted sample of sizen from the distribution off(λ1, λ2|y1, . . . , y20) by repeating the three

steps belown times:

1. Drawλ1 ∼ Gamma
(
α +

∑5
i=1 yi, β + 5

)
2. Drawλ2 ∼ Gamma

(
α +

∑10
i=6 yi, β + 5

)
3. Compute the weightw(λ1, λ2) using equation (3.6).

From a simulation withn = 50, 000 I obtained4.4604 as posterior mean ofλ1 and14.5294 as posterior mean

of λ2. The posterior densities are shown in figure 3.7. ⊳
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Figure 3.7. Posterior distributions ofλ1 andλ2 in example 3.6. The dashed line is the posterior density obtained only from the

labelled data.

42 3. Fundamental Concepts: Transformation, Rejection, and Reweighting



Chapter 4

The Gibbs Sampler

4.1 Introduction

In section 3.3 we have seen that, using importance sampling,we can approximate an expectationEf (h(X)) without

having to sample directly fromf . However, finding an instrumental distribution which allows us toefficiently

estimateEf (h(X)) can be difficult, especially in large dimensions.

In this chapter and the following chapters we will use a somewhat different approach. We will discuss methods

that allow obtaining anapproximatesample fromf without having to sample fromf directly. More mathematically

speaking, we will discuss methods which generate a Markov chain whose stationary distribution is the distribution

of interestf . Such methods are often referred to as Markov Chain Monte Carlo (MCMC) methods.

Example 4.1 (Poisson change point model). Assume the following Poisson model of two regimes forn random

variablesY1, . . . , Yn.1

Yi ∼ Poi(λ1) for i = 1, . . . ,M

Yi ∼ Poi(λ2) for i = M + 1, . . . , n

A suitable (conjugate) prior distribution forλj is theGamma(αj , βj) distribution with density

f(λj) =
1

Γ (αj)
λ

αj−1
j β

αj

j exp(−βjλj).

The joint distribution ofY1, . . . , Yn, λ1, λ2, andM is

f(y1, . . . , yn, λ1, λ2,M) =

(
M∏
i=1

exp(−λ1)λ
yi

1

yi!

)
·
(

n∏
i=M+1

exp(−λ2)λ
yi

2

yi!

)

· 1
Γ (α1)

λα1−1
1 βα1

1 exp(−β1λ1) · 1
Γ (α2)

λα2−1
2 βα2

2 exp(−β2λ2).

If M is known, the posterior distribution ofλ1 has the density

f(λ1|Y1, . . . , Yn,M) ∝ λ
α1−1+

PM
i=1 yi

1 exp(−(β1 + M)λ1),

so

λ1|Y1, . . . Yn,M ∼ Gamma

(
α1 +

M∑
i=1

yi, β1 + M

)
(4.1)

λ2|Y1, . . . Yn,M ∼ Gamma

(
α2 +

n∑
i=M+1

yi, β2 + n−M

)
. (4.2)

1 The probability distribution function of thePoi(λ) distribution isp(y) = exp(−λ)λy

y!
.
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Now assume that we do not know the change pointM and that we assume a uniform prior on the set{1, . . . ,M −
1}. It is easy to compute the distribution ofM given the observationsY1, . . . Yn, andλ1 andλ2. It is a discrete

distribution with probability density function proportional to

p(M |Y1, . . . , Yn, λ1, λ2) ∝ λ
PM

i=1 yi

1 · λ
Pn

i=M+1 yi

2 · exp((λ2 − λ1) ·M) (4.3)

The conditional distributions in (4.1) to (4.3) are all easyto sample from. It is however rather difficult to sample

from the joint posterior of(λ1, λ2,M). ⊳

The example above suggests the strategy of alternately sampling from the (full) conditional distributions ((4.1)

to (4.3) in the example). This tentative strategy however raises some questions.

– Is the joint distribution uniquely specified by the conditional distributions?

– Sampling alternately from the conditional distributions yields a Markov chain: the newly proposed values only

depend on the present values, not the past values. Will this approach yield a Markov chain with the correct

invariant distribution? Will the Markov chain converge to the invariant distribution?

As we will see in sections 4.3 and 4.4, the answer to both questions is — under certain conditions — yes. The

next section will however first of all state the Gibbs sampling algorithm.

4.2 Algorithm

The Gibbs sampler was first proposed by Geman and Geman (1984)and further developed by Gelfand and Smith

(1990). Denote withx−i := (x1, . . . , xi−1, xi+1, . . . , xp).

Algorithm 4.1 ((Systematic sweep) Gibbs sampler). Starting with(X(0)
1 , . . . ,X

(0)
p ) iterate fort = 1, 2, . . .

1. DrawX
(t)
1 ∼ fX1|X−1(·|X(t−1)

2 , . . . ,X
(t−1)
p ).

. . .

j. Draw X
(t)
j ∼ fXj |X−j

(·|X(t)
1 , . . . ,X

(t)
j−1,X

(t−1)
j+1 , . . . ,X

(t−1)
p ).

. . .

p. DrawX
(t)
p ∼ fXp|X−p

(·|X(t)
1 , . . . ,X

(t)
p−1).

Figure 4.1 illustrates the Gibbs sampler. The conditional distributions as used in the Gibbs sampler are often

referred to asfull conditionals. Note that the Gibbs sampler isnot reversible. Liu et al. (1995) proposed the following

algorithm that yields a reversible chain.

Algorithm 4.2 (Random sweep Gibbs sampler). Starting with(X(0)
1 , . . . ,X

(0)
p ) iterate fort = 1, 2, . . .

1. Draw an indexj from a distribution on{1, . . . , p} (e.g. uniform)

2. DrawX
(t)
j ∼ fXj |X−j

(·|X(t−1)
1 , . . . ,X

(t−1)
j−1 ,X

(t−1)
j+1 , . . . ,X

(t−1)
p ), and setX(t)

ι := X
(t−1)
ι for all ι 6= j.

4.3 The Hammersley-Clifford Theorem

An interesting property of the full conditionals, which theGibbs sampler is based on, is that they fully specify the

joint distribution, as Hammersley and Clifford proved in 19702. Note that the set of marginal distributions doesnot

have this property.

2 Hammersley and Clifford actually never published this result, as they couldnot extend the theorem to the case of non-

positivity.
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Figure 4.1. Illustration of the Gibbs sampler for a two-dimensional distribution

Definition 4.1 (Positivity condition). A distribution with densityf(x1, . . . , xp) and marginal densitiesfXi
(xi) is

said to satisfy the positivity condition iffXi
(xi) > 0 for all x1, . . . , xp implies thatf(x1, . . . , xp) > 0.

The positivity condition thus implies that the support of the joint densityf is the Cartesian product of the support

of the marginalsfXi
.

Theorem 4.2 (Hammersley-Clifford). Let (X1, . . . ,Xp) satisfy the positivity condition and have joint density

f(x1, . . . , xp). Then for all(ξ1, . . . , ξp) ∈ supp(f)

f(x1, . . . , xp) ∝
p∏

j=1

fXj |X−j
(xj |x1, . . . , xj−1, ξj+1, . . . , ξp)

fXj |X−j
(ξj |x1, . . . , xj−1, ξj+1, . . . , ξp)

Proof. We have

f(x1, . . . , xp−1, xp) = fXp|X−p
(xp|x1, . . . , xp−1)f(x1, . . . , xp−1) (4.4)

and by complete analogy

f(x1, . . . , xp−1, ξp) = fXp|X−p
(ξp|x1, . . . , xp−1)f(x1, . . . , xp−1), (4.5)

thus

f(x1, . . . , xp)
(4.4)
= f(x1, . . . , xp−1)︸ ︷︷ ︸

(4.5)
= f(x1,...,,xp−1,ξp)/fXp|X−p

(ξp|x1,...,xp−1)

fXp|X−p
(xp|x1, . . . , xp−1)

= f(x1, . . . , xp−1, ξp)
fXp|X−p

(xp|x1, . . . , xp−1)
fXp|X−p

(ξp|x1, . . . , xp−1)
= . . .

= f(ξ1, . . . , ξp)
fX1|X−1(x1|ξ2, . . . , ξp)
fX1|X−1(ξ1|ξ2, . . . , ξp)

· · · fXp|X−p
(xp|x1, . . . , xp−1)

fXp|X−p
(ξp|x1, . . . , xp−1)

The positivity condition guarantees that the conditional densities are non-zero. �

Note that the Hammersley-Clifford theorem doesnot guarantee the existence of a joint probability distribution

for every choice of conditionals, as the following example shows. In Bayesian modeling such problems mostly arise

when using improper prior distributions.
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Example 4.2. Consider the following “model”

X1|X2 ∼ Expo(λX2)

X2|X1 ∼ Expo(λX1),

for which it would be easy to design a Gibbs sampler. Trying toapply the Hammersley-Clifford theorem, we obtain

f(x1, x2) ∝
fX1|X2(x1|ξ2) · fX2|X1(x2|x1)
fX1|X2(ξ1|ξ2) · fX2|X1(ξ2|x1)

=
λξ2 exp(−λx1ξ2) · λx1 exp(−λx1x2)
λξ2 exp(−λξ1ξ2) · λx1 exp(−λx1ξ2)

∝ exp(−λx1x2)

The integral
∫ ∫

exp(−λx1x2) dx1 dx2 however is not finite, thus there is no two-dimensional probability distri-

bution withf(x1, x2) as its density. ⊳

4.4 Convergence of the Gibbs sampler

First of all we have to analyse whether the joint distribution f(x1, . . . , xp) is indeed the stationary distribution

of the Markov chain generated by the Gibbs sampler3. For this we first have to determine the transition kernel

corresponding to the Gibbs sampler.

Lemma 4.3. The transition kernel of the Gibbs sampler is

K(x(t−1),x(t)) = fX1|X−1(x
(t)
1 |x(t−1)

2 , . . . , x(t−1)
p ) · fX2|X−2(x

(t)
2 |x(t)

1 , x
(t−1)
3 , . . . , x(t−1)

p ) · . . .
·fXp|X−p

(x(t)
p |x(t)

1 , . . . , x
(t)
p−1)

Proof. We have

P(X(t) ∈ X |X(t−1) = x(t−1)) =
∫
X

f(Xt|X(t−1))(x
(t)|x(t−1)) dx(t)

=
∫
X

fX1|X−1(x
(t)
1 |x(t−1)

2 , . . . , x(t−1)
p )︸ ︷︷ ︸

corresponds to step 1. of the algorithm

· fX2|X−2(x
(t)
2 |x(t)

1 , x
(t−1)
3 , . . . , x(t−1)

p )︸ ︷︷ ︸
corresponds to step 2. of the algorithm

· . . .

· fXp|X−p
(x(t)

p |x(t)
1 , . . . , x

(t)
p−1)︸ ︷︷ ︸

corresponds to step p. of the algorithm

dx(t) �

3 All the results in this section will be derived for the systematic scan Gibbs sampler (algorithm 4.1). Very similar results hold

for the random scan Gibbs sampler (algorithm 4.2).
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Proposition 4.4. The joint distributionf(x1, . . . , xp) is indeed the invariant distribution of the Markov chain(X(0),X(1), . . .) generated by the Gibbs sampler.

Proof. ∫
f(x(t−1))K(x(t−1),x(t)) dx(t−1)

=
∫
· · ·
∫

f(x(t−1)
1 , . . . , x(t−1)

p ) dx
(t−1)
1︸ ︷︷ ︸

=f(x
(t−1)
2 ,...,x

(t−1)
p )

fX1|X−1(x
(t)
1 |x(t−1)

2 , . . . , x(t−1)
p )

︸ ︷︷ ︸
=f(x

(t)
1 ,x

(t−1)
2 ,...,x

(t−1)
p )

· · · fXp|X−p
(x(t)

p |x(t)
1 , . . . , x

(t)
p−1)dx

(t−1)
2 . . . dx(t−1)

p

=
∫
· · ·
∫

f(x(t)
1 , x

(t−1)
2 , . . . , x(t−1)

p ) dx
(t−1)
2︸ ︷︷ ︸

=f(x
(t)
1 ,x

(t−1)
3 ,...,x

(t−1)
p )

fX2|X−2(x
(t)
2 |x(t)

1 , x
(t−1)
3 , . . . , x(t−1)

p )

︸ ︷︷ ︸
=f(x

(t)
1 ,x

(t)
2 ,x

(t−1)
3 ,...,x

(t−1)
p )

· · · fXp|X−p
(x(t)

p |x(t)
1 , . . . , x

(t)
p−1)dx

(t−1)
3 . . . dx(t−1)

p

= . . .

=
∫

f(x(t)
1 , . . . , x

(t)
p−1, x

(t−1)
p ) dx(t−1)

p︸ ︷︷ ︸
=f(x

(t)
1 ,...,x

(t)
p−1)

fXp|X−p
(x(t)

p |x(t)
1 , . . . , x

(t)
p−1)

︸ ︷︷ ︸
=f(x

(t)
1 ,...,x

(t)
p )

= f(x(t)
1 , . . . , x(t)

p )

Thus according to definition 1.27f is indeed the invariant distribution. �
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So far we have established thatf is indeed the invariant distribution of the Gibbs sampler. Next, we have to analyse

under which conditions the Markov chain generated by the Gibbs sampler will converge tof .

First of all we have to study under which conditions the resulting Markov chain is irreducible4. The following

example shows that this does not need to be the case.

Example 4.3 (Reducible Gibbs sampler). Consider Gibbs sampling from the uniform distribution onC1 ∪ C2 with

C1 := {(x1, x2) : ‖(x1, x2)− (1, 1)‖ ≤ 1} andC2 := {(x1, x2) : ‖(x1, x2)− (−1,−1)‖ ≤ 1}, i.e.

f(x1, x2) =
1
2π

IC1∪C2(x1, x2)

Figure 4.2 shows the density as well the first few samples obtained by starting a Gibbs sampler withX(0)
1 < 0 and

X
(0)
2 < 0. It is easy to that when the Gibbs sampler is started inC2 it will stay there and never reachC1. The reason

-2

-2

-1

-1

0

0

1

1

2

2

X
(t)
1

X
(t

)
2

Figure 4.2. Illustration of a Gibbs sampler failing to sample from a distribution with unconnected support (uniform distribution

on{(x1, x2) : ‖(x1, x2)− (1, 1)‖ ≤ 1|} ∪ {(x1, x2) : ‖(x1, x2)− (−1,−1)‖ ≤ 1|})

for this is that the conditional distributionX2|X1 (X1|X2) is for X1 < 0 (X2 < 0) entirely concentrated onC2. ⊳

The following proposition gives a sufficient condition for irreducibility (and thus the recurrence) of the Markov

chain generated by the Gibbs sampler. There are less strict conditions for the irreducibility and aperiodicity of the

Markov chain generated by the Gibbs sampler (see e.g. Robertand Casella, 2004, Lemma 10.11).

Proposition 4.5. If the joint distributionf(x1, . . . , xp) satisfies the positivity condition, the Gibbs sampler yields

an irreducible, recurrent Markov chain.

Proof. LetX ⊂ supp(f) be a set with
∫
X f(x(t)

1 , . . . , x
(t)
p )d(x(t)

1 , . . . , x
(t)
p ) > 0.∫

X
K(x(t−1),x(t))dx(t) =

∫
X

fX1|X−1(x
(t)
1 |x(t−1)

2 , . . . , x(t−1)
p )︸ ︷︷ ︸

>0 (on a set of non-zero measure)

· · · fXp|X−p
(x(t)

p |x(t)
1 , . . . , x

(t)
p−1)︸ ︷︷ ︸

>0 (on a set of non-zero measure)

dx(t) > 0,

where the conditional densities are non-zero by the positivity condition. Thus the Markov Chain(X(t))t is strongly

f -irreducible. Asf is the unique invariant distribution of the Markov chain, itis as well recurrent (proposition

1.28). �
4 Here and in the following we understand by “irreducibilty” irreducibility with respect to the target distributionf .
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If the transition kernel is absolutely continuous with respect to the dominating measure, then recurrence even

implies Harris recurrence (see e.g. Robert and Casella, 2004, Lemma 10.9).

Now we have established all the necessary ingredients to state an ergodic theorem for the Gibbs sampler, which

is a direct consequence of theorem 1.30.

Theorem 4.6. If the Markov chain generated by the Gibbs sampler is irreducible and recurrent (which is e.g. the

case when the positivity condition holds), then for any integrable functionh : E → R

lim
n→∞

1
n

n∑
t=1

h(X(t)) → Ef (h(X))

for almost every starting valueX(0). If the chain is Harris recurrent, then the above result holds for every starting

valueX(0).

Theorem 4.6 guarantees that we can approximate expectationsEf (h(X)) by their empirical counterparts using

a singleMarkov chain.

Example 4.4. Assume that we want to use a Gibbs sampler to estimate the probability P(X1 ≥ 0,X2 ≥ 0) for a

N2

((
µ1

µ2

)
,

(
σ2

1 σ12

σ12 σ2
2

))
distribution.5 The marginal distributions are

X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2)

In order to construct a Gibbs sampler, we need the conditional distributionsX1|X2 = x2 andX2|X1 = x1. We

have6

f(x1, x2) ∝ exp

−1
2

((
x1

x2

)
−
(

µ1

µ2

))′(
σ2

1 σ12

σ12 σ2
2

)−1((
x1

x2

)
−
(

µ1

µ2

))
∝ exp

(
− (x1 − (µ1 + σ12/σ2

22(x2 − µ2)))2

2(σ2
1 − (σ12)2/σ2

2)

)
,

i.e.

X1|X2 = x2 ∼ N(µ1 + σ12/σ2
2(x2 − µ2), σ2

1 − (σ12)2/σ2
2)

Thus the Gibbs sampler for this problem consists of iterating for t = 1, 2, . . .

1. DrawX
(t)
1 ∼ N(µ1 + σ12/σ2

2(X(t−1)
2 − µ2), σ2

1 − (σ12)2/σ2
2)

5 A Gibbs sampler is of course not the optimal way to sample from aNp(µ,Σ) distribution. A more efficient way is: draw

Z1, . . . , Zp
i.i.d.∼ N(0, 1) and set(X1, . . . , Xp)′ = Σ1/2(Z1, . . . , Zp)

′ + µ
6 We make use of   

x1

x2

!
−
 

µ1

µ2

!!′ 
σ2

1 σ12

σ12 σ2
2

!−1  
x1

x2

!
−
 

µ1

µ2

!!

=
1

σ2
1σ

2
2 − (σ12)2

  
x1

x2

!
−
 

µ1

µ2

!!′ 
σ2

2 −σ12

−σ12 σ2
1

!  
x1

x2

!
−
 

µ1

µ2

!!

=
1

σ2
1σ

2
2 − (σ12)2

`
σ2
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´
+ const

=
1

σ2
1σ

2
2 − (σ12)2

`
σ2

2x
2
1 − 2σ2

2x1µ1 − 2σ12x1(x2 − µ2)
´

+ const

=
1

σ2
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`
x2
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2
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1
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´2
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50 4. The Gibbs Sampler

2. DrawX
(t)
2 ∼ N(µ2 + σ12/σ2

1(X(t)
1 − µ1), σ2

2 − (σ12)2/σ2
1).

Now consider the special caseµ1 = µ2 = 0, σ2
1 = σ2

2 = 1 andσ12 = 0.3. Figure 4.4 shows the sample paths of

this Gibbs sampler.

Using theorem 4.6 we can estimateP(X1 ≥ 0,X2 ≥ 0) by the proportion of samples(X(t)
1 ,X

(t)
2 ) with X

(t)
1 ≥ 0

andX
(t)
2 ≥ 0. Figure 4.3 shows this estimate. ⊳
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Figure 4.3. Estimate of theP(X1 ≥ 0, X2 ≥ 0) obtained using a Gibbs sampler. The area shaded in grey correspondsto the

range of 100 replications.

Note that the realisations(X(0),X(1), . . .) form a Markov chain, and are thusnot independent, but typically

positively correlated. The correlation between theX(t) is larger if the Markov chain moves only slowly (the chain

is then said to beslowly mixing). For the Gibbs sampler this is typically the case if the variablesXj are strongly

(positively or negatively) correlated, as the following example shows.

Example 4.5 (Sampling from a highly correlated bivariate Gaussian). Figure 4.5 shows the results obtained when

sampling from a bivariate Normal distribution as in example4.4, however withσ12 = 0.99. This yields a correlation

of ρ(X1,X2) = 0.99. This Gibbs sampler is a lot slower mixing than the one considered in example 4.4 (and

displayed in figure 4.4): due to the strong correlation the Gibbs sampler can only perform very small movements.

This makes subsequent samplesX
(t−1)
j andX

(t)
j highly correlated and thus yields to a slower convergence, as the

plot of the estimated densities show (panels (b) and (c) of figures 4.4 and 4.5). ⊳
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Chapter 5

The Metropolis-Hastings Algorithm

5.1 Algorithm

In the previous chapter we have studied the Gibbs sampler, a special case of a Monte Carlo Markov Chain (MCMC)

method: the target distribution is the invariant distribution of the Markov chain generated by the algorithm, to which

it (hopefully) converges.

This chapter will introduce another MCMC method: the Metropolis-Hastings algorithm, which goes back to

Metropolis et al. (1953) and Hastings (1970). Like the rejection sampling algorithm 3.1, the Metropolis-Hastings

algorithm is based on proposing values sampled from an instrumental distribution, which are then accepted with a

certain probability that reflects how likely it is that they are from the target distributionf .

The main drawback of the rejection sampling algorithm 3.1 isthat it is often very difficult to come up with

a suitable proposal distribution that leads to an efficient algorithm. One way around this problem is to allow for

“local updates”, i.e. let the proposed value depend on the last accepted value. This makes it easier to come up

with a suitable (conditional) proposal, however at the price of yielding a Markov chain instead of a sequence of

independent realisations.

Algorithm 5.1 (Metropolis-Hastings). Starting withX(0) := (X(0)
1 , . . . ,X

(0)
p ) iterate fort = 1, 2, . . .

1. DrawX ∼ q(·|X(t−1)).

2. Compute

α(X|X(t−1)) = min

{
1,

f(X) · q(X(t−1)|X)
f(X(t−1)) · q(X|X(t−1))

}
. (5.1)

3. With probabilityα(X|X(t−1)) setX(t) = X, otherwise setX(t) = X(t−1).

Figure 5.1 illustrates the Metropolis-Hasting algorithm.Note that if the algorithm rejects the newly proposed

value (open disks joined by dotted lines in figure 5.1) it stays at its current valueX(t−1). The probability that the

Metropolis-Hastings algorithm accepts the newly proposedstateX given that it currently is in stateX(t−1) is

a(x(t−1)) =
∫

α(x|x(t−1))q(x|x(t−1)) dx. (5.2)

Just like the Gibbs sampler, the Metropolis-Hastings algorithm generates a Markov chain, whose properties will be

discussed in the next section.

Remark 5.1. The probability of acceptance (5.1) does not depend on the normalisation constant, i.e. iff(x) =

C · π(x), then

f(x) · q(x(t−1)|x)
f(x(t−1)) · q(x|x(t−1))

=
Cπ(x) · q(x(t−1)|x)

Cπ(x(t−1)) · q(x|x(t−1))
=

π(x) · q(x(t−1)|x)
π(x(t−1)) · q(x|x(t−1))
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Figure 5.1. Illustration of the Metropolis-Hastings algorithm. Filled dots denote accepted states, open circles rejected values.

Thusf only needs to be known up to normalisation constant.1

5.2 Convergence results

Lemma 5.2. The transition kernel of the Metropolis-Hastings algorithm is

K(x(t−1),x(t)) = α(x(t)|x(t−1))q(x(t)|x(t−1)) + (1− a(x(t−1)))δx(t−1)(x(t)), (5.3)

whereδx(t−1)(·) denotes Dirac-mass on{x(t−1)}.

Note that the transition kernel (5.3) isnot continuous with respect to the Lebesgue measure.

Proof. We have

P(X(t) ∈ X |X(t−1) = x(t−1)) = P(X(t) ∈ X , new value accepted|X(t−1) = x(t−1))

+ P(X(t) ∈ X , new value rejected|X(t−1) = x(t−1))

=
∫
X

α(x(t)|x(t−1))q(x(t)|x(t−1)) dx(t)

+ IX (x(t−1))︸ ︷︷ ︸
=

R
X δ

x(t−1) (dx(t))

P(new value rejected|X(t−1) = x(t−1))︸ ︷︷ ︸
=1−a(x(t−1))︸ ︷︷ ︸

=
R
X (1−a(x(t−1)))δ

x(t−1) (dx(t))

=
∫
X

α(x(t)|x(t−1))q(x(t)|x(t−1)) dx(t) +
∫
X

(1− a(x(t−1)))δx(t−1)(dx(t)) �

Proposition 5.3. The Metropolis-Hastings kernel (5.3) satisfies the detailed balance condition

K(x(t−1),x(t))f(x(t−1)) = K(x(t),x(t−1))f(x(t))

and thusf(x) is the invariant distribution of the Markov chain(X(0),X(1), . . .) generated by the Metropolis-

Hastings sampler. Furthermore the Markov chain is reversible.

1 On a similar note, it is enough to knowq(x(t−1)|x) up to a multiplicative constant independent ofx(t−1) andx.
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Proof. We have that

α(x(t)|x(t−1))q(x(t)|x(t−1))f(x(t−1)) = min
{

1,
f(x(t))q(x(t−1)|x(t))

f(x(t−1))q(x(t)|x(t−1))

}
q(x(t)|x(t−1))f(x(t−1))

= min
{

f(x(t−1))q(x(t)|x(t−1)), f(x(t))q(x(t−1)|x(t))
}

= min
{

f(x(t−1))q(x(t)|x(t−1))
f(x(t))q(x(t−1)|x(t))

, 1
}

q(x(t−1)|x(t))f(x(t)) = α(x(t−1)|x(t))q(x(t−1)|x(t))f(x(t))

and thus

K(x(t−1),x(t))f(x(t−1)) = α(x(t)|x(t−1))q(x(t)|x(t−1))f(x(t−1))︸ ︷︷ ︸
=α(x(t−1)|x(t))q(x(t−1)|x(t))f(x(t))

+(1− a(x(t−1))) δx(t−1)(x(t))︸ ︷︷ ︸
=0 if x(t) 6= x(t−1)

f(x(t−1))

︸ ︷︷ ︸
(1−a(x(t)))δ

x(t) (x(t−1))

= K(x(t),x(t−1))f(x(t))

The other conclusions follow by theorem 1.22, which also applies in the continuous case (see page 21). �

Next we need to examine whether the Metropolis-Hastings algorithm yields an irreducible chain. As with the

Gibbs sampler, this does not need to be the case, as the following example shows.

Example 5.1 (Reducible Metropolis-Hastings). Consider using a Metropolis-Hastings algorithm for sampling from

a uniform distribution on[0, 1]∪[2, 3] and aU(x(t−1)−δ, x(t−1)+δ) distribution as proposal distributionq(·|x(t−1)).

Figure 5.2 illustrates this example. It is easy to see that the resulting Markov chain isnot irreducible ifδ ≤ 1: in

this case the chain either stays in[0, 1] or [2, 3]. ⊳

x(t−1)

1/(2δ) q(·|x(t−1))

δδ

f(·)

1 2 3

1/2

Figure 5.2. Illustration of example 5.1

Under mild assumptions on the proposalq(·|x(t−1)) one can however establish the irreducibility of the resulting

Markov chain:

– If q(x(t)|x(t−1)) is positive for allx(t−1),x(t) ∈ supp(f), then it is easy to see that we can reach any set of

non-zero probability underf within a single step. The resulting Markov chain is thus strongly irreducible. Even

though this condition seems rather restrictive, many popular choices ofq(·|x(t−1)) like multivariate Gaussians or

t-distributions fulfil this condition.

– Roberts and Tweedie (1996) give a more general condition forthe irreducibility of the resulting Markov chain:

they only require that

∀ ǫ ∃ δ : q(x(t)|x(t−1)) > ǫ if ‖x(t−1) − x(t)‖ < δ

together with the boundedness off on any compact subset of its support.

The Markov chain(X(0),X(1), . . .) is further aperiodic, if there is positive probability thatthe chain remains in

the current state, i.e.P(X(t) = X(t−1)) > 0, which is the case if
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P
(
f(X(t−1))q(X|X(t−1)) > f(X)q(X(t−1)|X)

)
> 0.

Note that this condition isnot met if we use a “perfect” proposal which hasf as invariant distribution: in this case

we accept every proposed value with probability1.

Proposition 5.4. The Markov chain generated by the Metropolis-Hastings algorithm is Harris-recurrent if it is

irreducible.

Proof. Recurrence follows from the irreducibility and the fact that f is the unique invariant distribution (using

proposition 1.28). For a proof of Harris recurrence see (Tierney, 1994). �

As we have now established (Harris-)recurrence, we are now ready to state an ergodic theorem (using theorem

1.30).

Theorem 5.5. If the Markov chain generated by the Metropolis-Hastings algorithm is irreducible, then for any

integrable functionh : E → R

lim
n→∞

1
n

n∑
t=1

h(X(t)) → Ef (h(X))

for every starting valueX(0).

As with the Gibbs sampler the above ergodic theorem allows for inference using a single Markov chain.

5.3 The random walk Metropolis algorithm

In this section we will focus on an important special case of the Metropolis-Hastings algorithm: the random walk

Metropolis-Hastings algorithm. Assume that we generate the newly proposed stateX not using the fairly general

X ∼ q(·|X(t−1)), (5.4)

from algorithm 5.1, but rather

X = X(t−1) + ε, ε ∼ g, (5.5)

with g being asymmetricdistribution. It is easy to see that (5.5) is a special case of(5.4) usingq(x|x(t−1)) =

g(x− x(t−1)). When using (5.5) the probability of acceptance simplifies to

min

{
1,

f(X) · q(X(t−1)|X)
f(X(t−1)) · q(X|X(t−1))

}
= min

{
1,

f(X)
f(X(t−1))

}
,

asq(X|X(t−1)) = g(X − X(t−1)) = g(X(t−1) − X) = q(X(t−1)|X) using the symmetry ofg. This yields the

following algorithm which is a special case of algorithm 5.1, which is actually the original algorithm proposed by

Metropolis et al. (1953).

Algorithm 5.2 (Random walk Metropolis). Starting withX(0) := (X(0)
1 , . . . ,X

(0)
p ) and using a symmetric dis-

tributong, iterate fort = 1, 2, . . .

1. Drawε ∼ g and setX = X(t−1) + ε.

2. Compute

α(X|X(t−1)) = min
{

1,
f(X)

f(X(t−1))

}
. (5.6)

3. With probabilityα(X|X(t−1)) setX(t) = X, otherwise setX(t) = X(t−1).
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Example 5.2 (Bayesian probit model). In a medical study on infections resulting from birth by Cesarean section

(taken from Fahrmeir and Tutz, 2001) three influence factorshave been studied: an indicator whether the Cesarian

was planned or not (zi1), an indicator of whether additional risk factors were present at the time of birth (zi2), and

an indicator of whether antibiotics were given as a prophylaxis (zi3). The responseYi is the number of infections

that were observed amongstni patients having the same influence factors (covariates). The data is given in table

5.1.

Number of births planned risk factors antibiotics

with infection total

yi ni zi1 zi2 zi3

11 98 1 1 1

1 18 0 1 1

0 2 0 0 1

23 26 1 1 0

28 58 0 1 0

0 9 1 0 0

8 40 0 0 0
Table 5.1. Data used in example 5.2

The data can be modeled by assuming that

Yi ∼ Bin(ni, πi), π = Φ(z′iβ),

wherezi = (1, zi1, zi2, zi3) andΦ(·) being the CDF of theN(0, 1) distribution. Note thatΦ(t) ∈ [0, 1] for all t ∈ R.

A suitable prior distribution for the parameter of interestβ is β ∼ N(0, I/λ). The posterior density ofβ is

f(β|y1, . . . , yn) ∝
(

n∏
i=1

Φ(z′iβ)yi · (1− Φ(z′iβ))ni−yi

)
· exp

−λ

2

3∑
j=0

β2
j


We can sample from the above posterior distribution using the following random walk Metropolis algorithm. Start-

ing with anyβ(0) iterate fort = 1, 2, . . .:

1. Drawε ∼ N(0,Σ) and setβ = β(t−1) + ε.

2. Compute

α(β|β(t−1)) = min

{
1,

f(β|Y1, . . . , Yn)

f(β(t−1)|Y1, . . . , Yn)

}
.

3. With probabilityα(β|β(t−1)) setβ(t) = β, otherwise setβ(t) = β(t−1).

To keep things simple, we choose the covarianceΣ of the proposal to be0.08 · I.
Figure 5.3 and table 5.2 show the results obtained using 50,000 samples2. Note that the convergence of theβ

(t)
j

Posterior mean 95% credible interval

intercept β0 -1.0952 -1.4646 -0.7333

planned β1 0.6201 0.2029 1.0413

risk factors β2 1.2000 0.7783 1.6296

antibiotics β3 -1.8993 -2.3636 -1.471
Table 5.2. Parameter estimates obtained for the Bayesian probit model from example 5.2

is to a distribution, whereas the cumulative averages
∑t

τ=1 β
(τ)
j /t converge, as the ergodic theorem implies, to a

value. For figure 5.3 and table 5.2 the first 10,000 samples have been discarded (“burn-in”). ⊳

2 You might want to consider a longer chain in practise.
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Figure 5.3. Results obtained for the Bayesian probit model from example 5.2
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5.4 Choosing the proposal distribution

The efficiency of a Metropolis-Hastings sampler depends on the choice of the proposal distributionq(·|x(t−1)).

An ideal choice of proposal would lead to a small correlationof subsequent realisationsX(t−1) andX(t). This

correlation has two sources:

– the correlation between the current stateX(t−1) and the newly proposed valueX ∼ q(·|X(t−1)), and

– the correlation introduced by retaining a valueX(t) = X(t−1) because the newly generated valueX has been

rejected.

Thus we would ideally want a proposal distribution that bothallows for fast changes in theX(t) and yields a high

probability of acceptance. Unfortunately these are two competing goals. If we choose a proposal distribution with

a small variance, the probability of acceptance will be high, however the resulting Markov chain will be highly

correlated, as theX(t) change only very slowly. If, on the other hand, we choose a proposal distribution with a large

variance, theX(t) can potentially move very fast, however the probability of acceptance will be rather low.

Example 5.3. Assume we want to sample from aN(0, 1) distribution using a random walk Metropolis-Hastings

algorithm with ε ∼ N(0, σ2). At first sight, we might think that settingσ2 = 1 is the optimal choice, this is

however not the case. In this example we examine the choices:σ2 = 0.1, σ2 = 1, σ2 = 2.382, andσ2 = 102.

Figure 5.4 shows the sample paths of a single run of the corresponding random walk Metropolis-Hastings algorithm.

Rejected values are drawn as grey open circles. Table 5.3 shows the average correlationρ(X(t−1),X(t)) as well

as the average probability of acceptanceα(X|X(t−1)) averaged over 100 runs of the algorithm. Choosingσ2 too

small yields a very high probability of acceptance, howeverat the price of a chain that is hardly moving. Choosing

σ2 too large allows the chain to make large jumps, however most of the proposed values are rejected, so the chain

remains for a long time at each accepted value. The results suggest thatσ2 = 2.382 is the optimal choice. This

corresponds to the theoretical results of Gelman et al. (1995). ⊳

Autocorrelationρ(X(t−1), X(t)) Probability of acceptanceα(X,X(t−1))

Mean 95% CI Mean 95% CI

σ2 = 0.12 0.9901 (0.9891,0.9910) 0.9694 (0.9677,0.9710)

σ2 = 1 0.7733 (0.7676,0.7791) 0.7038 (0.7014,0.7061)

σ2 = 2.382 0.6225 (0.6162,0.6289) 0.4426 (0.4401,0.4452)

σ2 = 102 0.8360 (0.8303,0.8418) 0.1255 (0.1237,0.1274)

Table 5.3. Average correlationρ(X(t−1), X(t)) and average probability of acceptanceα(X|X(t−1)) found in example 5.3 for

different choices of the proposal varianceσ2.

Finding the ideal proposal distributionq(·|x(t−1)) is an art.3 This is the price we have to pay for the generality

of the Metropolis-Hastings algorithm. Popular choices forrandom walk proposals are multivariate Gaussians or

t-distributions. The latter have heavier tails, making them a safer choice. The covariance structure of the proposal

distribution should ideally reflect the expected covariance of the(X1, . . . ,Xp). Gelman et al. (1997) propose to

adjust the proposal such that the acceptance rate is around1/2 for one- or two dimensional target distributions, and

around1/4 for larger dimensions, which is in line with the results we obtained in the above simple example and the

guidelines which motivate them. Note however that these arejust rough guidelines.

Example 5.4 (Bayesian probit model (continued)). In the Bayesian probit model we studied in example 5.2 we drew

3 The optimal proposal would be sampling directly from the target distribution. The very reason for using a Metropolis-Hastings

algorithm is however that we cannot sample directly from the target!
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ε ∼ N(0,Σ)

with Σ = 0.08 · I, i.e. we modeled the components ofε to be independent. The proportion of accepted values we

obtained in example 5.2 was13.9%. Table 5.4 (a) shows the corresponding autocorrelation. The resulting Markov

chain can be made faster mixing by using a proposal distribution that represents the covariance structure of the

posterior distribution ofβ.

This can be done by resorting to the frequentist theory of generalised linear models (GLM): it suggests that the

asymptotic covariance of the maximum likelihood estimateβ̂ is (Z′DZ)−1, whereZ is the matrix of the covariates,

andD is a suitable diagonal matrix. When usingΣ = 2·(Z′DZ)−1 in the algorithm presented in section 5.2 we can

obtain better mixing performance: the autocorrelation is reduced (see table 5.4 (b)), and the proportion of accepted

values obtained increases to 20.0%. Note that the determinant of both choices ofΣ was chosen to be the same, so

the improvement of the mixing behaviour is entirely due to a difference in the structure of the the covariance.⊳

(a) Σ = 0.08 · I
β0 β1 β2 β3

Autocorrelationρ(β(t−1)
j , β

(t)
j ) 0.9496 0.9503 0.9562 0.9532

(b) Σ = 2 · (Z′DZ)−1

β0 β1 β2 β3

Autocorrelationρ(β(t−1)
j , β

(t)
j ) 0.8726 0.8765 0.8741 0.8792

Table 5.4. Autocorrelationρ(β(t−1)
j , β

(t)
j ) between subsequent samples for the two choices of the covarianceΣ.
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Chapter 6

Diagnosing convergence

6.1 Practical considerations

The theory of Markov chains we have seen in chapter 1 guarantees that a Markov chain that is irreducible and

has invariant distributionf converges to the invariant distribution. The ergodic theorems 4.6 and 5.5 allow for

approximating expectationsEf (h(X)) by their the corresponding means

1
T

T∑
t=1

h(X(t)) −→ Ef (h(X))

using theentirechain. In practise, however, often only a subset of the chain(X(t))t is used:

Burn-in Depending on howX(0) is chosen, the distribution of(X(t))t for small t might still be far from the

stationary distributionf . Thus it might be beneficial to discard the first iterationsX(t), t = 1, . . . , T0. This

early stage of the sampling process is often referred to asburn-in period. How largeT0 has to be chosen

depends on how fast mixing the Markov chain(X(t))t is. Figure 6.1 illustrates the idea of a burn-in period.

burn-in period (discarded)

Figure 6.1. Illustration of the idea of a burn-in period.

Thinning Markov chain Monte Carlo methods typically yield a Markov chain with positive autocorrelation, i.e.

ρ(X(t)
k ,X

(t+τ)
k ) is positive for smallτ . This suggests building a subchain by only keeping everym-th value

(m > 1), i.e. we consider a Markov chain(Y(t))t with Y(t) = X(m·t) instead of(X(t))t. If the correlation

ρ(X(t),X(t+τ)) decreases monotonically inτ , then

ρ(Y (t)
k , Y

(t+τ)
k ) = ρ(X(t)

k ,X
(m·t+τ)
k ) < ρ(X(t)

k ,X
(t+τ)
k ),

i.e. the thinned chain(Y(t))t exhibits less autocorrelation than the original chain(X(t))t. Thus thinning can be

seen as a technique for reducing the autocorrelation, however at the price of yielding a chain(Y(t))t=1,...⌊T/m⌋,
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whose length is reduced to(1/m)-th of the length of the original chain(X(t))t=1,...,T . Even though thinning is

very popular, it cannot be justified when the objective is estimatingEf (h(X)), as the following lemma shows.

Lemma 6.1. Let (X(t))t=1,...,T be a sequence of random variables (e.g. from a Markov chain) with X(t) ∼ f

and(Y(t))t=1,...,⌊T/m⌋ a second sequence defined byY(t) := X(m·t). If Varf (h(X(t))) < +∞, then

Var

(
1
T

T∑
t=1

h(X(t))

)
≤ Var

 1
⌊T/m⌋

⌊T/m⌋∑
t=1

h(Y(t))

 .

Proof. To simplify the proof we assume thatT is divisible bym, i.e.T/m ∈ N. Using

T∑
t=1

h(X(t)) =
m−1∑
τ=0

T/m∑
t=1

h(X(t·m+τ))

and

Var

T/m∑
t=1

h(X(t·m+τ1))

 = Var

T/m∑
t=1

h(X(t·m+τ2))


for τ1, τ2 ∈ {0, . . . ,m− 1}, we obtain that

Var

(
T∑

t=1

h(X(t))

)
= Var

m−1∑
τ=0

T/m∑
t=1

h(X(t·m+τ))


= m ·Var

T/m∑
t=1

h(X(t·m))

+
m−1∑

η 6=τ=0

Cov

T/m∑
t=1

h(X(t·m+η)),
T/m∑
t=1

h(X(t·m+τ))


︸ ︷︷ ︸

≤Var
“PT/m

t=1 h(X(t·m))
”

≤ m2 ·Var

T/m∑
t=1

h(X(t·m))

 = m2 ·Var

T/m∑
t=1

h(Y(t))

 .

Thus

Var

(
1
T

T∑
t=1

h(X(t))

)
=

1
T 2

Var

(
T∑

t=1

h(X(t))

)
≤ m2

T 2
Var

T/m∑
t=1

h(Y(t))

 = Var

 1
T/m

T/m∑
t=1

h(Y(t))

 .

�

The concept of thinning can be useful for other reasons. If the computer’s memory cannot hold the entire chain

(X(t))t, thinning is a good choice. Further, it can be easier to assess the convergence of the thinned chain

(Y(t))t as opposed to entire chain(X(t))t.

6.2 Tools for monitoring convergence

Although the theory presented in the preceding chapters guarantees the convergence of the Markov chains to the

required distributions, this does not imply that afinitesample from such a chain yields a good approximation to the

target distribution. As with all approximating methods this must be confirmed in practise.

This section tries to give a brief overview over various approaches to diagnosing convergence. A more detailed

review with many practical examples can be diagnofound in (Guihennec-Jouyaux et al., 1998) or (Robert and

Casella, 2004, chapter 12). There is an R package (CODA) that provides a vast selection of tools for diagnosing

convergence. Diagnosing convergence is an art. The techniques presented in the following are nothing other than

exploratory tools that help you judging whether the chain has reached its stationary regime. This section contains

several cautionary examples where the different tools for diagnosing convergence fail.

Broadly speaking, convergence assessment can be split intothe following three tasks of diagnosing different

aspects of convergence:
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Convergence to the target distribution.The first, and most important, question is whether(X(t))t yields a sample

from the target distribution? In order to answer this question we need to assess . . .

– whether(X(t))t has reached a stationary regime, and

– whether(X(t))t covers the entire support of the target distribution.

Convergence of the averages.Does
∑T

t=1 h(X(t))/T provide a good approximation to the expectationEf (h(X))

under the target distribution?

Comparison to i.i.d. sampling.How much information is contained in the sample from the Markov chain compared

to i.i.d. sampling?

6.2.1 Basic plots

The most basic approach to diagnosing the output of a Markov Chain Monte Carlo algorithm is to plot the sample

path(X(t))t as in figures 4.4 (b) (c), 4.5 (b) (c), 5.3 (a), and 5.4. Note that the convergence of(X(t))t is in dis-

tribution, i.e. the sample path isnot supposed to converge to a single value. Ideally, the plot should be oscillating

very fast and show very little structure or trend (like for example figure 4.4). The smoother the plot seems (like for

example figure 4.5), the slower mixing the resulting chain is.

Note however that this plot suffers from the “you’ve only seen where you’ve been” problem. It is impossible to

see from a plot of the sample path whether the chain has explored the entire support of the distribution.

Example 6.1 (A simple mixture of two Gaussians). In this example we sample from a mixture of two well-separated

Gaussians

f(x) = 0.4 · φ(−1,0.22)(x) + 0.6 · φ(2,0.32)(x)

(see figure 6.2 (a) for a plot of the density) using a random walk Metropolis algorithm with proposed valueX =

X(t−1) + ε with ε ∼ N(0,Var(ε)). If we choose the proposal varianceVar(ε) too small, we only sample from

one population instead of both. Figure 6.2 shows the sample paths for two choices ofVar(ε): Var(ε) = 0.42 and

Var(ε) = 1.22. The first choice ofVar(ε) is too small: the chain is very likely to remain in one of the two modes of

the distribution. Note that it is impossible to tell from figure 6.2 (b) alone that the chain has not explored the entire

support of the target. ⊳
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Figure 6.2. Density of the mixture distribution with two random walk Metropolis samples usingtwo different variancesVar(ε)

of the proposal.

In order to diagnose the convergence of the averages, one canlook at a plot of the cumulative averages

(
∑t

τ=1 h(X(τ))/t)t. Note that the convergence of the cumulative averages is — asthe ergodic theorems sug-

gest — to a value (Ef (h(X)). Figures 4.3, and 5.3 (b) show plots of the cumulative averages. An alternative
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to plotting the cumulative means is using the so-called CUSUMs
(
h̄(Xj)−

∑t
τ=1 h(X(τ)

j )/t
)

t
with h̄(Xj) =∑T

τ=1 h(X(τ)
j )/T , which is nothing other than the difference between the cumulative averages and the estimate of

the limitEf (h(X)).

Example 6.2 (A pathological generator for the Beta distribution). The following MCMC algorithm (for details, see

Robert and Casella, 2004, problem 7.5) yields a sample from the Beta(α, 1) distribution. Starting with anyX(0)

iterate fort = 1, 2, . . .

1. With probability1−X(t−1), setX(t) = X(t−1).

2. Otherwise drawX(t) ∼ Beta(α + 1, 1).

This algorithm yields a very slowly converging Markov chain, to which no central limit theorem applies. This slow

convergence can be seen in a plot of the cumulative means (figure 6.3 (b)). ⊳
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Figure 6.3. Sample paths and cumulative means obtained for the pathological Beta generator.

Note that it is impossible to tell from a plot of the cumulative means whether the Markov chain has explored the

entire support of the target distribution.

6.2.2 Non-parametric tests of stationarity

This section presents the Kolmogorov-Smirnov test, which is an example of how nonparametric tests can be used

as a tool for diagnosing whether a Markov chain has already converged.

In its simplest version, it is based on splitting the chain into three parts: (X(t))t=1,...,⌊T/3⌋,

(X(t))t=⌊T/3⌋+1,...,2⌊T/3⌋, and (X(t))t=2⌊T/3⌋+1,...,T . The first block is considered to be the burn-in period. If

the Markov chain has reached its stationary regime after⌊T/3⌋ iterations, the second and third block should be

from the same distribution. Thus we should be able to tell whether the chain has converged by comparing the distri-

bution of (X(t))t=⌊T/3⌋+1,...,2⌊T/3⌋ to the one of(X(t))t=2⌊T/3⌋+1,...,T using suitable nonparametric two-sample

tests. One such test is the Kolmogorov-Smirnov test.

As the Kolmogorov-Smirnov test is designed for i.i.d. samples, we do not apply it to the(X(t))t directly,

but to a thinned chain(Y(t))t with Y(t) = X(m·t): the thinned chain is less correlated and thus closer to

being an i.i.d. sample. We can now compare the distribution of (Y(t))t=⌊T/(3m)⌋+1,...,2⌊T/(3m)⌋ to the one of
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(Y(t))t=2⌊T/(3m)⌋+1,...,⌊T/m⌋ using the Kolmogorov-Smirnov statistic1

K = sup
x∈R

∣∣∣F̂(Y(t))t=⌊T/(3m)⌋+1,...,2⌊T/(3m)⌋(x)− F̂(Y(t))t=2⌊T/(3m)⌋+1,...,⌊T/m⌋(x)
∣∣∣ .

As the thinned chain is not an i.i.d. sample, we cannot use theKolmogorov-Smirnov test as a formal statistical

test (besides we would run into problems of multiple testing). However, we can use it as an informal tool by

monitoring the standardised statistic
√

tKt as a function oft.2 As long as a significant proportion of the values of

the standardised statistic are above the corresponding quantile of the asymptotic distribution, it is safe to assume

that the chain has not yet reached its stationary regime.

Example 6.3 (Gibbs sampling from a bivariate Gaussian (continued)). In this example we consider sampling from a

bivariate Gaussian distribution, once withρ(X1,X2) = 0.3 (as in example 4.4) and once withρ(X1,X2) = 0.99

(as in example 4.5). The former leads a fast mixing chain, thelatter a very slowly mixing chain. Figure 6.4 shows the

plots of the standardised Kolmogorov-Smirnov statistic. It suggests that the sample size of 10,000 is large enough

for the low-correlation setting, but not large enough for the high-correlation setting. ⊳
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Figure 6.4. Standardised Kolmogorov-Smirnov statistic forX(5·t)
1 from the Gibbs sampler from the bivariate Gaussian for two

different correlations.

Note that the Kolmogorov-Smirnov test suffers from the “you’ve only seen where you’ve been” problem,

as it is based on comparing(Y(t))t=⌊T/(3m)⌋+1,...,2⌊T/(3m)⌋ and (Y(t))t=2⌊T/(3m)⌋+1,...,⌊T/m⌋. A plot of the

Kolmogorov-Smirnov statistic for the chain withVar(ε) = 0.4 from example 6.1 would not reveal anything un-

usual.
1 The two-sample Kolmogorov-Smirnov test for comparing two i.i.d. samplesZ1,1, . . . , Z1,n andZ2,1, . . . , Z2,n is based on

comparing their empirical CDFs

F̂k(z) =
1

n

nX
i=1

I(−∞,z](Zk,i).

The Kolmogorov-Smirnov test statistic is the maximum difference between the two empirical CDFs:

K = sup
z∈R

|F̂1(z)− F̂2(z)|.

Forn→∞ the CDF of
√
n ·K converges to the CDF

R(k) = 1−
+∞X
i=1

(−1)i−1 exp(−2i2k2).

2 Kt is hereby the Kolmogorov-Smirnov statistic obtained from the sample consisting of the firstt observations only.
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6.2.3 Riemann sums and control variates

A simple tool for diagnosing convergence of a one-dimensional Markov chain can be based on the fact that∫
E

f(x) dx = 1.

We can estimate this integral by the Riemann sum

T∑
t=2

(X [t] −X [t−1])f(X [t]), (6.1)

whereX [1] ≤ . . . ≤ X [T ] is the ordered sample from the Markov chain. If the Markov chain has explored all the

support off , then (6.1) should be around1. Note that this method, often referred to as Riemann sums (Philippe and

Robert, 2001), requires that the densityf is known inclusive of normalisation constants.

Example 6.4 (A simple mixture of two Gaussians (continued)). In example 6.1 we considered two random-walk

Metropolis algorithms: one (Var(ε) = 0.42) failed to explore the entire support of the target distribution, whereas

the other one (Var(ε) = 1.22) managed to. The corresponding Riemann sums are0.598 and1.001, clearly indicat-

ing that the first algorithm does not explore the entire support. ⊳

Riemann sums can be seen as a special case of a technique called control variates. The idea of control variates

is comparing several ways of estimating the same quantity. As long as the different estimates disagree, the chain

has not yet converged. Note that the technique of control variates is only useful if the different estimators converge

about as fast as the quantity of interest — otherwise we wouldobtain an overly optimistic, or an overly conservative

estimate of whether the chain has converged. In the special case of the Riemann sum we compare two quantities:

the constant1 and the Riemann sum (6.1).

6.2.4 Comparing multiple chains

A family of convergence diagnostics (see e.g. Gelman and Rubin, 1992; Brooks and Gelman, 1998) is based on

runningL > 1 chains — which we will denote by(X(1,t))t, . . . , (X(L,t))t — with overdispersed3 starting values

X(1,0), . . . ,X(L,0), covering at least the support of the target distribution.

All L chains should converge to the same distribution, so comparing the plots from section 6.2.1 for theL

different chains should not reveal any difference. A more formal approach to diagnosing whether theL chains are

all from the same distribution can be based on comparing the inter-quantile distances.

We can estimate the inter-quantile distances in two ways. The first consists of estimating the inter-quantile

distance for each of theL chain and averaging over these results, i.e. our estimate is
∑L

l=1 δ
(l)
α /L, whereδ

(l)
α is the

distance between theα and(1− α) quantile of thel-th chain(X(l,t))t. Alternatively, we can pool the data first, and

then compute the distance between theα and(1 − α) quantile of the pooled data. If all chains are a sample from

the same distribution, both estimates should be roughly thesame, so their ratio

Ŝ interval
α =

∑L
l=1 δ

(l)
α /L

δ
(·)
α

can be used as a tool to diagnose whether all chains sampled from the same distribution, in which case the ratio

should be around 1.

Alternatively, one could compare the variances within theL chains to the pooled estimate of the variance (see

Brooks and Gelman, 1998, for more details).

3 i.e. the variance of the starting values should be larger than the variance of the target distribution.
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Example 6.5 (A simple mixture of two Gaussians (continued)). In the example of the mixture of two Gaussians we

will considerL = 8 chains initialised from aN(0, 102) distribution. Figure 6.5 shows the sample paths of the8

chains for both choices ofVar(ε). The corresponding values of̂S interval
0.05 are:

Var(ε) = 0.42 : Ŝ interval
0.05 =

0.9789992
3.630008

= 0.2696962

Var(ε) = 1.22 : Ŝ interval
0.05 =

3.634382
3.646463

= 0.996687. ⊳
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Figure 6.5. Comparison of the sample paths forL = 8 chains for the mixture of two Gaussians.

Note that this method depends crucially on the choice of initial valuesX(1,0), . . . ,X(L,0), and thus can easily

fail, as the following example shows.

Example 6.6 (Witch’s hat distribution). Consider a distribution with the following density:

f(x1, x2) ∝
{

(1− δ)φ(µ,σ2·I)(x1, x2) + δ if x1, x2 ∈ (0, 1)

0 else,

which is a mixture of a Gaussian and a uniform distribution, both truncated to[0, 1] × [0, 1]. Figure 6.6 illustrates

the density. For very smallσ2, the Gaussian component is concentrated in a very small areaaroundµ.

The conditional distribution ofX1|X2 is

f(x1|x2) =

{
(1− δx2)φ(µ,σ2·I)(x1, x2) + δx2 for x1 ∈ (0, 1)

0 else.

with δx2 =
δ

δ + (1− δ)φ(µ2,σ2)(x2)
.

Assume we want to estimateP(0.49 < X1,X2 ≤ 0.51) for δ = 10−3, µ = (0.5, 0.5)′, andσ = 10−5 using a

Gibbs sampler. Note that 99.9% of the mass of the distribution is concentrated in a very small area around(0.5, 0.5),

i.e.P(0.49 < X1,X2 ≤ 0.51) = 0.999.

Nonetheless, it is very unlikely that the Gibbs sampler visits this part of the distribution. This is due to the fact

that unlessx2 (or x1) is very close toµ2 (or µ1), δx2 (or δx1 ) is almost 1, i.e. the Gibbs sampler only samples

from the uniform component of the distribution. Figure 6.6 shows the samples obtained from 15 runs of the Gibbs
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sampler (first 100 iterations only) all using different initialisations. On average only 0.04% of the sampled values

lie in (0.49, 0.51) × (0.49, 0.51) yielding an estimate of̂P(0.49 < X1,X2 ≤ 0.51) = 0.0004 (as opposed to

P(0.49 < X1,X2 ≤ 0.51) = 0.999).

It is however close to impossible to detect this problem withany technique based on multiple initialisations.

The Gibbs sampler shows this behaviour for practically all starting values. In figure 6.6 all 15 starting values yield

a Gibbs sampler that is stuck in the “brim” of the witch’s hat and thus misses 99.9% of the probability mass of the

target distribution. ⊳
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Figure 6.6. Density and sample from the witch’s hat distribution.

6.2.5 Comparison to i.i.d. sampling and the effective sample size

MCMC algorithms typically yield a positively correlated sample (X(t))t=1,...,T , which contains less information

than an i.i.d. sample of sizeT . If the (X(t))t=1,...,T are positively correlated, then the variance of the average

Var

(
1
T

T∑
t=1

h(X(t))

)
(6.2)

is larger than the variance we would obtain from an i.i.d. sample, which isVar(h(X(t)))/T .

The effective sample size (ESS) allows to quantify this lossof information caused by the positive correlation.

The effective sample size is the size an i.i.d. sample would have to have in order to obtain the same variance (6.2)

as the estimate from the Markov chain(X(t))t=1,...,T .

In order to compute the variance (6.2) we make the simplifying assumption that(h(X(t)))t=1,...,T is from a

second-order stationary time series, i.e.Var(h(X(t))) = σ2, andρ(h(X(t)), h(X(t+τ))) = ρ(τ). Then

Var

(
1
T

T∑
t=1

h(X(t))

)
=

1
T 2

 T∑
t=1

Var(h(X(t)))︸ ︷︷ ︸
=σ2

+2
∑

1≤s<t≤T

Cov(h(X(s)), h(X(t)))︸ ︷︷ ︸
=σ2·ρ(t−s)


=

σ2

T 2

(
T + 2

T−1∑
τ=1

(T − τ)ρ(τ)

)
=

σ2

T

(
1 + 2

T−1∑
τ=1

(
1− τ

T

)
ρ(τ)

)
.

If
∑+∞

τ=1 |ρ(τ)| < +∞, then we can obtain from the dominated convergence theorem4 that

4 see e.g. Brockwell and Davis (1991, theorem 7.1.1) for details.
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T ·Var

(
1
T

T∑
t=1

h(X(t))

)
−→ σ2

(
1 + 2

+∞∑
τ=1

ρ(τ)

)

asT → ∞. Note that the variance would beσ2/TESS if we were to use an i.i.d. sample of sizeTESS. We can now

obtain the effective sample sizeTESSby equating these two variances and solving forTESS, yielding

TESS =
1

1 + 2
∑+∞

τ=1 ρ(τ)
· T.

If we assume that(h(X(t)))t=1,...,T is a first-order autoregressive time series (AR(1)), i.e.ρ(τ) = ρ(h(X(t)), h(X(t+τ))) =

ρ|τ |, then we obtain using1 + 2
∑+∞

τ=1 ρτ = (1 + ρ)/(1− ρ) that

TESS =
1− ρ

1 + ρ
· T.

Example 6.7 (Gibbs sampling from a bivariate Gaussian (continued)). In examples 4.4 and 4.5 we obtained for the

low-correlation setting thatρ(X(t−1)
1 ,X

(t)
1 ) = 0.078, thus the effective sample size is

TESS =
1− 0.078
1 + 0.078

· 10000 = 8547.

For the high-correlation setting we obtainedρ(X(t−1)
1 ,X

(t)
1 ) = 0.979, thus the effective sample size is considerably

smaller:

TESS =
1− 0.979
1 + 0.979

· 10000 = 105.

⊳
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Chapter 7

State-space models and the Kalman filter

algorithm

7.1 Motivation

In many real-world applications, observations arrive sequentially in time, and interest lies in performing on-line

inference about unknown quantities from the given observations. If prior knowledge about these quantities is avail-

able, then it is possible to formulate a Bayesian model that incorporates this knowledge in the form of a prior

distribution on the unknown quantities, and relates these to the observations via a likelihood function. Inference

on the unknown quantities is then based on the posterior distribution obtained from Bayes’ theorem. Examples

include tracking an aircraft using radar measurements, speech recognition using noisy measurements of voice sig-

nals, or estimating the volatility of financial instrumentsusing stock market data. In these examples, the unknown

quantities of interest might be the location and velocity ofthe aircraft, the words in the speech signal, and the

variance-covariance structure, respectively. In all three examples, the data is modelled dynamically in the sense that

the underlying distribution evolves in time; these models are known asdynamic models. Sequential Monte Carlo

(SMC) methods are a non-iterative, alternative class of algorithms to MCMC, designed specifically for inference

in dynamic models. A comprehensive introduction to these methods is the book by Doucet et al. (2001). We point

out that SMC methods are applicable in settings beyond dynamic models, such as non-sequential Bayesian infer-

ence, rare events simulation, and global optimization, provided that it is possible to define an evolving sequence of

artificial distributions from which the distribution of interest is obtained via marginalisation.

Let pt(xt) denote the distribution at timet ≥ 1, wherext = (x1, . . . , xt) typically increases in dimension with

t, but it is possible that the dimension ofxt be constant∀t ≥ 1, or thatxt have one dimension less thanxt−1. The

particular feature of dynamic models is the evolving natureof the underlying distribution, wherept(xt) changes

in time t as new observations are generated. Note thatxt are the quantities of interest, not the observations; the

observations up to timet determine the form of the distribution, and this is implied by the subscriptt in pt(·). This

is in contrast to non-dynamic models where the distributionis constant as new observations are generated, denoted

by p(x). In the latter case, MCMC methods have proven highly effective in generating approximate samples from

low-dimensional distributionsp(x), when exact simulation is not possible. In the dynamic case,at each time stept

a different MCMC sampler with stationary distributionpt(xt) is required, so the overall computational cost would

increase witht. Moreover, for larget, designing the sampler and assessing its convergence wouldbe increasingly

difficult.

SMC methods are a non-iterative alternative to MCMC algorithms, based on the key idea that ifpt−1(xt−1)

does not differ much frompt(xt), then it is possible to reuse the samples frompt−1(xt−1) to obtain samples from
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pt(xt). In most applications of interest, it is not possible to obtain exact samples from these evolving distributions,

so the goal is to reuse an approximate sample, representative of pt−1(xt−1), to obtain a good representation of

pt(xt). Moreover, since inference is to be performed in real time asnew observations arrive, it is necessary that

the computational cost be fixed int. We will see in the sequel that SMC methods are highly flexible, and widely

applicable; we restrict our attention to a particular classof dynamic models called thestate-space model(SSM).

7.2 State-space models

SSMs are a class of dynamic models that consist of an underlying Markov process, usually called thestate process,

Xt, that is hidden, i.e., unobserved, and an observed process,usually called theobservation process, Yt. Consider

the following notation for a state-space model:

observation: yt = a(xt, ut) ∼ g(·|xt, φ)

hidden state: xt = b(xt−1, vt) ∼ f(·|xt−1, θ),

whereyt andxt are generated by functionsa(·) andb(·) of the state and noise disturbances, denoted byut and

vt, respectively. Assumeφ andθ to be known. Letp(x1) denote the distribution of the initial statex1. The state

process is a Markov chain, i.e.,p(xt|x1, . . . , xt−1) = p(xt|xt−1) = f(xt|xt−1, θ), and the distribution of the

observationyt, conditional onxt, is independent of previous values of the state and observation processes, i.e.,

p(yt|x1:t, y1:t−1) = p(yt|xt) = g(yt|xt, φ). See Figure 7.1 for illustration.

y1

x1

xt|xt−1 ∼ f(xt|xt−1, θ)

yt|xt ∼ g(yt|xt, φ)

y2

x2

xt|xt−1 ∼ f(xt|xt−1, θ)

yt|xt ∼ g(yt|xt, φ)

y3

x3

xt|xt−1 ∼ f(xt|xt−1, θ)

yt|xt ∼ g(yt|xt, φ)

y4

x4

xt|xt−1 ∼ f(xt|xt−1, θ)

yt|xt ∼ g(yt|xt, φ)

y5

x5

xt|xt−1 ∼ f(xt|xt−1, θ)

yt|xt ∼ g(yt|xt, φ)

y6

x6

xt|xt−1 ∼ f(xt|xt−1, θ)

yt|xt ∼ g(yt|xt, φ)

y7

x7

xt|xt−1 ∼ f(xt|xt−1, θ)

yt|xt ∼ g(yt|xt, φ)

· · ·

Figure 7.1. The conditional independence structure of the first few states and observations in a hidden Markov Model.

Note that we use the notationx1:t to denotex1, . . . , xt, and similarly fory1:t. For simplicity, we drop the explicit

dependence of the state transition and observation densities onθ andφ, and writef(·|xt−1), andg(·|xt).

The literature sometimes distinguishes between state-space models where the state process is given by a discrete

Markov chain, calledhidden Markov models(HMM), as opposed to a continuous Markov chain. An extensive

monograph on inference for state-space models is the book byCapṕe et al. (2005), and a more recent overview

is Capṕe et al. (2007). In the present chapter and the following, we introduce several algorithms for inference in

state-space models, and point out that the algorithms in Chapter 8 apply more generally to dynamic models.

7.2.1 Inference problems in SSMs

Under the notation introduced above, we have the joint density

p(x1:t, y1:t) = p(x1)g(y1|x1)
t∏

i=2

p(xi, yi|x1:i−1, y1:i−1) = p(x1)g(y1|x1)
t∏

i=2

f(xi|xi−1)g(yi|xi),

and, by Bayes’ theorem, the density of the distribution of interest

p(x1:t|y1:t) ∝ p(x1:t|y1:t−1)g(yt|xt) = p(x1:t−1|y1:t−1)f(xt|xt−1)g(yt|xt). (7.1)
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To connect this with the notation introduced for dynamic models, we can writept(x1:t) = p(x1:t|y1:t), but we

believe that stating the dependence on the observations explicitly leads to less confusion.

There exist several inference problems in state-space models that involve computing the posterior distribution

of a collection of state variables conditional on a batch of observations:

– filtering: p(xt|y1:t)

– fixed lag smoothing:p(xt−l|y1:t), for 0 ≤ l ≤ t− 1

– fixed interval smoothing:p(xl:k|y1:t), for 1 ≤ l < k ≤ t

– prediction:p(xl:k|y1:t), for k > t and1 ≤ l ≤ k.

The first three inference problems reduce to marginalisation of the full smoothing distributionp(x1:t|y1:t), i.e.,

integrating over the state variables that are not of interest, whereas the fourth reduces to marginalisation of

p(x1:k|y1:t) = p(x1:t|y1:t)
k∏

i=t+1

f(xi|xi−1).

So far we assumed that the state transition and observation densities are completely characterised, i.e., that the

parametersθ andφ are known. If they are unknown, then Bayesian inference is concerned with the joint posterior

distribution of the hidden states and the parameters:

p(x1:t, θ, φ|y1:t) ∝ p(y1:t|x1:t, θ, φ)p(x1:t|θ, φ)p(θ, φ) = p(θ, φ)p(x1)g(y1|x1, φ)
t∏

i=2

f(xi|xi−1, θ)g(yi|xi, φ).

If interest lies in the posterior distribution of the parameters, then the inference problem is called:

– static parameter estimation:p(θ, φ|y1:t),

which reduces to integrating over the state variables in thejoint posterior distributionp(x1:t, θ, φ|y1:t).

It is evident, then, that these inference problems depend onthe tractability of the posterior distribution

p(x1:t|y1:t), if the parameters are known, orp(x1:t, θ, φ|y1:t), otherwise. Notice that equation (7.1) gives the pos-

terior distribution up to a normalising constant
∫

p(x1:t|y1:t−1)g(yt|xt)dx1:t, and it is oftentimes the case that the

posterior distribution is known only up to a constant. In fact, these posterior distributions can be computed in closed

form only in a few specific cases, such as the hidden Markov model, i.e., when the state process is a discrete Markov

chain, and the linear Gaussian model, i.e., when the functionsa() andb() are linear, and the noise disturbancesut

andvt are Gaussian.

For HMMs with discrete state transition and observation distributions, the tutorial of Rabiner (1989) presents

recursive algorithms for the smoothing and static parameter estimation problems. The Viterbi algorithm returns the

optimal sequence of hidden states, i.e., the sequence that maximises the smoothing distribution, and the Expectation-

Maximization (EM) algorithm returns parameter values for which the likelihood function of the observations attains

a local maximum. If the observation distribution is continuous, then it can be approximated by a finite mixture

of Gaussian distributions to insure that the EM algorithm applies to the problem of parameter estimation. These

recursive algorithms involve summations over all states inthe model, so they are impractical when the state space

is large.

For the linear Gaussian model, the normalising constant in (7.1) can be computed analytically, and thus the

posterior distribution of interest is known in closed form;in fact, it is the Gaussian distribution. TheKalman fil-

ter algorithm (Kalman, 1960) gives recursive expressions for the mean and variance of the filtering distribution

p(xt|y1:t), under the assumption that all parameters in the model are known. Kalman (1960) obtains recursive ex-

pressions for the optimal values of the mean and variance parameters via a least-squares approach. The algorithm

alternates between two steps: a prediction step (i.e., predict the state at timet conditional ony1:t−1), and an update

step (i.e., observeyt, and update the prediction in light of the new observation).Section 7.3 presents a Bayesian

formulation of the Kalman filter algorithm following Meinhold and Singpurwalla (1983).
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When an analytic solution is intractable, exact inference isreplaced by inference based on an approximation to

the posterior distribution of interest. Grid-based methods using discrete numerical approximations to these posterior

distributions are severely limited by parameter dimension. Alternatively, sequential Monte Carlo methods are a

simulation-based approach that offer greater flexibility and scale better with increasing dimensionality. The key

idea of SMC methods is to represent the posterior distribution by a weighted set of samples, calledparticles, that

arefiltered in time as new observations arrive, through a combination ofsampling and resampling steps. Hence

SMC sampling algorithms are oftentimes calledparticle filters(Carpenter et al., 1999). Chapter 8 presents SMC

methods for the problems of filtering and smoothing.

7.3 The Kalman filter algorithm

From (7.1), the posterior distribution of the statext conditional on the observationsy1:t is proportional to

p(xt|y1:t−1)g(yt|xt). The first term is the distribution ofxt conditional on the firstt − 1 observations; comput-

ing this distribution is known as thepredictionstep. The second term is the distribution of the new observation

yt conditional on the hidden state at timet. Updatingp(xt|y1:t−1) in light of the new observation involves taking

the product of these two terms, and normalising; this is known as theupdatestep. The result is the distribution of

interest:

p(xt|y1:t) =
∫

p(x1:t|y1:t)dx1 . . . dxt−1 =
p(xt|y1:t−1)g(yt|xt)∫
p(xt|y1:t−1)g(yt|xt)dxt

.

We now show how the prediction and update stages can be performed exactly for the linear Gaussian state-space

model, which is represented as follows:

observation: yt = Atxt + ut ∼ N(Atxt, Φ
2) (7.2)

hidden state: xt = Btxt−1 + vt ∼ N(Btxt−1, Θ
2), (7.3)

whereut ∼ N(0, Φ2) andvt ∼ N(0, Θ2) are independent noise sequences, and the parametersAt, Bt, Φ2, andΘ2

are known. It is also possible to let the noise variancesΦ2 andΘ2 vary with time; the derivation of the mean and

variance of the posterior distribution follows as detailedbelow. We assume that both states and observations are

vectors, in which case the parameters are matrices of appropriate sizes.

The Kalman filter algorithm proceeds as follows. Start with an initial Gaussian distribution onx1: x1 ∼
N(µ1, Σ1). At time t− 1, let µt−1 andΣt−1 be the mean and variance of the Gaussian distribution ofxt−1 condi-

tional ony1:t−1. Looking forward to timet, we begin by predicting the distribution ofxt conditional ony1:t−1.

Prediction step: From equation (7.3),xt = Btxt−1 + vt, wherext−1|y1:t−1 ∼ N(µt−1, Σt−1), andvt ∼
N(0, Θ2) independently. By results in multivariate statistical analysis (Anderson, 2003), we have that

xt|y1:t−1 ∼ N(Btµt−1, BtΣt−1B
T
t + Θ2), (7.4)

where the superscriptT indicates matrix transpose. This can be thought of as the prior distribution onxt.

Update step:Upon observingyt, we are interested in

p(xt|y1:t) ∝ p(yt|xt, y1:t−1)p(xt|y1:t−1).

Following equation (7.2) and the result in (7.4), consider predictingyt by ŷt = AtBtµt−1, whereBtµt−1 is the

prior mean onxt. The prediction error iset = yt − ŷt = yt − AtBtµt−1, which is equivalent to observingyt. So

it follows thatp(xt|y1:t) ∝ p(et|xt, y1:t−1)p(xt|y1:t−1). Finally, from (7.2),et = At(xt − Btµt−1) + ut, where

ut ∼ N(0, Φ2), soet|xt, y1:t−1 ∼ N(At(xt −Btµt−1), Φ2).

We now use the following results from Anderson (2003). LetX1 anX2 have a bivariate normal distribution:
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(
X1

X2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
. (7.5)

If equation (7.5) holds, then the conditional distributionof X1 givenX2 = x2 is given by

X1|X2 = x2 ∼ N
(
µ1 + Σ12Σ

−1
22 (x2 − µ2), Σ11 −Σ12Σ

−1
22 Σ21

)
. (7.6)

Conversely, if (7.6) holds, andX2 ∼ N(µ2, Σ22), then (7.5) is true.

Sinceet|xt, y1:t−1 ∼ N(At(xt −Btµt−1), Φ2) andxt|y1:t−1 ∼ N(Btµt−1, BtΣt−1B
T
t + Θ2), it follows that(

xt

et

)∣∣∣∣∣y1:t−1 ∼ N

((
Btµt−1

0

)
,

(
BtΣt−1B

T
t + Θ2 (BtΣt−1B

T
t + Θ2)AT

t

At(BtΣt−1B
T
t + Θ2) At(BtΣt−1B

T
t + Θ2)AT

t + Φ2

))
Using the result above, the filtering distribution isp(xt|y1:t) = p(xt|et, y1:t−1) = N(µt, Σt), since observinget is

equivalent to observingyt, where

µt = Btµt−1 + (BtΣt−1B
T
t + Θ2)AT

t (At(BtΣt−1B
T
t + Θ2)AT

t + Φ2)−1et

Σt = BtΣt−1B
T
t + Θ2 − (BtΣt−1B

T
t + Θ2)AT

t (At(BtΣt−1B
T
t + Θ2)AT

t + Φ2)−1At(BtΣt−1B
T
t + Θ2).

Algorithm 1 The Kalman filter algorithm.
1: Input:µ1 andΣ1.

2: Sett = 2.

3: Compute mean and variance of prediction:µ̂t = Btµt−1, Σ̂t = BtΣt−1B
T
t +Θ2.

4: Observeyt and compute error in prediction:et = yt −Atµ̂t.

5: Compute variance of prediction error:Rt = AtΣ̂tA
T
t + Φ2.

6: Update the mean and variance of the posterior distribution:

µt = µ̂t + Σ̂tA
T
t R

−1
t et

Σt = Σ̂t − Σ̂tA
T
t R

−1
t AtΣ̂t.

7: Sett = t+ 1. Go to step 3.

Example 7.1 (First-order, linear autoregressive (AR(1)) model observed with noise). Consider the following AR(1)

model:

xt = φxt−1 + σUut ∼ N(φxt−1, σ
2
u)

yt = xt + σV vt ∼ N(xt, σ
2
V ),

whereut ∼ N(0, 1) andvt ∼ N(0, 1) are independent, Gaussian white noise processes. The Markov chain{Xt}t≥1

is a Gaussian random walk with transition kernelK(xt−1, xt) corresponding to theN(φxt−1, σ
2
U ) distribution.

A normal distributionN(µ, σ2) is stationary for{Xt}t≥1 if Xt−1 ∼ N(µ, σ2) and Xt|Xt−1 = xt−1 ∼
N(φxt−1, σ

2
u) imply thatXt ∼ N(µ, σ2). We require thatE(Xt) = φµ = µ andVar(Xt) = φ2σ2 + σ2

U = σ2,

which are satisfied byµ = 0 andσ2 = σ2
U/(1−φ2), provided|φ| < 1. In fact, theN

(
0, σ2

U/(1− φ2)
)

distribution

is the unique stationary distribution of the chain.

Start the Kalman filter algorithm withµ1 = 0 andΣ1 = σ2
U/(1− φ2). At time t− 1, t ≥ 2, let µt−1 andΣt−1

denote the posterior mean and variance, respectively. Thenthe mean and variance of the prediction at timet are:

µ̂t = φµt−1 andΣ̂t = φ2Σt−1 + σ2
U . The prediction error iset = yt − µ̂t with varianceΣ̂t + σ2

V . Finally, update

the mean and variance of the posterior distribution:

µt = µ̂t + Σ̂t
1

Σ̂t + σ2
V

(yt − µ̂t) =

(
1− Σ̂t

Σ̂t + σ2
V

)
µ̂t +

Σ̂t

Σ̂t + σ2
V

yt

Σt = Σ̂t − Σ̂t

(
Σ̂t

Σ̂t + σ2
V

)
Σ̂t = Σ̂t

(
1− Σ̂t

(
Σ̂t

Σ̂t + σ2
V

))
.
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⊳

The Kalman filter algorithm (see Figure 1 for pseudo-code) isnot robust to outlying observationsyt, i.e., when

the prediction erroret is large, because the meanµt is an unbounded function ofet, and the varianceΣt does

not depend on the observed datayt. Meinhold and Singpurwalla (1989) let the distributions ofthe error termsut

andvt be Student-t, and show that the posterior distribution ofxt giveny1:t converges to the prior distribution of

p(xt|y1:t−1) whenet is large. In this case, the posterior distribution is no longer known exactly, but is approximated.

The underlying assumptions of the Kalman filter algorithm are that the state transition and observation equa-

tions are linear, and that the error terms are normally distributed. If the linearity assumption is violated, but the

state transition and observation equations are differentiable functions, then theextended Kalman filteralgorithm

propagates the mean and covariance via the Kalman filter equations by linearizing the underlying non-linear model.

If this model is highly non-linear, then this approach will result in very poor estimates of the mean and covariance.

An alternative is theunscented Kalman filterwhich takes a deterministic sampling approach, representing the state

transition distribution by a set of sample points that are propagated through the non-linear model. This approach

improves the accuracy of the posterior mean and covariance;for details, see Wan and van der Merwe (2000).



Chapter 8

Sequential Monte Carlo

In this chapter we introduce sequential Monte Carlo (SMC) methods for sampling from dynamic models; these

methods are based on importance sampling and resampling techniques. In particular, we present SMC methods the

filtering and smoothing problems in state-space models.

8.1 Importance Sampling revisited

In Section 3.3, importance sampling is introduced as a technique for approximating a given integralµ =∫
h(x)f(x)dx under a distributionf , by sampling from an instrumental distributiong with support satisfying

supp(g) ⊃ supp(f · h). This is based on the observation that

µ = Ef (h(X)) =
∫

h(x)f(x)dx =
∫

h(x)
f(x)
g(x)

g(x)dx =
∫

h(x)w(x)g(x)dx = Eg(h(X) · w(X)), (8.1)

where the right-most expectation in (8.1) is approximated by the empirical average ofh · w evaluated atn i.i.d.

samples fromg.

In practice, we want to selectg as close as possible tof such that the estimator ofµ has finite variance. One

sufficient condition is thatf(x) < M · g(x) andVarf (h(X)) < ∞. Under this condition, it is possible to use

rejection sampling to sample fromf and approximateµ. We argue in the following subsection that importance

sampling is more efficient than rejection sampling, in termsof producing weights with smaller variance.

8.1.1 Importance Sampling versus Rejection Sampling

Let E be the support off . Define the artificial target distribution̄f(x, y) onE × [0, 1] as

f̄(x, y) =

 Mg(x) for
{

(x, y) : x ∈ E, y ∈
[
0, f(x)

Mg(x)

]}
0 otherwise

where

f(x) =
∫

f̄(x, y)dy =
∫ f(x)

Mg(x)

0

Mg(x)dy.

Consider the instrumental distributionḡ(x, y) = g(x)U[0,1](y), for (x, y) ∈ E×[0, 1], whereU[0,1](·) is the uniform

distribution on[0, 1]. Then, performing importance sampling onE × [0, 1] with weights

w(x, y) =
f̄(x, y)
ḡ(x, y)

=

 M for
{

(x, y) : x ∈ E, y ∈
[
0, f(x)

Mg(x)

]}
0 otherwise
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is equivalent to rejection sampling to sample fromf using instrumental distributiong. In contrast, importance

sampling fromf using instrumental distributiong has weightsw(x) = f(x)/g(x).

We now show that the weights for rejection sampling,w(x, y), have higher variance than those for importance

sampling,w(x). For this purpose, we introduce the following technical lemma which relates the variance of a

random variable to its conditional variance and expectation. In the following, any expectation or variance with a

subscript corresponding to a random variable should be interpreted as the expectation or variance with respect to

that random variable.

Lemma 8.1 (Law of Total Variance). Given two random variables,A andB, on the same probability space, such

thatVar (A) < ∞, then the following decomposition exists:

Var (A) = EB [VarA (A|B)] + VarB (EA [A|B]) .

Proof. By definition, and the law of total probability, we have:

Var (A) = E
[
A2
]− E [A]2 = EB

[
EA

[
A2|B]]− EB [EA [A|B]]2 .

Considering the definition of conditional variance, and then variance, it is clear that:

Var (A) = EB

[
VarA (A|B) + EA [A|B]2

]
− EB [EA [A|B]]2

= EB [VarA (A|B)] + EB

[
EA [A|B]2

]
− EB [EA [A|B]]2

= EB [VarA (A|B)] + VarB (EA [A|B]) .

�

Returning to importance sampling versus rejection sampling, we have by Lemma 8.1 that

Var (w(X,Y )) = Var (E (w(X,Y )|X)) + E (Var (w(X,Y )|X)) = Var (w(X)) + E (Var (w(X,Y )|X))

≥ Var (w(X)) ,

since

E (w(X,Y )|X) =
∫ 1

0

w(x, y)
ḡ(x, y)
g(x)

dy =
∫ f(X)

Mg(X)

0

Mdy =
f(X)
g(X)

= w(X),

and the fact thatVar (w(X,Y )|X) is a non-negative function.

8.1.2 Empirical distributions

Consider a collection of i.i.d. points{xi}n
i=1 in E drawn fromf . We can approximatef by the followingempirical

measure, associated with these points,

f̂(x) =
1
n

n∑
i=1

I(x = xi) =
1
n

n∑
i=1

δxi
(x),

where, for anyx ∈ E, δxi
(x) is the Dirac measure which places all of its mass at pointxi, i.e.,δxi

(x) = 1 if x = xi

and0 otherwise. Similarly, we can define theempirical distributionfunction

F̂ (x) =
1
n

n∑
i=1

I(xi ≤ x),

whereI(xi ≤ x) is the indicator of eventxi ≤ x.

If the collection of points has associated positive, real-valued weights{xi, wi}n
i=1, then the empirical measure

is defined as follows
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f̂(x) =
∑n

i=1 wiδxi
(x)∑n

i=1 wi
.

For fixedx ∈ E, f̂(x) and F̂ (x), as functions of a random sample, are a random measure and distribution,

respectively. The strong law of large numbers justifies approximating the true density and distribution functions by

f̂(x) andF̂ (x) as the number of samplesn increases to infinity.

From these approximations, we can then estimate integrals with respect tof by integrals with respect to the

associated empirical measure. Leth : E → R be a measureable function. Then

Ef (h(X)) =
∫

h(x)f(x)dx ≈
∫

h(x)f̂(x)dx =
1
n

n∑
i=1

h(xi),

or, if the random sample is weighted,

Ef (h(X)) =
∫

h(x)f(x)dx ≈
∫

h(x)f̂(x)dx =
∑n

i=1 wih(xi)∑n
i=1 wi

.

Sequential Importance Sampling exploits the idea of sequentially approximating an intractable density function

f by the corresponding empirical measuref̂ associated with a random sample from an instrumental distributiong,

and properly weighted with weightswi ∝ f(xi)/g(xi).

8.2 Sequential Importance Sampling

Sequential Importance Sampling (SIS) performs importancesampling sequentially to sample from a distribution

pt(xt) in a dynamic model. Let
{
x(i)

t , w
(i)
t

}n

i=1
be a collection of samples, calledparticles, that targetspt(xt). At

timet+1, the target distribution evolves topt+1(xt+1); for i = 1, . . . , n, sample the(t+1)st componentx(i)
t+1 from

an instrumental distribution, update the weightw
(i)
t+1, and appendx(i)

t+1 to x(i)
t . The desired result is a collection of

samples
{
x(i)

t+1, w
(i)
t+1

}n

i=1
that targetspt+1(xt+1).

The idea is to choose an instrumental distribution such thatimportance sampling can proceed sequentially. Let

qt+1(xt+1) denote the instrumental distribution, and suppose that it can be factored as follows:

qt+1(xt+1) = q1(x1)
t+1∏
i=2

qi(xi|xi−1) = qt(xt)qt+1(xt+1|xt).

Then, the weightw(i)
t+1 can be computed incrementally fromw(i)

t . At time t = 1, samplex
(i)
1 ∼ q1(x1) for

i = 1, . . . , n, and setw(i)
1 = p1(x1)/q1(x1). Normalise the weights by dividing them by

∑n
j=1 w

(j)
1 . At time t > 1,

w
(i)
t =

pt(x
(i)
t )

qt(x
(i)
t )

,

so, at the following time step, we samplex
(i)
t+1 ∼ qt+1(xt+1|x(i)

t ), and update the weight

w
(i)
t+1 =

pt+1(x
(i)
t+1)

qt+1(x
(i)
t+1)

=
pt+1(x

(i)
t+1)

qt(x
(i)
t )qt+1(x

(i)
t+1|x(i)

t )
= w

(i)
t

pt+1(x
(i)
t+1)

pt(x
(i)
t )qt+1(x

(i)
t+1|x(i)

t )
. (8.2)

Normalise the weights. The term
pt+1(x

(i)
t+1)

pt(x
(i)
t )qt+1(x

(i)
t+1|x(i)

t )

is known as theincremental weight. The intuition is that if the weighted sample
{
x(i)

t , w
(i)
t

}n

i=1
is a good ap-

proximation to the target distribution at timet, pt(xt), then, for appropriately chosen instrumental distribution

qt+1(xt+1|xt), the weighted sample
{
x(i)

t+1, w
(i)
t+1

}n

i=1
is also a good approximation topt+1(xt+1). For details,

see Liu and Chen (1998).
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8.2.1 Optimal instrumental distribution

Kong et al. (1994) and Doucet et al. (2000) prove that the unconditional variance of the weights increases over

time. So in the long run, a few of the weights contain most of the probability mass, while most of the particles have

normalised weights with near zero values. This phenomenon is know in the literature asweight degeneracy. Chopin

(2004) argues that the SIS algorithm suffers from the curse of dimensionality, in the sense that weight degeneracy

grows exponentially in the dimensiont.

So it is natural to seek an instrumental distribution that minimises the variance of the weights. Doucet et al.

(2000) show that the optimal instrumental distribution isqt+1(xt+1|x(i)
t ) = pt+1(xt+1|x(i)

t ), in the sense that the

variance ofw(i)
t+1 conditional uponx(i)

t is zero. This result appears in the following proposition.

Proposition 8.2. The instrumental distributionqt+1(xt+1|x(i)
t ) = pt+1(xt+1|x(i)

t ) minimises the variance of the

weightw(i)
t+1 conditional uponx(i)

t .

Proof. From (8.2),

Var
qt+1(xt+1|x(i)

t )

(
w

(i)
t+1

)
=

(
w

(i)
t

)2

Var
qt+1(xt+1|x(i)

t )

(
pt+1(x

(i)
t , xt+1)

pt(x
(i)
t )qt+1(xt+1|x(i)

t )

)

=
(
w

(i)
t

)2


∫ [

pt+1(x
(i)
t , xt+1)

pt(x
(i)
t )

]2
1

qt+1(xt+1|x(i)
t )

dxt+1 −
[

pt+1(x
(i)
t )

pt(x
(i)
t )

]2


= 0,

if qt+1(xt+1|x(i)
t ) = pt+1(xt+1|x(i)

t ). �

More intuitively, Liu and Chen (1998) rewrite the incremental weight as

pt+1(x
(i)
t+1)

pt(x
(i)
t )qt+1(xt+1|x(i)

t )
=

pt+1(x
(i)
t )

pt(x
(i)
t )

pt+1(xt+1|x(i)
t )

qt+1(xt+1|x(i)
t )

,

and interpret the second ratio on the right hand side as correcting the discrepancy betweenqt+1(xt+1|x(i)
t ) and

pt+1(xt+1|x(i)
t ), when they are different. Hence the optimal instrumental distribution ispt+1(xt+1|x(i)

t ).

In practice, however, sampling from the optimal instrumental distribution is usually not possible, so other

choices of instrumental distributions are considered. Oftentimes it is possible to find good approximations to the

optimal instrumental distribution; in such instances, thevariance of the corresponding weights is low for smallt,

but weight degeneracy still occurs att increases.

Whenqt+1(xt+1|x(i)
t ) = pt(xt+1|x(i)

t ), i.e., the distributionpt(xt) is used to predictxt+1, then the incremental

weight simplifies topt+1(x
(i)
t+1)/pt(x

(i)
t+1). The resulting SIS algorithm is known as thebootstrap filter. It was first

introduced by Gordon et al. (1993) in the context of Bayesianfiltering for non-linear, non-Gaussian state-space

models.

8.2.2 SIS for state-space models

Recall the state-space model introduced in Section 7.2. Forsimplicity, assume that all parameters are known.

observation: yt = a(xt, ut) ∼ g(·|xt)

hidden state: xt = b(xt−1, vt) ∼ f(·|xt−1).

We present the SIS algorithm to sample approximately from the filtering distributionpt+1(xt+1) = p(xt+1|y1:t+1),

and the smoothing distributionpt+1(xt+1) = p(x1:t+1|y1:t+1).

The instrumental distribution isqt+1(xt+1|x(i)
1:t), where the subscriptt + 1 indicates that the distribution may

incorporate all the data up to timet + 1: y1:t+1. For the bootstrap filter,qt+1(xt+1|x(i)
1:t) = p(xt+1|x(i)

1:t, y1:t) =
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f(xt+1|x(i)
t ), i.e., the instrumental distribution does not incorporatethe most recent observationyt+1, and the

weight is

w
(i)
t+1 = w

(i)
t

p(x(i)
1:t+1|y1:t+1)

p(x(i)
1:t|y1:t)f(x(i)

t+1|x(i)
t )

∝ w
(i)
t

p(x(i)
1:t|y1:t)f(x(i)

t+1|x(i)
t )g(yt+1|x(i)

t+1)

p(x(i)
1:t|y1:t)f(x(i)

t+1|x(i)
t )

= w
(i)
t g(yt+1|x(i)

t+1)

by equation (7.1). In this case, the incremental weight doesnot depend on past trajectoriesx
(i)
1:t, but only on the

likelihood function of the most recent observation.

Gordon et al. (1993) introduce the bootstrap filter in a very intuitive way, without reference to SIS, but rather as

a two-stage recursive process with a propagate step, followed by an update step (similar in spirit to the recursions

in the Kalman filter algorithm). Write the filtering density asfollows:

p(xt+1|y1:t+1) =
g(yt+1|xt+1)p(xt+1|y1:t)

p(yt+1|y1:t)
∝ g(yt+1|xt+1)

∫
p(xt+1, xt|y1:t)dxt

∝ g(yt+1|xt+1)
∫

f(xt+1|xt)p(xt|y1:t)dxt. (8.3)

Now, let
{

x
(i)
t , w

(i)
t

}n

i=1
be a weighted sample representing the filtering density at timet, such that

∑n
j=1 w

(j)
t = 1.

Then, p̂(xt|y1:t) =
∑n

i=1 w
(i)
t δ

x
(i)
t

(xt) is the empirical measure approximatingp(xt|y1:t), and p̂(xt+1|y1:t) =∑n
i=1 w

(i)
t f(xt+1|x(i)

t ). Furthermore, by (8.3), we have the approximation

p̂(xt+1|y1:t+1) =
n∑

i=1

w
(i)
t g(yt+1|xt+1)f(xt+1)|x(i)

t ),

and sampling proceeds in two steps:

Propagate step: fori = 1 : n, samplex(i)
t+1 ∼ f(xt+1|x(i)

t ).

Update step: fori = 1 : n, weighx
(i)
t+1 with weightw(i)

t+1 = w
(i)
t g(yt+1|x(i)

t+1). Normalise the weights.

In contrast to the instrumental distribution of the bootstrap filter, the optimal instrumental distribution incorpo-

rates the most recent observation:

qt+1(xt+1|x(i)
1:t) = p(xt+1|x(i)

1:t, y1:t+1)

=
p(yt+1|x(i)

1:t, xt+1, y1:t)p(xt+1|x(i)
1:t, y1:t)∫

p(yt+1|x(i)
1:t, xt+1, y1:t)p(xt+1|x(i)

1:t, y1:t)dxt+1

=
g(yt+1|xt+1)f(xt+1|x(i)

t )∫
g(yt+1|xt+1)f(xt+1|x(i)

t )dxt+1

,

where the normalising constant equals the predictive distribution ofyt+1 conditional onxt, i.e.,p(yt+1|xt). So the

weight function becomesw(i)
t+1 ∝ w

(i)
t p(yt+1|xt).

Example 8.1 (AR(1) model observed with noise (continued from example 7.1)). The optimal instrumental distribu-

tion is

qt+1(xt+1|x1:t) ∝ g(yt+1|xt+1)f(xt+1|xt)

∝ exp
{
− 1

2σ2
V

(yt+1 − xt+1)2
}

exp
{
− 1

2σ2
U

(xt+1 − φxt)2
}

= exp
{
−1

2

[
x2

t+1

(
1

σ2
V

+
1

σ2
U

)
− 2xt+1

(
yt+1

σ2
V

+
φxt

σ2
U

)
+

y2
t+1

σ2
V

+
φ2x2

t

σ2
U

]}
∝ exp

{
− 1

2σ2
(xt+1 − µ)2

}
,

implying that the distribution isN(µ, σ2) with
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µ =
σ2

Uσ2
V

σ2
U + σ2

V

(
yt+1

σ2
V

+
φxt

σ2
U

)
σ2 =

σ2
Uσ2

V

σ2
U + σ2

V

.

The normalising constant of this optimal instrumental distribution is

p(yt+1|xt) =
∫

g(yt+1|xt+1)f(xt+1|xt)dxt+1

∝ exp
(
− 1

2σ2
V

y2
t+1

)
exp

{
1
2

(
1

σ2
U

+
1

σ2
V

)(
σ2

Uσ2
V

σ2
U + σ2

V

)2(
yt+1

σ2
V

+
φxt

σ2
U

)2
}
×

∫
1√
2π

(
1

σ2
U

+
1

σ2
V

)1/2

exp

{
−1

2

(
1

σ2
U

+
1

σ2
V

)[
xt+1 − σ2

Uσ2
V

σ2
U + σ2

V

(
yt+1

σ2
V

+
φxt

σ2
U

)]2}
dxt+1

∝ exp
{
−1

2

[
y2

t+1

1
σ2

U + σ2
V

− 2φxt

σ2
U + σ2

V

yt+1

]}
,

i.e.,yt+1|xt ∼ N(φxt, σ
2
U + σ2

V ). ⊳

Let
{

x
(i)
1:t+1, w

(i)
t+1

}n

i=1
be a weighted sample, normalised such that

∑n
j=1 w

(j)
t+1 = 1, from p(x1:t+1|y1:t+1).

Then the filtering and smoothing densities are approximatedby the corresponding empirical measures:

p̂(xt+1|y1:t+1) =
n∑

i=1

w
(i)
t+1δx

(i)
t+1

(xt+1), p̂(x1:t+1|y1:t+1) =
n∑

i=1

w
(i)
t+1δx

(i)
1:t+1

(x1:t+1).

Algorithm 2 is the general SIS algorithm for state-space models. The computational complexity to generaten

particles representingp(x1:t|y1:t) is O(nt).

Algorithm 2 The SIS algorithm for state-space models
1: Sett = 1.

2: Fori = 1 : n, samplex(i)
1 ∼ q1(x1).

3: Fori = 1 : n, setw(i)
1 ∝ p(x

(i)
1 )g(y1|x(i)

1 )/q1(x
(i)
1 ). Normalise such that

nP
j=1

w
(j)
1 = 1.

4: At time t+ 1, do:

5: Fori = 1 : n, samplex(i)
t+1 ∼ qt+1(xt+1|x(i)

1:t).

6: Fori = 1 : n, setw(i)
t+1 ∝ w

(i)
t f(x

(i)
t+1|x(i)

t )g(yt+1|x(i)
t+1)/qt+1(x

(i)
t+1|x(i)

1:t). Normalise such that
nP

j=1

w
(j)
t+1 = 1.

7: The filtering and smoothing densities at timet+ 1 may be approximated by

p̂(xt+1|y1:t+1) =
nX

i=1

w
(i)
t+1δx

(i)
t+1

(xt+1), p̂(x1:t+1|y1:t+1) =
nX

i=1

w
(i)
t+1δx

(i)
1:t+1

(x1:t+1).

8: Sett = t+ 1. Go to step 4.

8.3 Sequential Importance Sampling with Resampling

One approach to limiting the weight degeneracy problem is tochoose an instrumental distribution that lowers the

variance of the weights; a second approach is to introduce aresamplingstep after drawing and weighing the particles

at timet + 1. This idea ofrejuvenatingthe particles by resampling was first suggested by Gordon et al. (1993).

The idea is as follows: let
{

x
(i)
t , w

(i)
t

}n

i=1
be a weighted sample frompt(xt), obtained by importance sampling,

and normalised such that
∑n

j=1 w
(j)
t = 1. The empirical measure iŝpt(xt) =

∑n
i=1 w

(i)
t δ

x
(i)
t

(xt). Under suitable

regularity conditions, the law of large number states that,for any fixed measurable functionh, asn →∞,∫
h(xt)p̂t(xt)dxt =

n∑
i=1

w
(i)
t h(x(i)

t ) →
∫

h(xt)pt(xt)dxt.
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Suppose now that we draw a sample of sizen′ from p̂t(xt) with replacement, i.e., forj = 1, . . . , n, x̃(j)
t = x

(i)
t with

probabilityw
(i)
t . The new particles have equal weights:w̃

(i)
t = 1/n′. Again, invoking the law of large numbers, as

n′ →∞,

1
n′

n′∑
j=1

h(x̃(j)
t ) →

n∑
i=1

w
(i)
t h(x(i)

t ).

So, forn′ large, the integral of the functionh with respect to the new empirical measure based on
{

x̃
(j)
t , 1/n′

}n′

j=1

is a good approximation to the integral ofh with respect tôpt(xt).

In the SIS algorithm, resampling is applied to the entire trajectoryx
(i)
1:t+1, not simply to the last valuext+1; the

new algorithm is known as SIS with Resampling (SISR). The advantage of resampling is that it eliminates particle

trajectories with low weights, and replicates those with large weights; all of the resampled particles then contribute

significantly to the importance sampling estimates.

On the other hand, replicating trajectories with large weights reduces diversity by depleting the number of

distinct particle values at any time step in the past. At timet + 1, new valuesx(i)
t+1 are sampled and appended to

the particle trajectories; resampling then eliminates some of these trajectories. Since the values att′ < t + 1 are not

rejuvenated ast increases, their diversity decreases due to resampling. Inthe extreme case, the smoothing density

pt+1(x1:t+1) is approximated by a system of particle trajectories with a single common acestor. Figure 8.1 displays

this situation graphically.

In general, at the current time stept+1, we can obtain a good approximation to the filtering densitypt+1(xt+1)

from the particles and their corresponding weights, provided the number of particles is large enough. However,

approximations to the smoothing densitypt+1(x1:t+1) and fixed interval smoothing densitiespt+1(x1:t′), for t′ ≪
t, will be poor. Chopin (2004) argues that for smoothing the first statex1, i.e., approximatingpt+1(x1), the SIS

algorithm is more efficient than the SISR algorithm, but thatthe latter can be expected to be more efficient in filtering

the states, i.e., approximatingpt+1(xt+1). In particular, if the instrumental distribution of the SISR algorithm has a

certain abilitiy to “forget the past” (i.e., to forget its initial condition), then the asymptotic variance of the estimator

is bounded from above int.
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Figure 8.1. Plot of particle trajectories with a single common ancestor after resampling.
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Moreover, the resampled trajectories are no longer independent, so resampling has the additional effect of in-

creasing the Monte Carlo variance of an estimator at the current time step (Chopin, 2004). However, it can reduce the

variance of estimators at later times. So, if one is interested in estimating the integral
∫

h(xt+1)pt+1(xt+1)dxt+1,

for some measurable functionh, then the estimator
∑n

i=1 w
(i)
t+1h(x(i)

t+1) must be computed before resampling (as it

will have lower Monte Carlo error than if it were computed after the resampling step). So far we discussed resam-

pling via multinomial sampling; other resampling schemes exist that introduce lower Monte Carlo variance, and no

additional bias, such asstratified sampling(Carpenter et al., 1999), andresidual sampling(Liu and Chen, 1998).

Chopin (2004) shows that residual sampling always outperforms multinomial sampling: the resulting estimator

using the former sampling scheme has lower asymptotic variance.

8.3.1 Effective sample size

Resampling at every time step introduces unnecesary variation, so a trade-off is required between reducing the

Monte Carlo variance in the future, and increasing the variance at the recent time step. Following Kong et al.

(1994), we define theeffective sample size(ESS), a measure of the efficiency of estimation based on a given SIS

sample, compared to estimation based on a sample of i.i.d. draws from the target distributionpt+1(xt+1).

Let h(xt+1) be a measurable function, and suppose that we’re interestedin estimating the meanµ =

Ept+1(xt+1) (h(Xt+1)). Let
{

x
(i)
t+1, w

(i)
t+1

}n

i=1
be a weighted sample approximatingpt+1(xt+1), obtained by SIS,

and let
{

y
(i)
t+1

}n

i=1
be a sample of i.i.d. draws frompt+1(xt+1).

The SIS estimator ofµ is

µ̂IS =
∑n

i=1 w
(i)
t+1h(x(i)

t+1)∑n
j=1 w

(j)
t+1

,

and the Monte Carlo estimator is

µ̂MC =
1
n

n∑
i=1

h(y(i)
t+1).

Then the relative efficiency of SIS in estimatingµ can be measured by the ratio

Var
(
µ̂IS

)
Var (µ̂MC)

,

which, in general, cannot be computed exactly. Kong et al. (1994) propose the following approximation that has the

advantage of being independent of the functionh:

Var
(
µ̂IS

)
Var (µ̂MC)

≈ 1 + Varqt+1(xt+1)(w̄t+1),

where qt+1(xt+1) is the instrumental distribution in SIS, and̄wt+1 is the normalised version ofwt+1, i.e.,∫
w̄t+1qt+1(xt+1)dxt+1 = 1. In general,Varqt+1(xt+1)(w̄t+1) is impossible to obtain, but can be approximated

by the sample variance of
{

w̄
(i)
t+1

}n

i=1
, wherew̄

(i)
t+1 = w

(i)
t+1/

∑n
j=1 w

(j)
t+1 are the normalised weights.

In practice, the ESS is defined as follows:

ESS =
n

1 + Varqt+1(xt+1)(w̄t+1)
=

n

Eqt+1(xt+1)(w̄t+1)2
≈ n

n
∑n

i=1

(
w̄

(i)
t+1

)2 =

(∑n
j=1 w

(j)
t+1

)2

∑n
i=1

(
w

(i)
t+1

)2

,

since the weights are normalised to sum to 1, and

Eqt+1(xt+1)(w̄t+1)2 = Eqt+1(xt+1)

(wt+1

C

)2

=
1

C2
Eqt+1(xt+1)(wt+1)2 ≈

n−1
∑n

i=1

(
w

(i)
t+1

)2

n−2
(∑n

j=1 w
(j)
t+1

)2 ,

whereC is the normalising constant. ESS is interpreted as the number of i.i.d. samples from the target distribution

pt+1(xt+1) that would be required to obtain an estimator with the same variance as the SIS estimator. SinceESS ≤
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n (Kong et al., 1994), then an ESS value close ton indicates that the SIS sample of sizen is approximately as “good”

as an i.i.d. sample of sizen from pt+1(xt+1). In practice, a fixed threshold is chosen (in general, half ofthe sample

sizen), and if the ESS falls below that threshold, then a resampling step is performed.

A word of caution is required at this point. Via the ESS approach, we’re using the importance sampling weights

to evaluate how well the weighted sample
{

x
(i)
t+1, w

(i)
t+1

}n

i=1
approximates the target distributionpt+1(xt+1). It is

possible that the instrumental distribution matches poorly the target distribution, but the weights are similar in value,

and thus have small variance. The ESS would then be large, thus incorrectly indicating a good match between the

instrumental and target distributions. This, for example,could happen if the target distribution places most of its

mass on a small region where the instrumental distribution is flat, and the target distribution is flat in the region of

the mode of the instrumental distribution. Hence, we expectsampling from this instrumental distribution to result in

weights that are similar in value. With small probability, adraw would fall under the mode of the target distribution,

resulting in a strikingly different weight value. This example highlights the importance of sampling a large enough

number of particles such that all modes of the target distribution are explored via sampling from the instrumental

distribution. So choosing an appropriate sample sizen depends on knowing the shape of the target distribution,

which, of course, is not known; in practice, we use as many particles as computationally feasible.

8.3.2 SISR for state-space models

Figure 3 presents the SISR algorithm with multinomial sampling for state-space models.

Algorithm 3 The SISR algorithm for state-space models
1: Sett = 1.

2: Fori = 1 : n, samplex(i)
1 ∼ q1(x1).

3: Fori = 1 : n, setw(i)
1 ∝ p1(x

(i)
1 )g(y1|x(i)

1 )/q1(x
(i)
1 ). Normalise such that

nP
j=1

w
(j)
1 = 1.

4: At time t+ 1, do:

5: Resample step: computeESS = 1/
Pn

j=1(w
(j)
t )2.

6: If ESS < threshold, then resample: fori = 1 : n, setx̃(i)
1:t = x

(j)
1:t with probabilityw(j)

t , j = 1, . . . , n. Finally, for

i = 1 : n, setx(i)
1:t = x̃

(i)
1:t andw(i)

t = 1/n.

7: Fori = 1 : n, samplex(i)
t+1 ∼ qt+1(xt+1|x(i)

1:t).

8: Fori = 1 : n, setw(i)
t+1 ∝ w

(i)
t f(x

(i)
t+1|x(i)

t )g(yt+1|x(i)
t+1)/qt+1(x

(i)
t+1|x(i)

t ). Normalise such that
nP

i=1

w
(i)
t+1 = 1.

9: The filtering and smoothing densities at timet+ 1 may be approximated by

p̂(xt+1|y1:t+1) =

nX
i=1

w
(i)
t+1δx

(i)
t+1

(xt+1), p̂(x1:t+1|y1:t+1) =

nX
i=1

w
(i)
t+1δx

(i)
1:t+1

(x1:t+1).

10: Sett = t+ 1. Go to step 4.

For the SISR algorithm for state-space models, Crisan and Doucet (2002) prove that the empirical distributions

converge to their true values almost surely asn → ∞, under weak regularity conditions. Furthemore, they show

convergence of the mean square error for bounded, measurable functions, provided that the weights are upper

bounded; moreover, the rate of convergence is proportionalto 1/n. However, only under restrictive assumptions

can they prove that approximation errors do not accumulate over time, so careful implementation and interpretation

is required when dealing with SMC methods. More generally, Chopin (2004) proves a Central Limit Theorem result

for the SISR algorithm under both multinomial sampling, andresidual sampling, not restricted to applications to

state-space models.

Example 8.2 (A nonlinear time series model (Cappé et al., 2007)). Consider the following nonlinear time series model:
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yt =
x2

t

20
+ vt ∼ g(yt|xt)

xt =
xt−1

2
+ 25

xt−1

1 + x2
t−1

+ 8 cos(1.2t) + ut ∼ f(xt|xt−1),

wherevt ∼ N(0, σ2
v), ut ∼ N(0, σ2

u), and parametersσ2
v = 1, σ2

u = 10. Let x1 ∼ p(x1) = N(0, 10). The densities

are

f(xt|xt−1) = N

(
xt−1

2
+ 25

xt−1

1 + x2
t−1

+ 8 cos(1.2t), 10
)

g(yt|xt) = N

(
x2

t

20
, 1
)

.

⊳

Figure 8.2 shows 100 statesxt and corresponding observationsyt generated from this model.

Using these 100 observations, we begin by running the SISR algorithm until t = 9, with n = 10000 par-

ticles and resampling wheneverESS < 0.6 × n. The instrumental distribution is the state transition distribu-

tion: qt+1(xt+1|x(i)
1:t) = f(xt+1|x(i)

t ). Figure 8.3 shows the weighted samples
{

x
(i)
9 , w

(i)
9

}n

i=1
as small dots (with

weights unnormalised), and thekernel density estimateof the filtering distribution as a continuous line. Kernel

density estimation is a non-parameteric approach to estimating the density of a random variable from a (possibly

weighted) sample of values. For details, see Silverman (1986). We use a Gaussian kernel with fixed width of 0.5.

The kernel density estimator takes into account both the value of the weights, and the local density of the particles.
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Figure 8.2. Plot of 100 observationsyt and hidden statesxt generated from the above state-space model.

To analyse the effect of resampling, we run the SISR algorithm up to timet = 100 with n = 10000 and

resampling wheneverESS < 0.6× n, and the SIS algorithm withn = 10000. Figures 8.4 and 8.5 show the image

intensity plots of the kernel density estimates based on thefilter outputs, with the true state sequence overlaid. In

general, the true state value falls in the high density regions of the density estimate in Figure 8.4, indicating good

performance of the SISR algorithm. Moreover, it is interesting to notice that there is clear evidence of multimodality

and non-Gaussianity. In Figure 8.5, however, we remark thatthe particle distributions are highly degenerate, and do

not track the correct state sequence. Hence, resampling is required for good performance of the SIS algorithm.
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Figure 8.3. Filtering density estimate att = 9 from SISR algorithm withn = 10000, and ESSthreshold = 6000. Weighted
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shown as small dots, and kernel density estimate as continuous line.

To make this last point more clear, we look at histograms of the base 10 logarithm of the normalised weights at

various time steps in the SIS algorithm. Figure 8.6 shows that the weights quickly degenerate ast increases; byt =

5, we already observe weights on the order of10−300. Recall that these weights are a measure of the adequacy of the

simulated trajectory, drawn from an instrumental distribution, to the target distribution. In this particular example,

the instrumental distribution is the state transition distribution, which is highly variable (σ2
u = 10) compared to the

observation distribution (σ2
v = 1). Hence, draws from the state transition distribution are given low weights under

the observation distribution, and, with no resampling to eliminate the particles with very low weights, there is a

quickly growing accumulation of very low weights.

8.4 Sequential Importance Sampling with Resampling and MCMC m oves

Gilks and Berzuini (2001) introduce the idea of using MCMC moves to reduce sample impoverishment, and call

their proposed algorithmresample-move. The algorithm performs sequential importance resamplingwith an MCMC

move after the resampling step that rejuvenates the particles. Let
{

x
(i)
1:t+1, w

(i)
t+1

}n

i=1
be a weighted set of particles

that targets the distributionpt+1(x1:t+1). Let qt+1(x1:t+1) denote the instrumental distribution from which the par-

ticles are generated. During resampling, some particles will be replicated (possibly many times), to produce the set{
x̃

(i)
1:t+1, 1/n

}n

i=1
. LetKt+1 be apt+1(x1:t+1)-invariant Markov kernel, i.e.,pt+1Kt+1 = pt+1. The MCMC move

is as follows: fori = 1, . . . , n, drawz
(i)
1:t+1 ∼ Kt+1(x̃

(i)
1:t+1, ·). Then

{
z
(i)
1:t+1, 1/n

}n

i=1
is a rejuvenated, weighted

set of particles that targets the distributionpt+1(z1:t+1). If
{

x̃
(i)
1:t+1, 1/n

}n

i=1
is a good particle representation of

pt+1(x1:t+1), then, provided that the kernelKt+1 is fast mixing, each̃x(i)
1:t+1 will tend to move to a distinct point

in a high density region of the target distribution, thus improving the particle representation. In the words of Gilks

and Berzuini (2001), the MCMC step helps the particles trackthe moving target.

Just as in Section 8.1.1 we interpreted rejection sampling as importance sampling on an enlarged space, so can

importance sampling with an MCMC move be interpreted as importance sampling on an enlarged space with in-

strumental distributionqt+1(x1:t+1)Kt+1(x1:t+1, z1:t+1) and target distributionpt+1(x1:t+1)Kt+1(x1:t+1, z1:t+1),
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Figure 8.4. Image intensity plot of the kernel density estimates up tot = 100, with diamond symbol indicating the true state

sequence (SISR algorithm).
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sequence (SIS algorithm).
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Figure 8.6. Histogram of the base 10 logarithm of the normalised weights for the filtering distributions (SIS algorithm).

where
∫

pt+1(x1:t+1)Kt+1(x1:t+1, z1:t+1)dx1:t+1 = pt+1(z1:t+1) by invariance ofKt+1. This explanation omits

the resampling step, but the latter does not alter the justification of the algorithm. Gilks and Berzuini (2001) present

a Central Limit Theorem result in the number of particles, and an explicit formulation for the asymptotic variance as

the number of particles tends to infinity, fort fixed. They argue that, in the extreme case, rejuvenation viaa perfectly

mixing kernel at stept, i.e.,Kt(x1:t, z1:t) = pt(z1:t|x1:t), can reduce the asymptotic variance of estimators at later

time steps. This is similar to the idea from Section 8.3 that resampling, although it introduces extra Monte Carlo

variation at the current time step, can reduce the variance at later times.

Chopin (2004) states that MCMC moves may lead to more stable algorithms for the filtering problem in terms

of the asymptotic variance of estimators (although theoretical results to support this are lacking); however, he is

not as hopeful regarding the smoothing problem. He suggestsinvestigating the degeneracy of a given particle filter

algorithm by runningm, saym = 10, independent particle filters in parallel, computing the estimates from each

output, and monitoring the empirical variance of thesem estimates ast increases.

8.4.1 SISR with MCMC moves for state-space models

Algorithm 4 is the SISR algorithm with MCMC moves for state-space models. First, notice that except for the re-

quirement of invariance, there are no constraints on the choice of kernel; it can be a Gibbs sampling, or a Metropolis-

Hastings kernel. Second, only one MCMC step will suffice (i.e., no burn-in period is required), since it is assumed

that the particle set at stept has “converged”, i.e., it is a good representation ofp(x1:t|y1:t). Third, notice that the

MCMC move is applied to the entire state trajectory up to timet. Hence, the dimension of the kernel increases with

t, thus increasing the computational cost of performing the move. Also, ast increases, it is increasingly difficult

to construct a fast-mixing Markov kernel of dimensiont. In practice, the MCMC move is applied only to the last

componentxt+1 with kernelKt+1 that is invariant with respect top(xt+1|y1:t+1).
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Algorithm 4 The SISR algorithm with MCMC moves for state-space models
1: Sett = 1.

2: Fori = 1 : n, samplex(i)
1 ∼ q1(x1).

3: Fori = 1 : n, setw(i)
1 ∝ p1(x

(i)
1 )g(y1|x(i)

1 )/q1(x
(i)
1 ). Normalise such that

nP
j=1

w
(j)
1 = 1.

4: At time t+ 1, do:

5: Resample step: computeESS = 1/
Pn

j=1(w
(j)
t )2.

6: If ESS < threshold, then resample: fori = 1 : n, setx̃(i)
1:t = x

(j)
1:t with probabilityw(j)

t , j = 1, . . . , n. Finally, for

i = 1 : n, setx(i)
1:t = x̃

(i)
1:t andw(i)

t = 1/n.

7: MCMC step: fori = 1 : n, samplez(i)
1:t ∼ Kt(x

(i)
1:t, ·). Then, fori = 1 : n, setx(i)

1:t = z
(i)
1:t.

8: Fori = 1 : n, samplex(i)
t+1 ∼ qt+1(xt+1|x(i)

1:t).

9: Fori = 1 : n, setw(i)
t+1 ∝ w

(i)
t f(x

(i)
t+1|x(i)

t )g(yt+1|x(i)
t+1)/qt+1(x

(i)
t+1|x(i)

t ). Normalise such that
nP

i=1

w
(i)
t+1 = 1.

10: The filtering and smoothing densities at timet+ 1 may be approximated by

p̂(xt+1|y1:t+1) =
nX

i=1

w
(i)
t+1δx

(i)
t+1

(xt+1), p̂(x1:t+1|y1:t+1) =
nX

i=1

w
(i)
t+1δx

(i)
1:t+1

(x1:t+1).

11: Sett = t+ 1. Go to step 4.

8.5 Smoothing density estimation

As we have seen, the SISR algorithm is prone to suffer from sample impoverishment ast grows; hence the parti-

cle trajectories do not offer reliable approximations to the smoothing density. This section presents a Monte Carlo

smoothing algorithm for state-space models that is carriedout in a forward-filtering, backward-smoothing proce-

dure, i.e., a filtering procedure such as SISR is applied forward in time, followed by a smoothing procedure applied

backward int (Godsill et al., 2004).

Godsill et al. (2004) consider the joint smoothing density

p(x1:T |y1:T ) = p(xT |y1:T )
T−1∏
t=1

p(xt|xt+1:T , y1:T ) = p(xT |y1:T )
T−1∏
t=1

p(xt|xt+1, y1:t)

∝ p(xT |y1:T )
T−1∏
t=1

p(xt|y1:t)f(xt+1|xt).

Let
{
x

(i)
t , w

(i)
t

}n

i=1
be a particle representation to the filtering densityp(xt|y1:t), that is, p̂(xt|y1:t) =∑n

i=1 w
(i)
t δ

x
(i)
t

(xt). Then, it is possible to approximatep(xt|xt+1, y1:t) by

p̂(xt|xt+1, y1:t) =

∑n
i=1 w

(i)
t f(xt+1|x(i)

t )δ
x
(i)
t

(xt)∑n
j=1 w

(j)
t f(xt+1|x(j)

t )
. (8.4)

So the idea is to run the particle filter (e.g., the SISR algorithm) forward in time, to obtain particle approximations

to p(xt|y1:t), for t = 1, . . . , T , and then to apply the backward smoothing recursion (8.4) for t = T − 1 to t = 1.

The draws(x̃1, . . . , x̃T ) form an approximate realization fromp(x1:T |y1:T ).

Algorithm 5 returns one realization fromp(x1:T |y1:T ) via this forward-filtering, backward-smoothing approach.

The computational complexity isO(nT ), for filtering density approximations withn particles. So forn realizations,

the computational complexity isO(n2T ), i.e., it is quadratic inn, compared to the computational complexity of

SISR, forn realizations, which is linear inn. This smoothing algorithm has the advantage that it uses particle

approximations to the filtering densities (under the assumption that good approximations can be obtained via SISR,

for example), as opposed to resampled particle trajectories x1:t which suffer from sample impoverishment ast

increases.

Example 8.3 (A nonlinear time series model (continued)). We continue the example of the nonlinear time series

model. We carry out smoothing via Algorithm 5, implementingthe SISR algorithm as before, withn = 10000
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Algorithm 5 The forward-filtering, backward-smoothing algorithm for state-space models

1: Run a particle filter algorithm to obtain weighted particle approximations
n
x

(i)
t , w

(i)
t

on

i=1
to the filtering distributions

p(xt|y1:t) for t = 1, . . . , T .

2: Sett = T .

3: ChoosẽxT = x
(i)
T with probabilityw(i)

T .

4: Sett = t− 1.

5: At t ≥ 1

6: Fori = 1 : n, computew(i)

t|t+1 ∝ w
(i)
t f(x̃t+1|x(i)

t ). Normalise the weights.

7: Choosẽxt = x
(i)
t with probabilityw(i)

t|t+1.

8: Go to step 3.

9: (x̃1, . . . , x̃T ) is an approximate realization fromp(x1:T |y1:T ).

particles. Figure 8.7 displays the 10000 smoothing trajectories drawn fromp(x1:100|y1:100) with the true state se-

quence overlaid. Multimodality in the smoothing distributions is shown in Figure 8.8.
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Figure 8.7. 10000 smoothing trajectories drawn fromp(x1:100|y1:100) with dimond symbol indicating the true sequence.

Finally, since the algorithm returns entire smoothing trajectories, as opposed to simply returning smoothing

marginals, it is possible to visualize characteristics of the multivariate smoothing distribution. Figure 8.9 shows the

kernel density estimate forp(x11:12|y1:100).

⊳
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Figure 8.8. Image intensity plot of the kernel density estimates of smoothing densities withdimond symbol indicating the true

state sequence.

Figure 8.9. Kernel density estimate forp(x11:12|y1:100).


