Argomenti associati alle DFT FFT e DCT

Edoardo Milotti
Corso di Fondamenti Fisici di Tecnologia Moderna

1. Orthogonal Frequency Division Multiplexing

Come fare ad ottenere un banco di filtri estremamente stretti?

Basta realizzare una DFT e prendere come frequenze da filtrare un insieme di frequenze che appartengono al pettine di frequenze!

Quindi

- durata del campionamento: T
- numero di campioni: 2 N
- numero totale di componenti di Fourier indipendenti (spettro unilatero): N
- frequenze del pettine:

$$
\omega_{k}=\frac{2 \pi k}{T}
$$

- frequenze trasmesse:

$$
\omega_{k}=\frac{2 \pi\left(k+n_{0}\right)}{T}
$$

Segnali campionati nel tempo T (N campioni)

Singolo bit

> Frequenza del pettine di frequenze della DFT

Anche la portante fa parte del pettine di frequenze della DFT

Array di bits

una portante +10 segnali che portano ciascuno l'informazione corrispondente ad un bit alto

spettro bilatero

una portante +10 segnali che portano ciascuno l'informazione di un bit

Esempi di sistemi che usano il metodo OFDM

- ADSL su cavo
- DVB-C2 (TV digitale su cavo)
- WLAN con standard IEEE 802.11
- DAB+ e Digital Radio Mondiale
- DVB-T

2. Compressione dati tramite l’algoritmo di Huffman (Huffman coding)

Esempio di algoritmo di compressione: Run-length encoding
a. Sequenza di pixel bianchi (W) e neri (B)

BWWW BBWW WWWW WWWW BWWW WWBB WBBB WWWW
b. Rappresentazione binaria

01110011111111110111110010001111

c. Conteggio di bianchi e neri
$1 B 3 W 2 B 10 W 1 B 5 W 2 B 1 W 3 B 4 W=1$ black, 3 whites, 2 blacks, ...
d. Rappresentazione compatta

$$
1,3,2,10,1,5,2,1,3,4
$$

Entropia di Shannon

- Analoga all'entropia di Boltzmann

- Quantifica l'informazione trasmessa da una sorgente di simboli
- L'informazione portata da un simbolo emesso con probabilità p è definita da $\log _{2} 1 / p$
- L'entropia di Shannon è l'informazione media trasmessa da una sorgente

$$
H=-\sum_{k} p_{k} \log _{2} p_{k}
$$

II risultato è un numero che va interpretato come bit/simbolo.

Claude Elwood Shannon (30 aprile 1916-24 febbraio 2001) è stato matematico, ingegnere elettrico, crittografo. È noto come il "padre della teoria dell'informazione", che egli ha fondato con un articolo epocale "A Mathematical Theory of Communication", pubblicato nel 1948.

Ha fondato anche la teoria dei circuiti digitali nel 1937, quand'era un ventunenne studente di master al Massachusetts Institute of Technology (MIT). Nella sua tesi dimostrò che tramite le applicazioni elettriche dell'algebra di Boole è possibile costruire tutte le relazioni logiche/numeriche. Contribuì anche al campo della criptanalisi per la difesa nazionale durante la Seconda Guerra Mondiale, con contributi fondamentali nel campo della analisi dei codici segreti e delle telecomunicazioni sicure. (adattato da Wikipedia, si veda anche il recente film biografico "The Bit Player" https://www.youtube.com/watch?v=JP1Lip8X6hg)

Problema: che distribuzione di probabilità massimizza l'entropia (e cioè l'informazione media trasmessa per simbolo)?

Si deve massimizzare la funzione entropia tenendo conto della condizione di normalizzazione delle probabilità e per questo si usa un moltiplicatore di Lagrange e si massimizza la funzione ausiliaria

$$
H-\lambda \sum_{k} p_{k}=-\sum_{k} p_{k} \log _{2} p_{k}+\lambda \sum_{k} p_{k}
$$

Derivando ed eguagliando a zero si trova

$$
\frac{\partial}{\partial p_{j}}\left(H-\lambda \sum_{k} p_{k}\right)=-\log _{2} p_{j}-1-\lambda=0
$$

e quindi le probabilità che massimizzano l'entropia per sorgente che emette N simboli sono quelle di una distribuzione uniforme

$$
p_{j}=2^{\lambda-1}=1 / N
$$

Quindi l'entropia massima di una sorgente che trasmette N simboli è

$$
H=\log _{2} N
$$

Se ci sono 2 soli simboli, 0 e 1, l'entropia massima vale esattamente 1 e questo definisce il bit.

Ad esempio se ci sono 8 simboli l'entropia massima vale $\mathbf{3}$ bit e se ci sono $\mathbf{2}^{\text {n }}$ simboli l'entropia massima vale n bit.

Problema per casa: si calcoli quanto vale l'entropia di una sorgente che emette 8 simboli con probabilità

$$
p_{k} \propto \frac{1}{k}
$$

($k=1 \ldots .8$)

Compressione dell'informazione

Consideriamo la seguente frase in lingua italiana:
la compressione dei dati permette la riduzione del numero di bit necessari alla rappresentazione in forma digitale di una informazione

Nella frase vengono utilizzate le lettere dell'alfabeto italiano (21) più lo spazio e quindi in totale 22 simboli. Poiché $2^{4}<22<2^{5}$ dobbiamo usare 5 bit per rappresentare individualmente ciascun carattere.

In totale nella frase ci sono 134 caratteri e dunque dobbiamo utilizzare 670 bit.
D'altra parte l'entropia associata a questa frase è 3.87592 bit e quindi dovrebbe essere possibile utilizzare un minimo di 520 bit per trasferire la stessa informazione.

Il metodo proposto da Huffman dà una risposta a questo problema.

A Method for the Construction of Minimum-Redundancy Codes*

DAVID A. HUFFMAN \dagger, associate, ire

Summary-An optimum method of coding an ensemble of messages consisting of a finite number of members is developed. A minimum-redundancy code is one constructed in such a way that the average number of coding digits per message is minimized.

Semplice esempio (da Numerical Recipes, si veda anche http://numerical.recipes)

In questo caso ci sono solo 5 simboli, che compaiono con diverse frequenze nel messaggio da trasferire, la tabella e l'albero binario illustrano il metodo di costruzione del codice.

Node	Stage:	1	2	3	4	5
1	$\mathrm{~A}:$	0.12	0.12 ■			
2	$\mathrm{E}:$	0.42	0.42	0.42	0.42 ■	
3	$\mathrm{I}:$	0.09 ■				
4	$\mathrm{O}:$	0.30	0.30	0.30 ■		
5	$\mathrm{U}:$	0.07 ■				
6		$\mathrm{UI}:$	0.16 ■			
7			$\mathrm{AUI}:$	0.28 ■		
8				AUIO:	0.58 ■	
9					EAUIO:	1.00

CODICE

RISULTANTE \square| A | 100 |
| :--- | :--- |
| E | 0 |
| I | 1011 |
| 0 | 11 |
| U | 1010 |

"la compressione dei dati permette la riduzione del numero di bit necessari alla rappresentazione in forma digitale di una informazione"

"	19
e	16
i	15
a	12
n	10
r	9
o	8
d	7
l	6
t	6
m	5
s	5
p	4
u	3
z	3
c	2
f	2
b	1
g	1

a: 000
b: 0010101
c: 100110
d: 0011
e: 011
f: 001011
g: 0010100
i: 010
I: 11111
m: 10111
n: 1110
o: 1000
p: 10010
r: 1010
s: 10110
t: 11110
u: 00100
z: 100111
‘‘: 110

"la compressione dei dati permette la riduzione del numero di bit necessari alla rappresentazione in forma digitale di una informazione"

523 bit, 3.902985 bit/simbolo

