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1. Orthogonal Frequency Division Multiplexing



Δt

segnale diretto

riflessione

Edoardo Milotti - Fondamenti Fisici di Tecnologia Moderna



Come fare ad ottenere un banco di filtri estremamente stretti? 

Basta realizzare una DFT e prendere come frequenze da filtrare un insieme di 
frequenze che appartengono al pettine di frequenze!

Quindi

• durata del campionamento: T

• numero di campioni: 2N

• numero totale di componenti di Fourier indipendenti (spettro unilatero): N

• frequenze del pettine: 

• frequenze trasmesse: 

!k =
2⇡k

T

!k =
2⇡(k + n0)

T

Edoardo Milotti - Fondamenti Fisici di Tecnologia Moderna



bk cos

✓
2⇡k

T
t+ 'k

◆
cos(!Ct)

X

k

bk cos

✓
2⇡k

T
t+ 'k

◆
cos(!Ct)

Segnali campionati nel tempo T (N campioni) 

Singolo bit

Array di bits

Frequenza del pettine di 
frequenze della DFT

Anche la portante fa parte del 
pettine di frequenze della DFT
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Esempi di sistemi che usano il metodo OFDM

• ADSL su cavo

• DVB-C2 (TV digitale su cavo)

• WLAN con standard IEEE 802.11

• DAB+ e Digital Radio Mondiale

• DVB-T

Edoardo Milotti - Fondamenti Fisici di Tecnologia Moderna



Edoardo Milotti - Fondamenti Fisici di Tecnologia Moderna

2. Compressione dati tramite l’algoritmo di Huffman (Huffman coding)
Esempio di algoritmo di compressione: Run-length encoding

a. Sequenza di pixel bianchi (W) e neri (B)

b. Rappresentazione binaria

c. Conteggio di bianchi e neri

d. Rappresentazione compatta

IOP Concise Physics

The Statistical Eyeglasses
The math behind scientific knowledge

Edoardo Milotti

Chapter 2

Randomness

Randomness is a profound concept that plays an all-important role in probability
and statistics, and in this chapter we look at it in some detail and then we show how
it can be incorporated into models of experimental data.

2.1 What is random?
‘Randomness’ is one of those scientific concepts that are apparently easy to define
but which are very hard to grasp. Indeed, the first mathematically precise definition
of randomness was independently developed as late as the early 1960s, first by
Solomonoff and then by Kolmogorov and by Chaitin (see, e.g. [1]); Gregory Chaitin
has long been its most energetic popularizer. It came late in the history of science,
but now that we all have an extensive experience with computers the idea sounds
almost obvious.

It all starts with concepts that were first put forward by Shannon and Turing in
the 1940s, and from the basic question ‘how complex is a string of 0’s and 1’s?’1. It is
quite obvious that the string ‘0000000000000000000000…’ is simpler than
‘0101110001110101010001…’, but how can we make this precise? How can we
quantify the complexity?

For an initial, simple answer, we turn to an old data compression technique, ‘run-
length encoding’, a method that has been used (with variants) in fax machines. A fax
machine works by scanning a sheet of paper one line at a time. The result of the scan
is a list of black (B) and white (W) pixels, such as in this short example line

BWWW BBWW WWWW WWWW BWWW WWBB WBBB WWWW

1 This is a very general question since any string of symbols can be converted into 0’s and 1’s. For instance, the
letters of the alphabet have a binary representation in modern computers.

doi:10.1088/2053-2571/aada8dch2 2-1 ª Morgan & Claypool Publishers 2018

and correspondingly, in a binary representation, the original line of 32 dots becomes

0111 0011 1111 1111 0111 1100 1000 1111.

We can simply count each time the number of blacks and whites appear, and thus
encode it as follows:

= …B W B W B W B W B W1 3 2 10 1 5 2 1 3 4 1 black, 3 whites, 2 blacks, ,

or also, in a more compact manner,

1, 3, 2, 10, 1, 5, 2, 1, 3, 4.

In general, there are few transitions between colors (the majority of pages are mostly
white, with a little black from individual letters), take for instance a line with 1023
pixels and 10 transitions. Since the maximum run length (the maximum number of
equally colored pixels) is 1023, then all possible values of run length can be represented
by 10 bits, and this means that 10 × 10= 100 bits suffice to represent all the run lengths
in the line. There is no need for internal separators such as the commas above because
the width of each number in bits is specified exactly (10 bits in this example). This
means that the original line with more than one thousand bits has been compressed to
just 100 bits. This is not a particularly efficient compression scheme, however, it
illustrates how we can squeeze information in the original string of bits. To better
specify what we are doing we can add one initial bit, which marks the initial color.

Now take a line that is made up of all zeros or ones: it is clear that there are no
transitions, and we can compress the whole line to just one bit that encodes the only
color present in the line. In contrast, a line with many transitions can yield a very
unsatisfactory compression level, e.g., with 100 transitions and variable run lengths,
we must specify 1001 bits, and we barely compress the initial data at all. The run-
length encoding is not a very efficient compression scheme2, however, the main
result remains true even with the best conceivable compression algorithm; a chaotic
string is difficult to encode into something shorter, it is as complex as it can be. This
brings us to the definition of a random string, namely, it is a string that has
approximately the same length when compressed with the best possible algorithm.

Before moving on to the next section, it is important to note that the definition
above is not entirely satisfactory because the ‘best possible compression algorithm’ is
unknown.

2.2 How does randomness show up in Nature?
Randomness is often ignored in popularizations of science because it is hard to
observe. We are usually blind to randomness because in our world it is overwhelmed
by many orderly deterministic processes. However, randomness becomes all-
important when we consider the microscopic world, or when we observe very tiny
voltages, currents, etc. So, when you tune your radio to a frequency region where
there are no radio sources, the voltage input to your loudspeaker may look like

2For instance, a string with alternating 0’s and 1’s has a very long run-length representation, but it can be
encoded by a very short program such as ‘write 1024 alternating 0’s and 1’s’
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Entropia di Shannon

– Analoga all’entropia di Boltzmann

– Quantifica l’informazione trasmessa da una sorgente di simboli

– L’informazione portata da un simbolo emesso con probabilità p è definita da log2 1/p

– L’entropia di Shannon è l’informazione media trasmessa da una sorgente

Il risultato è un numero che va interpretato come bit/simbolo.

<latexit sha1_base64="DIx5LOB8APO/yGMOs6Y+dPcXVjk=">AAACBHicbZDLSgMxFIYz9VbrbdRlN8EiuLHMlKJuhKKbLivYC3SGIZOmbWgyGZKMUIYu3Pgqblwo4taHcOfbmGlnoa0/HPj4zzkk5w9jRpV2nG+rsLa+sblV3C7t7O7tH9iHRx0lEolJGwsmZC9EijAakbammpFeLAniISPdcHKb9bsPRCoqons9jYnP0SiiQ4qRNlZgl5vwGp5DTyU8mMDYlMfEKKhlGNgVp+rMBVfBzaECcrUC+8sbCJxwEmnMkFJ914m1nyKpKWZkVvISRWKEJ2hE+gYjxIny0/kRM3hqnAEcCmkq0nDu/t5IEVdqykMzyZEeq+VeZv7X6yd6eOWnNIoTTSK8eGiYMKgFzBKBAyoJ1mxqAGFJzV8hHiOJsDa5lUwI7vLJq9CpVd2Lav2uXmnc5HEUQRmcgDPggkvQAE3QAm2AwSN4Bq/gzXqyXqx362MxWrDynWPwR9bnD9BallI=</latexit>

H = �
X

k

pk log2 pk

Claude Elwood Shannon (30 aprile 1916 – 24 febbraio 2001) è stato matematico, 
ingegnere elettrico, crittografo. È noto come il "padre della teoria dell'informazione", che 
egli ha fondato con un articolo epocale "A Mathematical Theory of Communication", 
pubblicato nel 1948.

Ha fondato anche la teoria dei circuiti digitali nel 1937, quand'era un ventunenne studente 
di master al Massachusetts Institute of Technology (MIT). Nella sua tesi dimostrò che 
tramite le applicazioni elettriche dell'algebra di Boole è possibile costruire tutte le relazioni 
logiche/numeriche. Contribuì anche al campo della criptanalisi per la difesa nazionale 
durante la Seconda Guerra Mondiale, con contributi fondamentali nel campo della analisi 
dei codici segreti e delle telecomunicazioni sicure. (adattato da Wikipedia, si veda anche il 
recente film biografico "The Bit Player" https://www.youtube.com/watch?v=JP1Ljp8X6hg )

https://www.youtube.com/watch?v=JP1Ljp8X6hg
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Problema: che distribuzione di probabilità massimizza l’entropia (e cioè l’informazione 
media trasmessa per simbolo)?

Si deve massimizzare la funzione entropia tenendo conto della condizione di 
normalizzazione delle probabilità e per questo si usa un moltiplicatore di Lagrange e si 
massimizza la funzione ausiliaria 

Derivando ed eguagliando a zero si trova

e quindi le probabilità che massimizzano l’entropia per sorgente che emette N simboli 
sono quelle di una distribuzione uniforme

<latexit sha1_base64="BCkSUsSNzj6Mxl+9Re7h9fsnPv0="></latexit>
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<latexit sha1_base64="kxI14EWw2wrCvgXIOow2vMpIDXs=">AAACL3icbVDLSsNAFJ34rPUVdelmsAiCWJJS1I1QFKTLCvYBTQiTyaQdOnkwMxFK6B+58Ve6EVHErX/hJA2obQ9cOHPuPdy5x40ZFdIw3rSV1bX1jc3SVnl7Z3dvXz847Igo4Zi0ccQi3nORIIyGpC2pZKQXc4ICl5GuO7rL+t0nwgWNwkc5jokdoEFIfYqRVJKj3zfhBbSYMngIWiIJnBGMVd1k8u/TYtHAqeX0fNm4o1eMqpEDLhKzIBVQoOXoU8uLcBKQUGKGhOibRiztFHFJMSOTspUIEiM8QgPSVzREARF2mt87gadK8aAfcVWhhLn615GiQIhx4KrJAMmhmO9l4rJeP5H+tZ3SME4kCfFskZ8wKCOYhQc9ygmWbKwIwpyqv0I8RBxhqSIuqxDM+ZMXSadWNS+r9Yd6pXFbxFECx+AEnAETXIEGaIIWaAMMnsEUvIMP7UV71T61r9noilZ4jsA/aN8/fsWmXA==</latexit>
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<latexit sha1_base64="gPUxav0LtsXpAVVvBzqGowHkzkY=">AAACBHicbVC7SgNBFL3rM8bXqmWawSDYGHdDUBshaGMlEcwDknWZnZ0kY2YfzMwKYUlh46/YWChi60fY+TdOki008cDA4Zx7uHOPF3MmlWV9GwuLS8srq7m1/PrG5ta2ubPbkFEiCK2TiEei5WFJOQtpXTHFaSsWFAcep01vcDn2mw9USBaFt2oYUyfAvZB1GcFKS65ZiN17dI7Kd2mH65SP0RGyR1qxj69ds2iVrAnQPLEzUoQMNdf86vgRSQIaKsKxlG3bipWTYqEY4XSU7ySSxpgMcI+2NQ1xQKWTTo4YoQOt+KgbCf1ChSbq70SKAymHgacnA6z6ctYbi/957UR1z5yUhXGiaEimi7oJRypC40aQzwQlig81wUQw/VdE+lhgonRveV2CPXvyPGmUS/ZJqXJTKVYvsjpyUIB9OAQbTqEKV1CDOhB4hGd4hTfjyXgx3o2P6eiCkWX24A+Mzx+h9JWG</latexit>

pj = 2��1 = 1/N
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Quindi l’entropia massima di una sorgente che trasmette N simboli è

Se ci sono 2 soli simboli, 0 e 1, l’entropia massima vale esattamente 1 e questo 
definisce il bit. 

Ad esempio se ci sono 8 simboli l’entropia massima vale 3 bit e se ci sono 2n

simboli l’entropia massima vale n bit.

Problema per casa: si calcoli quanto vale l’entropia di una sorgente che emette 8 
simboli con probabilità

(k = 1 .... 8) 

<latexit sha1_base64="BtP0BptCSIYzyCH5vxYxSTjFb7s=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU9ktRb0IRS89SQVrC92lZNNsG5pNliQrlKV/w4sHRbz6Z7z5b0zbPWjrg4HHezPMzAsTzrRx3W+nsLa+sblV3C7t7O7tH5QPjx61TBWhbSK5VN0Qa8qZoG3DDKfdRFEch5x2wvHtzO88UaWZFA9mktAgxkPBIkawsZLfRNfI53LYr6G7frniVt050CrxclKBHK1++csfSJLGVBjCsdY9z01MkGFlGOF0WvJTTRNMxnhIe5YKHFMdZPObp+jMKgMUSWVLGDRXf09kONZ6Eoe2M8ZmpJe9mfif10tNdBVkTCSpoYIsFkUpR0aiWQBowBQlhk8swUQxeysiI6wwMTamkg3BW355lTzWqt5FtX5frzRu8jiKcAKncA4eXEIDmtCCNhBI4Ble4c1JnRfn3flYtBacfOYY/sD5/AH8VJBd</latexit>

H = log2 N

<latexit sha1_base64="QQHU+HUErG1TK5xfC6/A33ZyJYI=">AAACAHicbVDLSgMxFM34rPU16sKFm2ARXJUZKeqy6MZlBfuAzjBk0kwbmklCkhHKMBt/xY0LRdz6Ge78G9N2Ftp6IHA4515uzoklo9p43rezsrq2vrFZ2apu7+zu7bsHhx0tMoVJGwsmVC9GmjDKSdtQw0hPKoLSmJFuPL6d+t1HojQV/MFMJAlTNOQ0oRgZK0XusYzGMJBKSCNgkCiEc7/Ix0Xk1ry6NwNcJn5JaqBEK3K/goHAWUq4wQxp3fc9acIcKUMxI0U1yDSRCI/RkPQt5SglOsxnAQp4ZpUBTISyjxs4U39v5CjVepLGdjJFZqQXvan4n9fPTHId5pTLzBCO54eSjEEbdtoGHFBFsGETSxBW1P4V4hGyLRjbWdWW4C9GXiadi7p/WW/cN2rNm7KOCjgBp+Ac+OAKNMEdaIE2wKAAz+AVvDlPzovz7nzMR1eccucI/IHz+QPbU5aY</latexit>

pk / 1

k
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Compressione dell’informazione

Consideriamo la seguente frase in lingua italiana: 

la compressione dei dati permette la riduzione del numero di bit necessari alla
rappresentazione in forma digitale di una informazione

Nella frase vengono utilizzate le lettere dell’alfabeto italiano (21) più lo spazio e quindi in 
totale 22 simboli. Poiché 24 < 22 < 25 dobbiamo usare 5 bit per rappresentare 
individualmente ciascun carattere. 

In totale nella frase ci sono 134 caratteri e dunque dobbiamo utilizzare 670 bit. 

D’altra parte l’entropia associata a questa frase è 3.87592 bit e quindi dovrebbe essere 
possibile utilizzare un minimo di 520 bit per trasferire la stessa informazione. 

Il metodo proposto da Huffman dà una risposta a questo problema. 
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PROcEEDINGS OF THE J.R.E.

A Method for the Construction of

Minimum-Redundancy Codes*
DAVID A. HUFFMANt, ASSOCIATE, IRE

Summary-An optimum method of coding an ensemble of mes-
sages consisting of a finite number of members is developed. A
minimum-redundancy code is one constructed in such a way that the
average number of coding digits per message is minimized.

INTRODUCTION
Q NE IMPORTANT METHOD of transmitting

messages is to transmit in their place sequences
of symbols. If there are more messages which

might be sent than there are kinds of symbols available,
then some of the messages must use more than one sym-
bol. If it is assumed that each symbol requires the same
time for transmission, then the time for transmission
(length) of a message is directly proportional to the
number of symbols associated with it. In this paper, the
symbol or sequence of symbols associated with a given
message will be called the "message code." The entire
number of messages which might be transmitted will be
called the "message ensemble." The mutual agreement
between the transmitter and the receiver about the
meaning of the code for each message of the ensemble
will be called the "ensemble code."

Probably the most familiar ensemble code was stated
in the phrase "one if by land and two if by sea." In this
case, the message ensemble consisted of the two indi-
vidual messages "by land" and "by sea", and the message
codes were "one" and "two."

In order to formalize the requirements of an ensemble
code, the coding symbols will be represented by num-
bers. Thus, if there are D different types of symbols to
be used in coding, they will be represented by the digits
0, 1, 2, . . , (D- 1). For example, a ternary code will be
constructed using the three digits 0, 1, and 2 as coding
symbols.
The number of messages in the ensemble will be called

N. Let P(i) be the probability of the ith message. Then
N

EP(i) = 1.(l

The length of a message, L(i), is the number of coding
digits assigned to it. Therefore, the average message
length is

N

Lv= P(i)L(i). (2)

The term 'redundancy" has been defined by Shannon'
as a property of codes. A "minimum-redundancy code"

* Decimal classification: R531.1. Original manuscript received by
the Institute, December 6, 1951.

t Massachusetts Institute of Technology, Cambridge, Mass.
l C. E. Shannon, "A mathematical theory of communication,"

Bell Sys. Tech. Jour., vol. 27, pp. 398-403; July, 1948.

will be defined here as an ensemble code which, for a
message ensemble consisting of a finite number of mem-
bers, N, and for a given number of coding digits, D,
yields the lowest possible average message length. In
order to avoid the use of the lengthy term "minimum-
redundancy," this term will be replaced here by "opti-
mum." It will be understood then that, in this paper,
"optimum code" means "minimum-redundancy code."
The following basic restrictions will be imposed on an

ensemble code:
(a) No two messages will consist of identical arrange-

ments of coding digits.
(b) The message codes will be constructed in such a

way that no additional indication is necessary to
specify where a message code begins and ends
once the starting point of a sequence of messages
is known.

Restriction (b) necessitates that no message be coded
in such a way that its code appears, digit for digit, as the
first part of any message code of greater length. Thus,
01, 102, 111, and 202 are valid message codes for an en-
semble of four members. For instance, a sequence of
these messages 1111022020101111102 can be broken up
into the individual messages 111-102-202-01-01-111-102.
All the receiver need know is the ensemble code. How-
ever, if the ensemble has individual message codes in-
cluding 11, 111, 102, and 02, then when a message se-
quence starts with the digits 11, it is not immediately
certain whether the message 11 has been received or
whether it is only the first two digits of the message 111.
Moreover, even if the sequence turns out to be 11102,
it is still not certain whether 111-02 or 11-102 was trans-
mitted. In this example, change of one of the two mes-
sage codes 111 or 11 is indicated.

C. E. Shannon' and R. M. Fano2 have developed en-
semble coding procedures for the purpose of proving
that the average number of binary digits required per
message approaches from above the average amount of
information per message. Their coding procedures are
not optimum, but approach the optimum behavior when
N approaches infinity. Some work has been done by
Krnft3 townrcl dteriving a coding method which gives an
average code length as close as possible to the ideal when
the ensemble contains a finite number of members.
However, up to the present time, no definite procedure
has been suggested for the construction of such a code

2 R. M. Fano, "The Transmission of Information," Technical
Report No. 65, Research Laboratory of Electronics, M.I.T., Cam-
bridge, Mass.; 1949.

3 L. G. Kraft, "A Device for Quantizing, Grouping, and Coding
Amplitude-modulated Pulses," Electrical Engineering Thesis, M.I.T.,
Cambridge, Mass.; 1949.
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Minimum-Redundancy Codes*
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Summary-An optimum method of coding an ensemble of mes-
sages consisting of a finite number of members is developed. A
minimum-redundancy code is one constructed in such a way that the
average number of coding digits per message is minimized.

INTRODUCTION
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N

EP(i) = 1.(l
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length is

N

Lv= P(i)L(i). (2)

The term 'redundancy" has been defined by Shannon'
as a property of codes. A "minimum-redundancy code"

* Decimal classification: R531.1. Original manuscript received by
the Institute, December 6, 1951.

t Massachusetts Institute of Technology, Cambridge, Mass.
l C. E. Shannon, "A mathematical theory of communication,"

Bell Sys. Tech. Jour., vol. 27, pp. 398-403; July, 1948.
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quence starts with the digits 11, it is not immediately
certain whether the message 11 has been received or
whether it is only the first two digits of the message 111.
Moreover, even if the sequence turns out to be 11102,
it is still not certain whether 111-02 or 11-102 was trans-
mitted. In this example, change of one of the two mes-
sage codes 111 or 11 is indicated.

C. E. Shannon' and R. M. Fano2 have developed en-
semble coding procedures for the purpose of proving
that the average number of binary digits required per
message approaches from above the average amount of
information per message. Their coding procedures are
not optimum, but approach the optimum behavior when
N approaches infinity. Some work has been done by
Krnft3 townrcl dteriving a coding method which gives an
average code length as close as possible to the ideal when
the ensemble contains a finite number of members.
However, up to the present time, no definite procedure
has been suggested for the construction of such a code
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Semplice esempio (da Numerical Recipes, si veda anche http://numerical.recipes)

In questo caso ci sono solo 5 simboli, che compaiono con diverse frequenze nel messaggio 
da trasferire, la tabella e l’albero binario illustrano il metodo di costruzione del codice.
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22.5 Huffman Coding and Compression of Data 1177

Node Stage: 1 2 3 4 5

1 A: 0.12 0.12

2 E: 0.42 0.42 0.42 0.42

3 I: 0.09

4 O: 0.30 0.30 0.30

5 U: 0.07

6 UI: 0.16

7 AUI: 0.28

8 AUIO: 0.58

9 EAUIO: 1.00

E

EAUIO

A

U

AUI

AUIO

UI

I

O

1.00

0.58

0.28 0.30

0.090.07 35

0.1660.12

0.422

9

8

7 4

1

10
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10

10

Figure 22.5.1. Huffman code for the fictitious language Vowellish, in tree form. A letter (A, E, I, O, or
U) is encoded or decoded by traversing the tree from the top down; the code is the sequence of 0’s and 1’s
on the branches. The value to the right of each node is its probability; to the left, its node number in the
table.

Now, to see the code, you redraw the data in the table as a tree (Figure 22.5.1).
As shown, each node of the tree corresponds to a node (row) in the table, indicated
by the integer to its left and probability value to its right. Terminal nodes, so called,
are shown as circles; these are single alphabetic characters. The branches of the tree
are labeled 0 and 1. The code for a character is the sequence of zeros and ones that
lead to it, from the top down. For example, E is simply 0, while U is 1010.

Any string of zeros and ones can now be decoded into an alphabetic sequence.
Consider, for example, the string 1011111010. Starting at the top of the tree we
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Figure 22.5.1. Huffman code for the fictitious language Vowellish, in tree form. A letter (A, E, I, O, or
U) is encoded or decoded by traversing the tree from the top down; the code is the sequence of 0’s and 1’s
on the branches. The value to the right of each node is its probability; to the left, its node number in the
table.

Now, to see the code, you redraw the data in the table as a tree (Figure 22.5.1).
As shown, each node of the tree corresponds to a node (row) in the table, indicated
by the integer to its left and probability value to its right. Terminal nodes, so called,
are shown as circles; these are single alphabetic characters. The branches of the tree
are labeled 0 and 1. The code for a character is the sequence of zeros and ones that
lead to it, from the top down. For example, E is simply 0, while U is 1010.

Any string of zeros and ones can now be decoded into an alphabetic sequence.
Consider, for example, the string 1011111010. Starting at the top of the tree we

A 100
E 0
I 1011
O 11
U 1010

CODICE
RISULTANTE

http://numerical.recipes/
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“la compressione dei dati permette la riduzione del 
numero di bit necessari alla rappresentazione in 
forma digitale di una informazione” ‘ ‘ 19

e 16
i 15
a 12
n 10
r 9
o 8
d 7
l 6
t 6
m 5
s 5
p 4
u 3
z 3
c 2
f 2
b 1
g 1
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augbfdieopczrsm ntl

augbfdie
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a ugbfd
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opczrsm ntl

opczrsm

opcz

o pcz

p cz
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ntl

n tl
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a: 000
b: 0010101
c: 100110
d: 0011
e: 011
f: 001011
g: 0010100
i: 010
l: 11111
m: 10111
n: 1110
o: 1000
p: 10010
r: 1010
s: 10110
t: 11110
u: 00100
z: 100111
‘ ‘: 110
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“la compressione dei dati permette la riduzione del 
numero di bit necessari alla rappresentazione in 
forma digitale di una informazione”

11111 000 110 100110 1000 10111 10010 1010 011 
10110 10110 010 1000 1110 011 110 0011 011 010 
110 0011 000 11110 010 110 10010 011 1010 10111 
011 11110 11110 011 110 11111 000 110 1010 010 
0011 00100 100111 010 1000 1110 011 110 0011 
011 11111 110 1110 00100 10111 011 1010 1000 
110 0011 010 110 0010101 010 11110 110 1110 011 
100110 011 10110 10110 000 1010 010 110 000 
11111 11111 000 110 1010 000 10010 10010 1010 
011 10110 011 1110 11110 000 100111 010 1000 
1110 011 110 010 1110 110 001011 1000 1010 
10111 000 110 0011 010 0010100 010 11110 000 
11111 011 110 0011 010 110 00100 1110 000 110 
010 1110 001011 1000 1010 10111 000 100111 010 
1000 1110 011 

a: 000
b: 0010101
c: 100110
d: 0011
e: 011
f: 001011
g: 0010100
i: 010
l: 11111
m: 10111
n: 1110
o: 1000
p: 10010
r: 1010
s: 10110
t: 11110
u: 00100
z: 100111
‘ ‘: 110 523 bit, 3.902985 bit/simbolo
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111110001101001101000101111001010100111011010110010100011100
111100011011010110001100011110010110100100111010101110111111
011110011110111110001101010010001100100100111010100011100111
100011011111111101110001001011101110101000110001101011000101
010101111011011100111001100111011010110000101001011000011111
111110001101010000100101001010100111011001111101111000010011
101010001110011110010111011000101110001010101110001100011010
001010001011110000111110111100011010110001001110000110010111
0001011100010101011100010011101010001110011
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Per la decodifica, si percorrono i rami 
dell’albero dalla radice fino ai nodi 
finali. 

Quando viene raggiunto un nodo 
finale si segna il valore e si riparte.


