In this test there are 2 exercises, the first is worth a maximum of 4 points, the second a maximum of 10 points.

1. Consider a photon beam with a Gaussian intensity profile, so that the delivered dose is given by the following equation

$$
D(r)=D_{B} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)
$$

where r is the distance from the beam axis and σ is a parameter that defines the beam width. The beam impinges on a disk of tumor cells, it is aimed at the center of the disk and its axis is perpendicular to the disk.
a) Describe the isodose curves on the disk, at $D=0.5 D_{B}$ and $D=0.1 D_{B}$. (3 points)
b) How do the isodose curves change if the beam is not perpendicular to the disk? (1 point)
2. Consider a tumor which has a total of N cells:
a) Recall the standard formula for the TCP. (1 point)
b) Recall the formula for the BED with total dose $n D$, delivered in n fractions.
(1 point)
c) Modify the standard formula for the TCP to take into account a total dose $n D$ which is split into n fractions. (2 points)
d) Consider the tables of alpha and beta coefficients reported in this scientific paper (link:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956964/pdf/13014 2018 Article 10 40.pdf), use the tables to find the mean values of alpha and beta for liver tumors (Tai 2008), the α / β ratio, and determine whether this is a late responding or early responding tissue. (2 points)
e) Use the standard formula for the TCP to find the dose that gives a 90% TCP, assuming that the tumor has $N=10^{9}$ cells. (4 points)

Solutions

1. a) All isodose curves here are circles centered in the center of the tumor disk. The isodose curve $D=0.5 D_{B}$ is obtained from the solution of

$$
D(r)=D_{B} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)=0.5 D_{B}
$$

i.e.,

$$
\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)=0.5
$$

or, equivalently,

$$
\frac{r^{2}}{2 \sigma^{2}}=-\ln 0.5 \approx 0.6931
$$

and the corresponding isodose curve is a circle with radius

$$
r \approx \sigma \sqrt{2 \times 0.6931} \approx 1.18 \sigma
$$

Likewise, the isodose curve for $D=0.1 D_{B}$ is a circle with radius

$$
r \approx 2.15 \sigma
$$

b) The isodose curves change into ellipses, where the minor axis is the same as the radius determined in the previous answer.
2. a) The standard formula for the TCP is

$$
\mathrm{TCP}=\exp [-N S(D)]=\exp \left[-N e^{-\alpha D-\beta D^{2}}\right]
$$

b) The formula for the BED is

$$
B E D=n D\left(1+\frac{D}{\alpha / \beta}\right)
$$

c) The TCP for a fractionated therapy is

$$
\mathrm{TCP}=\exp \left[-N e^{-\alpha \mathrm{BED}}\right]=\exp \left[-N e^{-\alpha n D\left(1+\frac{D}{\alpha / \beta}\right)}\right]
$$

d) The tables in the paper return the following mean values for liver tumors

$$
\alpha=3.7 \times 10^{-2} \mathrm{~Gy}^{-1} ; \quad \beta=2.8 \times 10^{-3} \mathrm{~Gy}^{-2}
$$

and $\alpha / \beta \approx 13.4 \mathrm{~Gy}$, so that this is an early-responding tissue.
e) The solution is found by solving this equation

$$
\mathrm{TCP}=\exp [-N S(D)]=\exp \left[-N e^{-\alpha D-\beta D^{2}}\right]=0.9
$$

i.e., taking logarithms

$$
-N e^{-\alpha D-\beta D^{2}}=\ln 0.9 \approx-0.1054
$$

Using the value $N=10^{9}$, we find

$$
e^{-\alpha D-\beta D^{2}} \approx 1.054 \times 10^{-10}
$$

and finally

$$
\alpha D+\beta D^{2} \approx 23.0
$$

We find the dose by solving the quadratic equation

$$
\beta D^{2}+\alpha D-23.0=0
$$

and the (positive) solution is $D \approx 84.3$.

