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Lemma di Danielson-Lanczos 

Se N è una potenza di 2 si può applicare ripetutamente il lemma:  
 
dopo log2N applicazioni del lemma si devono calcolare N 
sottotrasformate, ma ciascuna di queste sottotrasformate si 
riferisce ad un sottoinsieme che contiene un solo campione, e 
quindi la trasformata coincide con il campione stesso.  



Per calcolare la trasformata dobbiamo allora fare le seguenti 
operazioni: 

1. catalogare i campioni nell'ordine giusto, in modo che i 
campioni riordinati ci diano direttamente le trasformate dei 
sottoinsiemi di lunghezza 1. Questo passo iniziale lo si può fare 
una volta per tutte con O(N) operazioni. 

2. partire dal livello più basso e costruire le sottotrasformate di 
ordine più elevato.  

Ciascuna ricostruzione richiede log2N passi, e poiché la 
trasformata ha N componenti, ci vogliono in tutto O(Nlog2N) 
operazioni. 

 



Esempio: DFT di un insieme di 8 = 23 campioni  
 
primo livello:  
 

Fk
(e) = e

−
2π ikn
4 f2n

n=0

3

∑

Fk
(o) = e

−
2π imn
4 f2n+1

n=0

3

∑

W = e
−
2π i
8

campioni in posizione pari 

campioni in posizione dispari 

Fk = Fk
(e) +W kFk

(o)



secondo livello 
Fk
(e) = Fk

(ee) +W kFk
(eo)

Fk
(o) = Fk

(oe) +W kFk
(oo) W = e

−
2π i
4

Fk
(ee) = f0e

−
2π i ·0
2

·k
+ f4e

−
2π i ·2
2

·k

Fk
(eo) = f2e

−
2π i ·1
2

·k
+ f6e

−
2π i ·3
2

·k

Fk
(oe) = f1e

−
2π i ·0
2

·k
+ f5e

−
2π i ·2
2

·k

Fk
(oo) = f3e

−
2π i ·1
2

·k
+ f7e

−
2π i ·3
2

·k

campioni in posizione pari tra i 
campioni in posizione pari 

campioni in posizione dispari 
tra i campioni in posizione pari 

campioni in posizione pari tra i 
campioni in posizione dispari 

campioni in posizione dispari tra i 
campioni in posizione dispari 



terzo livello 
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assegnazione dei campioni alle trasformate del livello più basso 

000→ 0;
001→ 4;
010→ 2;
011→ 6;
100→ 1;
101→ 5;
110→ 3;
111→ 7;
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Esercizi con LabView:  
 
 
•  Realizzazione di un programma che calcola la DFT a 
partire dalle operazioni elementari.  

•  Utilizzo del programma per mostrare che il tempo di 
calcolo cresce proporzionalmente a N2, e confronto 
con il VI di LabView che calcola la FFT. 





Time plot of Wolf Sunspot Number, 1700-2007. This time series is known 
to have an irregular cycle with period near 11 years. The long-term mean 
is 49.9. Data source: http://sidc.oma.be/sunspot-data/  
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Densità	  spe*rale	  nel	  caso	  della	  DFT	  

nel caso continuo la densità spettrale 

rappresenta la potenza media del segnale ad una certa frequenza (angolare), o 
anche la fluttuazione quadratica media a questa stessa frequenza 
 
 
nel caso della DFT possiamo ragionare in modo analogo  
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Simmetrie	  di	  DFT	  e	  periodogramma	  nel	  caso	  di	  segnali	  reali	  

Sk = SN − k

inoltre (se N è pari): 
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Esempio:	  spe*ro	  di	  un	  segnale	  sinuisoidale	  
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Teorema	  di	  Wiener-‐Kintchine	  nel	  caso	  della	  DFT	  
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funzione	  di	  autocorrelazione	  nel	  caso	  di	  segnali	  campiona7	  	  

la	  DFT	  della	  funzione	  di	  
autocorrelazione	  è	  uguale	  
a	  N	  volte	  la	  densità	  
spe*rale	  	  
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Implementazione	  “ovvia”	  della	  IDFT:	  
	  	  

• 	  DFT	  
• 	  inversione	  della	  sequenza	  	  
• 	  divisione	  per	  N	  



operazione	  di	  scambio	  	  
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Implementazione	  efficiente	  della	  IDFT:	  
	  	  

• 	  scambio	  Re-‐Im	  	  
• 	  DFT	  
• 	  scambio	  Re-‐Im	  
• 	  divisione	  per	  N	  



... We tried to assemble the 10 algorithms with the greatest influence on the 
development and practice of science and engineering in the 20th century. 
Following is our list (here, the list is in chronological order; however, the 
articles appear in no particular order):  
 
•  Metropolis Algorithm for Monte Carlo  
•  Simplex Method for Linear Programming 
•  Krylov Subspace Iteration Methods 
•  The Decompositional Approach to Matrix Computations  
•  The Fortran Optimizing Compiler 
•  QR Algorithm for Computing Eigenvalues  
•  Quicksort Algorithm for Sorting 
•  Fast Fourier Transform 
•  Integer Relation Detection 
•  Fast Multipole Method  
 
(from Dongarra and Sullivan: “The Top-Ten Algorithms”, Comp. Sci. Eng. 
(2000) n. 1, p. 22) 
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If only the L values Ro through RL_1 are required, then it can be
seen by comparing (15) and (11) that the new algorithm will require
fewer multiplications than the FFT method if

L < 11.2 (1 + log2 N) (16a)

and will require fewer additions if

L < 5.6 (1 + log2 N). (16b)

Therefore, we conclude that the new algorithm will generally be more
efficient than the FFT method if

N < 128 (17a)

or

L < 10(1 + log2 N). (17b)

CONCLUSION

A new algorithm for computing the correlation of a block of sampled
data has been presented. It is a direct method which trades an in-
creased number of additions for a decreased number of multiplications.
For applications where the "cost" (e.g., the time) of a multiplication is
greater than that of an addition, the new algorithm is always more com-
putationally efficient than direct evaluation of the correlation, and it is
generally more efficient than FFT methods for processing 128 or fewer
data points, or for calculating only the first L "lags" for L < 10 log2 2N.
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In discrete Wiener filtering applications, the filter is represented by an
(M X M) matrix G. The estimate X of data vector X is given by GZ,
where Z = X + N and N is the noise vector. This implies that approxi-
2Amately 2M arithmetic operations are required to compute X. Use of

orthogonal transforms yields a G in which a substantial number of
elements are relatively small in magnitude, and hence can be set equal
to zero. Thus a significant reduction in computation load is realized at
the expense of a small increase in the mean-square estimation error.
The Walsh-Hadamard transform (WHT), discrete Fourier transform

(DFT), the Haar transform (HT), and the slant transform (ST), have
been considered for various applications [ 1 ], [ 2], [4] - [ 9 since these
are orthogonal transforms that can be computed using fast algorithms.
The performance of these transforms is generally compared with that
of the Karhunen-Loeve transform (KLT) which is known to be optimal
with respect to the following performance measures: variance distribu-
tion [1 ], estimation using the mean-square error criterion [ 2], [4], and
the rate-distortion function [5]. Although the KLT is optimal, there is
no general algorithm that enables its fast computation [ 1]
In this correspondence, a discrete cosine transform (DCT) is intro-

duced along with an algorithm that enables its fast computation. It is
shown that the performance of the DCT compares more closely to that
of the KLT relative to the performances of the DFT, WHT, and HT.

DISCRETE COSINE TRANSFORM

The DCT of a data sequence X(m), m = 0, 1, * *, (M - 1) is defmed
as

/2M-i
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Abstract-A discrete cosine transform (DCT) is defined and an algo-
rithm to compute it using the fast Fourier transform is developed. It is
shown that the discrete cosine transform can be used in the area of
digital processing for the purposes of pattern recognition and Wiener
filtering. Its performance is compared with that of a class of orthogonal
transforms and is found to compare closely to that of the Karhunen-
Lo'eve transform, which is known to be optimal. The performances of
the Karhunen-Lo'eve and discrete cosine transforms are also found to
compare closely with respect to the rate-distortion criterion.

Index Terms-Discrete cosine transform, discrete Fourier transform,
feature selection, Haar transform, Karhunen-Loeve transform, rate dis-
tortion, Walsh-Hadamard transform, Wiener vector and scalar filtering.

INTRODUCTION

In recent years there has been an increasing interest with respect to
using a class of orthogonal transforms in the general area of digital
signal processing. This correspondence addresses itself towards two
problems associated with image processing, namely, pattem recogni-
tion [1] and Wiener filtering [ 2].
In pattern recognition, orthogonal transforms enable a noninvertible

transformation from the pattern space to a reduced dimensionality
feature space. This allows a classification scheme to be implemented
with substantially less features, with only a small increase in classifica-
tion error.
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where Gx(k) is the kth DCT coefficient. It is worthwhile noting that
the set of basis vectors {1/12, cos ((2m + 1) kfl)I(2AM)} is actually a
class of discrete Chebyshev polynomials. This can be seen by recalling
that Chebyshev polynomials can be defined as [ 3]

1
To(Qp) =-

TkQp) = cos (k cos-1 p), k, p = 1, 2, ,M (2)

where Tk(Qp) is the kth Chebyshev polynomial.
Now, in (2), tp is chosen to be the pth zero of TM(t), which is given

by [31
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If only the L values Ro through RL_1 are required, then it can be
seen by comparing (15) and (11) that the new algorithm will require
fewer multiplications than the FFT method if

L < 11.2 (1 + log2 N) (16a)

and will require fewer additions if

L < 5.6 (1 + log2 N). (16b)

Therefore, we conclude that the new algorithm will generally be more
efficient than the FFT method if

N < 128 (17a)

or

L < 10(1 + log2 N). (17b)

CONCLUSION

A new algorithm for computing the correlation of a block of sampled
data has been presented. It is a direct method which trades an in-
creased number of additions for a decreased number of multiplications.
For applications where the "cost" (e.g., the time) of a multiplication is
greater than that of an addition, the new algorithm is always more com-
putationally efficient than direct evaluation of the correlation, and it is
generally more efficient than FFT methods for processing 128 or fewer
data points, or for calculating only the first L "lags" for L < 10 log2 2N.
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(M X M) matrix G. The estimate X of data vector X is given by GZ,
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are orthogonal transforms that can be computed using fast algorithms.
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of the Karhunen-Loeve transform (KLT) which is known to be optimal
with respect to the following performance measures: variance distribu-
tion [1 ], estimation using the mean-square error criterion [ 2], [4], and
the rate-distortion function [5]. Although the KLT is optimal, there is
no general algorithm that enables its fast computation [ 1]
In this correspondence, a discrete cosine transform (DCT) is intro-
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shown that the performance of the DCT compares more closely to that
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where Gx(k) is the kth DCT coefficient. It is worthwhile noting that
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If only the L values Ro through RL_1 are required, then it can be
seen by comparing (15) and (11) that the new algorithm will require
fewer multiplications than the FFT method if
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signal processing. This correspondence addresses itself towards two
problems associated with image processing, namely, pattem recogni-
tion [1] and Wiener filtering [ 2].
In pattern recognition, orthogonal transforms enable a noninvertible

transformation from the pattern space to a reduced dimensionality
feature space. This allows a classification scheme to be implemented
with substantially less features, with only a small increase in classifica-
tion error.
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where Gx(k) is the kth DCT coefficient. It is worthwhile noting that
the set of basis vectors {1/12, cos ((2m + 1) kfl)I(2AM)} is actually a
class of discrete Chebyshev polynomials. This can be seen by recalling
that Chebyshev polynomials can be defined as [ 3]

1
To(Qp) =-

TkQp) = cos (k cos-1 p), k, p = 1, 2, ,M (2)

where Tk(Qp) is the kth Chebyshev polynomial.
Now, in (2), tp is chosen to be the pth zero of TM(t), which is given

by [31

(3)

Substituting (3) in (2), one obtains the set of Chebyshev polynomials

A 1

To(P) = _

A (2p- l)kFI
Tk(p) = cos k,p= 1, 2,"* ,M. (4)

From (4) it follows that the Tk(p) can equivalently be defmed as

1

(2m + l)krI
Tk(m) = cos 2M k = 1, 2, * - *, (M- 1),

m=0,1,--1,M-l. (5)

Comparing (5) with (1) we conclude that the basis member cos ((2m +

90

k = 1, 2, - -

, (M- 1) (1)

tp = Cos
(2p Oll

= 13 21 ... M.
2M

I t,
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Inverse Discrete Cosine Transform 
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Compressione JPEG 
 
 
La compressione di immagini JPEG utilizza l’algoritmo DCT. I passi essenziali 
sono  
 
1. Suddivisione dell’immagine in blocchi di 8 x 8 pixel 
 
2. Trasformazione di ciascun blocco con una DCT di tipo II bidimensionale 
 
 
 
 
 
 
 
3. Ciascuna componente della DCT viene divisa per un coefficiente che 
corrisponde alla capacità dell’occhio di distinguere le variazioni di luminosità alle 
diverse frequenze spaziali: tipicamente il coefficiente è piccolo alle basse 
frequenze e grande alle alte frequenze (l’occhio non distingue bene le variazioni 
di intensità ad alta frequenza spaziale) 

 
Cℓm = I jk cos

j ,k=0

N−1

∑ π
8
2 j +1( )ℓ⎡

⎣⎢
⎤
⎦⎥
cos π

8
2k +1( )m⎡

⎣⎢
⎤
⎦⎥





4. Le componenti spaziali pesate, vengono arrotondate. Tipicamente questa 
operazione di quantizzazione annulla molti valori della DCT, e quindi il blocco 8 x 8 
viene in realtà codificato da un numero di valori molto inferiore a 64.  
 
5. I valori restanti vengono quindi compressi con un algoritmo standard come il 
runlength encoding oppure l’Huffman coding 
 
 
 
 
La decodifica dei dati viene realizzata rovesciando la sequenza di codifica:  
 
1. Decompressione dati 
2. Moltiplicazione dei valori per i coefficienti di quantizzazione  
3. Trasformata coseno inversa 
 
 


