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The falling raindrop, revisited
Alan D. Sokal®

Department of Physics, New York University, 4 Washington Place, New York, New York 10003
and Department of Mathematics, University College London, London WCIE 6BT, United Kingdom

(Received 1 August 2009; accepted 20 September 2009)

I reconsider the problem of a raindrop falling through mist, collecting mass, and generalize it to
allow an arbitrary power-law form for the accretion rate. I show that the coupled differential
equations can be solved by the simple trick of temporarily eliminating time in favor of the raindrop’s
mass as the independent variable. © 2010 American Association of Physics Teachers.

[DOLI: 10.1119/1.3246871]

A perennial homework exercise in differential-equation-
based courses in Newtonian mechanics is the problem of a
raindrop falling through mist and collecting mass."™ If the
rate of accretion is assumed to depend only on the raindrop’s
current mass (or radius) and not on its velocity, then the
solution is fairly straightforward. If, by contrast, the rate of
accretion is taken to depend on both the mass and the veloc-
ity, one is faced with a pair of coupled differential equations,
and the trick for disentangling them can be surprisingly dif-
ficult to find—not only for the student but also for the in-
structor who has forgotten the method after some years’ ab-
sence and must rediscover it (as I can testify from my recent
experience).’

Here I would like to show that a very general version of
the raindrop problem [see Egs. (5) and (6)] can be solved by
using a versatile technique that ought to have a place in all
students’ (and instructors’) mathematical arsenals: namely,
eliminating reference to the old independent variable (here
the time ¢) and temporarily taking one of the former depen-
dent variables as the new independent variable.

Students may remember this trick from the analysis of
one-dimensional motion with a force that depends on posi-
tion (x) and velocity (v) but not explicitly on time,

dv

E:F(x,v). (1)

By using the chain rule

dv dvdx dv

we can temporarily eliminate r and instead take x as the new
independent variable: this elimination yields the first-order
differential equation

mvj—z =F(x,v) (3)

for the unknown function v(x). In some cases Eq. (3) can be
solved explicitly.(’ Once the function v(x) is known, we can
reinstate time and solve (in principle) the first-order sepa-
rable differential equation
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to find the motion x(z).

Let us now consider the raindrop problem, which involves
a pair of coupled differential equations for two unknown
functions: the raindrop’s mass m(¢) and its velocity v(z). The
first equation is the Newtonian equation of motion for the
raindrop,

=mg, (5)

which is obtained by the standard procedure of looking at the
same collection of water particles (the “system”) at two
times, ¢ and 7+ At, and writing that the rate of change of the
system’s total momentum equals the total external force on
the system. The second equation states the hypothesized law
of mass accretion for the raindrop. I shall consider the gen-
eral form

dm =AmP, (6)

dt
where A >0 is a constant and « and B are (almost) arbitrary
exponents. This form includes the two most commonly stud-
ied cases, namely, the easy case («, 8) =(% ,0) [accretion pro-
portional to the surface area of a spherical raindrop, with
resulting acceleration g/4] and the difficult case (a,p)
=(§, 1) [accretion proportional to the volume swept out, with
resulting acceleration g/7] but is much more general.7 I will
show that all these cases can be solved by a unified tech-
nique.

First, a few preliminary remarks. Because Egs. (5) and (6)
are a pair of first-order differential equations for two un-
known functions, the general solution will contain two con-
stants of integration. Because this system is time-translation-
invariant, one of the constants of integration simply sets the
origin of time. The other constant of integration fixes the
relation between the initial mass and the initial velocity: that
is, it fixes the mass at the moment when the velocity has a
specified value (or vice versa). The simplest solution arises
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by demanding that m=0 when v=0, but we will make some
partial progress toward finding the general solution as well.

As mentioned, all the cases with =0 are easy: the accre-
tion equation (6) can be solved immediately for m(r) [it is
separable], and the Newtonian equation (5) can then be
solved for v(z) [it is linear first-order with nonconstant coef-
ficients]. The trouble arises when 8% 0 because now Egs. (5)
and (6) are coupled.

To decouple them, we employ the technique mentioned
earlier. We use the chain rule in the form

_:__’ 7
dt  dm dt M

forget temporarily about the time ¢, and instead consider the
velocity v to be a function of the mass m (that is, we tem-
porarily use m as the independent variable). Inserting Eq. (7)

into Eq. (5) and using Eq. (6) to eliminate dm/dt (which now
multiplies both terms on the left-hand side), we obtain

dv v'*P
vP—+
dm m

= fm (8)

If we now make the change of variables w=v'*, we find®

dw 1+ 1+PBg _,
—+ w= m
dm m A

; )

which is a first-order linear differential equation with non-
constant coefficients for the function w(m). The integrating
factor is m'*A. After standard manipulations we obtain the
general solution’

) (1+P)g -y
L2+ B-a

c |va+s
NPV (10)
m1+B
It is convenient to express the constant of integration C in
terms of the raindrop’s mass m, at the moment its velocity is
zero, which leads to'’

v= Km(l—a)/(1+ﬂ)[l _ (mo/m)2+ﬁ—a]1/(l+ﬂ)’ (1 1)

where K=[(1+8)g/(2+B-a)\]"*P.
The simplest case is my=0. Then solving Eq. (11) for m,
we have''

m=K’U(1+'B)/(1_a), (12)

where K’ is a constant that we need not write out explicitly.
We now insert Eq. (12) into the Newtonian equation (5).
Because each of the terms in this equation is linear in m, the
constant K’ drops out, and we obtain

d_v_ -«

R R (13)

We have thus shown that the raindrop falls with constant
acceleration [(1-a)/(2+B—a)]g. [When (a,,B)z(%,O) or
(%,1), Eq. (13) gives the acceleration g/4 or g/7, respec-
tively.] To obtain m(z), it suffices to observe that v is propor-
tional to ¢ (if we take the origin of time to be the instant

when v=0), so that from Eq. (12) we obtain m(r)
=K”l‘(1+’8)/(l_a).
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If my# 0, the best approach seems to be to insert Eq. (11)
into Eq. (6) and integrate,

f m U BV BT — () 2B 1BO+A)] gy

=\K" f dr. (14)
If B=0, the integral is easy, and we obtain
m(t) =me[ 1+ (1 — @)he/m{~*]V0-) (15)
and
l-a my"“g
t) = t+
o=
X{1 =1+ (1 — a)\g/m} V0=l (16)

If B+ 0, the substitution z=(my/m)**#~* allows the left-hand
side of Eq. (14) to be expressed in terms of the incomplete
beta function

Zz
B(z;a,b):f N1 =) Vdt, (17)
0
namely,
NKPt=— mg)l_“)/(l+B)B((mo/m)2+ﬁ_“;a,b) (18)

2+B-«

with a=—(1-a)/[(1+B)(2+B—-a)] and b=1/(1+ ). (Equa-
tion (18) can alternatively be written in terms of a hypergeo-
metric function ,F if one prefers.) It seems difficult to make
further analytic progress. We can in any case see from Eq.
(14) that the long-time behavior is

m(t) — K//t(l+,8)/(l—a)<1 + E akt—k(l+3)(2+b’—a)/(l—a)> , (19)
k=1

and hence

l-«a

W= s .

gt( 1+ E bkt—k(l+ﬁ)(2+ﬂ—a)/(l—a)) , (20)
k=1

from which the coefficients {a;} and {b;} can be determined
by substitution into Egs. (5) and (6).
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3 As a recent article put it, “undergraduate mechanics students are some-
times [my emphasis] able to solve the nonlinear dynamical equations of
motion to find the deceptively simple acceleration g/7” [B. F. Edwards, J.
W. Wilder, and E. E. Scime, “Dynamics of falling raindrops,” Eur. J.
Phys. 22, 113-118 (2001)]. A physics student, answering another stu-
dent’s query on an online forum, was blunter: “This is a very old prob-
lem. Unfortunately, I remember the answer, g/7, but I don’t remember
how you get it. It has an unusual solution. There [is] a special substitution
that you need to make for the mass; otherwise the problem is insoluble”
(www.physicsforums.com/showthread.php?t=198859).

®For instance, if F(x,v)= g(x)h(v), then Eq. (3) is separable [in particular,
when F(x,v)=g(x), the solution to Eq. (3) gives the usual conservation-
of-energy equation]. If F(x,v)=g(x)v+h(x)v?, then Eq. (3) is a first-order
linear equation with nonconstant coefficients for the function v(x); and
more generally, if F(x,v)=g(x)v>"*+h(x)v?, then Eq. (3) is a first-order
linear equation for the function v(x)® Likewise, if F(x,v)=v/[g(v)
+h(v)x], then Eq. (3) can be turned upside-down to obtain a first-order

linear equation with nonconstant coefficients for the inverse function
x(v); and more generally, if F(x,v)=v/[g(v)x'#+h(v)x], then Eq. (3)
gives a first-order linear equation for the function x(v)~#.

" At least two other cases of Eq. (6) correspond to physically realizable
(albeit highly artificial) situations: namely, (a,8)=(0,1) and (1,1) arise
when the raindrop is constrained (for example, by a massless container)
to be a cylinder of fixed base and growing height (respectively, fixed
height and growing base). Note that the cylinder’s base can be of arbi-
trary shape and need not be circular.

8The case B=-1 needs to be treated separately and yields
v=Cm™" exp[{g/[(1-a)\]}m'~*]. Of course, all cases 8<0 are unphysi-
cal.

"The case =2+ needs to be treated separately and yields
v={[(1+B)g]/\H[log(m/mg)]/m"*EH+B) Of course, all cases a> 1
are probably unphysical.

"This step assumes S>-—1.

"' This step assumes B>—1 and a<1.

Comment on “Generalized composition law from 2X2 matrices,”
by R. Giust, J.-M. Vigoureux, and J. Lages [Am. J. Phys. 77 (11),

1068-1073 (2009)]

Massimiliano Sassoli de Bianchi®
6914 Carona, Switzerland

(Received 9 November 2009; accepted 16 December 2009)

[DOLI: 10.1119/1.3290871]

In a recent paper, Giust et al.' showed how the elements of
the 2 X 2 scattering matrix of a one-dimensional system com-
posed of two subsystems can be expressed in terms of the
scattering amplitudes of the individual subsystems to gener-
alize FEinstein’s composition law of velocities.

We note that this factorization property of the one-
dimensional S-matrix (Eq. (21) in Ref. 1) was first derived
by Aktosun? for the one-dimensional Schrodinger equation
and for the wave equation in nonhomogeneous, nondisper-
sive mediums when the wave speed has the same asymptotic
behavior at both ends of the real line. Aktosun presented this
result in a very compact form using A-matrices that can be
associated with the S-matrices. We write the on-shell
S-matrix as

s_(”) !
“\L 1) )

with T as the transmission amplitude and L and R as the
reflection amplitudes from the left and right, respectively. We
can associate with S the A-matrix,

2)

SIS N—

If the system is composed of two subsystems (or fragments;
see Ref. 2 for details), characterized by the S-matrices S; and
S, and the corresponding A-matrices A, and A,, the follow-
ing factorization property can be proven:
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A=AA,. (3)

In other terms, the composition of subsystems turns into
simple multiplication of the A-matrices associated with
them. For a system made of N subsystems, this property can
be iterated to yield the more general result,

A=A, - Ay (4)

Following the original proof given by Aktosun,” the fac-
torization formula was derived by different methods in dif-
ferent contexts. Together with Klaus and van der Mee, Ak-
tosun generalized the proof to allow for the inclusion of
Dirac delta functions in the potential.3 Sassoli de Bianchi and
Di Ventra derived an expression for a position-dependent
mass using an adaptation of the variable phase method,
which also allowed them to derive first-order differential
equations for the transmission and reflection amplitudes,
which are particularly convenient for numerical
computation.4 An alternative proof using integral equations
instead of the Schrodinger equation was proposed in Ref. 5.
Also, Sprung, Wu and Martorell® derived a factorization for-
mula in the context of finite periodic potentials, emphasizing
the crucial role played by the A-matrix (called M in their
work) associated with the single periodically repeated sub-
system.

We also comment on the utility of the factorization for-
mula in relation to phase variables, as emphasized in Ref. 1
by several examples. Another important example is the pos-
sibility of using the factorization formula in combination
with Levinson’s theorem to characterize the number of
bound states of a system. Levinson’s theorem is a classic
result, which establishes a simple relation between the num-

© 2010 American Association of Physics Teachers 645



ber of bound states and the behavior of its scattering phase-
shifts at zero energy. In one dimension the theorem can be
expressed using the phase a=arg T of the transmission
amplitude.7 Because of the factorization property, the trans-
mission phase can be expressed as the sum of the transmis-
sion phases of the individual subsystems, plus an overall
interference term,

a=a;+ taytA. (5)

By studying the zero-energy limit of the interference contri-
bution A, it becomes possible, using Levinson’s theorem, to
characterize the number of bound states of the composite
system as a function of the number of bound states of its
subsystems. Interestingly, the problem admits a general and
explicit solution for finite periodic structures, allowing for a
complete characterization of the number of states bound by a
superlattice as a function of the spacing between the indi-
vidual cells.*’

“Electronic mail: massimiliano.sassoli@a3.epfl.ch
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Comment on “How fast could Usain Bolt have run? A dynamical study”
by H. K. Eriksen, J. R. Kristiansen, @. Langangen, and |. K. Wehus

[Am. J. Phys. 77(3), 224-228 (2009)]

Eric Gentile?

Readiness Assessment, Naval Surface Warfare Center, Corona Division, P.O. Box 5000, Corona,

California 92878-5000

(Received 31 August 2009; accepted 5 October 2009)

[DOL: 10.1119/1.3254365]

In this paper1 the authors asserted that if Usain Bolt had
not celebrated during the last 2 s of his historic Beijing 2008
100 m run, he could have run a 9.61 £0.04 s time if he kept
up with the runner up’s acceleration or a time of
9.55%0.04 s if he had an acceleration greater than that of
the runner up by 0.5 m/s> These assertions are based on
measurements extracted from video and photo analysis to
obtain split times of the race, which in turn are utilized to
extrapolate, by integrating kinematic equations, the last 2 s
of the race for the two scenarios.

First and foremost the authors should be commended on
obtaining a meaningful statistical analysis and incorporating
an amusing application of physics to the world of sports.
Their main concern was not to provide an absolute prediction
to be utilized by 100 m coaches and enthusiasts but more of
a pedagogical device to motivate students even further in
physics. They had at their disposal very crude web footage,
and thus one of their main concerns was that their error es-
timates were correct.

It should be noted though that if the authors had access to
very precise 10 m split times (times recorded at each 10 m
interval), then the calculation of the maximum speed that
Usain Bolt would have run is simply accomplished by ob-
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serving the distance that he obtained his maximum velocity
(usually for a male world class sprinter around the 60 m or
70 m mark) and assume that this speed is held constant
throughout the remainder of the race. This will be the fastest
time possible, but it is highly improbable.

Obviously, sprinters do not accelerate after they achieved
their maximum velocity and toward the end of the race they
reach the part of the race called the deceleration phase.2 Itis
hard to believe but sprinters actually slow down at the end of
the 100 m race even though their effort is 100%.? Often one
hears that runners “kick it into a higher gear” if they happen
to pass up a sprinter in the last 20 or 10 m of the 100 m race.
It is basically an optical illusion and what really occurs is
that the faster runner’s rate of deceleration is simply less than
the competitor.

“Electronic mail: eric.gentile @navy.mil

'H. K. Eriksen, J. R. Kristiansen, @. Langangen, and I. K. Wehus, Am. J.
Phys. 77(3), 224-228 (2009).

%For a concise and very informative explanation visit http://www.iaaf.org/
community/athletics/trackfield/newsid=4666.html

3T, Battinelli, Physique, Fitness and Performance, 2nd edition (CRC,
Boca Raton, FL, 2007).
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Comment on “Resistance of a square lamina by the method of images,”
by Lawrence R. Mead [Am. J. Phys. 77 (3), 259-261 (2009)]

B. E. Pieters?

1EF5-Photovoltaik, Forschungszentrum Jiilich, 52425 Jiilich, Germany
(Received 9 September 2009; accepted 19 November 2009)

[DOL: 10.1119/1.3273085]

Lawrence R. Mead computed the resistance of square
lamina with “point contacts” at two opposite corners.' To this
end, he used an infinite number of image charges. The use of
image charges to meet boundary conditions is a common
method in electrostatics. However, the problem to be solved
is not an electrostatics problem as it involves resistance and
thus current (i.e., nonstatic charge).

The potential around a current source or sink in a lamina is
not the same as that around an electrostatic charge. To derive
the potential around a current source, we consider a single
current source at the origin of the coordinate system in a
lamina extending to infinity. The current will flow in all di-
rections, leading to circular equipotential lines around the
source. The sum of all current sources minus the sum of all
current sinks within a certain region gives the net flow out of
the region. Because we only have one single source, the cur-
rent through an arbitrary contour enclosing the source should
always be equal to the current coming out of the source. The
current-density and the electric field must then be inversely
dependent on the distance from the source, we write for the
electric field

qR,r
2l (1)

E(r)=RJ(r) =

where r is a vector pointing from the source, J is the current
density, ¢ is the strength of the source (i.e., the current flow-

ing out of the source), and R, is the sheet resistance. Inte-
grating this electric field we obtain the potential

2m H

" gR R ‘
Vir)=- f AR ‘idr':hln( r‘>, (2)
r, 2

where r. is the radius of the source (contact). A similar ap-
proach to the one presented by Mead can now be used to
evaluate the resistance but with Eq. (2) used instead of the
electrostatic potential of a point charge.

Note that the divergence of the electric field in Eq. (1) is O
everywhere except at the origin. This reflects the fact that
there are no sources or sinks except for the source at the
origin. The divergence of the electric field of an electrostatic
charge, however, is nonzero everywhere. As a result the ex-
pression for the current found by Mead [Eq. (12) in his pa-
per] depends on the radius of the arc enclosing the contact.
However, the current should not depend on the radius in the
absence of additional sources or sinks enclosed by the arc.

b pieters @fz-juelich.de
'L. R. Mead, “Resistance of a square lamina by the method of images,”
Am. J. Phys. 77(3), 259-261 (2009).

Reply to “Comment on ‘Resistance of a square lamina by the method
of images,’ ” by B. E. Pieters [Am. J. Phys. 78 (6), 647-647 (2010)]

Lawrence R. Mead?®

Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg,

Mississippi 39406-5046

(Received 18 November 2009; accepted 19 November 2009)

[DOI: 10.1119/1.3273086]

I would like to thank B. E. Pieters for his comment.’
While the purely electrostatic boundary conditions are
satisfied by charges whose fields are radial in either two or
three dimensions (just vector addition), the correct mapping
of the electrostatic problem back to the original current
problem requires adopting Eq. (1) in Pieters’ comment
for the field in a plane. There, 7 is the cylindrical radius
vector. Using that field, whose divergence vanishes, we
have the additional constraint that the current must be inde-
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pendent of the radius of the arc enclosing the contact, which
is a somewhat subtle point that I missed in my original
paper.”

“Electronic address: lawrence.mead @usm.edu

'B. E. Pieters, “Comment on ‘Resistance of a square lamina by the method
of images,” by L. R. Mead [Am. J. Phys. 77(3), 259-261 (2009)],” Am. J.
Phys. 78(6), 647-647 (2010).

L. R. Mead, “Resistance of a square lamina by the method of images,”
Am. J. Phys. 77(3), 259-261 (2009).
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Drawing an elephant with four complex parameters

Jurgen Mayer
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden,
Germany

Khaled Khairy
European Molecular Biology Laboratory, Meyerhofstrafie. 1, 69117 Heidelberg, Germany

Jonathon Howard
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden,
Germany

(Received 20 August 2008; accepted 5 October 2009)

We define four complex numbers representing the parameters needed to specify an elephantine
shape. The real and imaginary parts of these complex numbers are the coefficients of a Fourier
coordinate expansion, a powerful tool for reducing the data required to define shapes. © 2010

American Association of Physics Teachers.

[DOI: 10.1119/1.3254017]

A turning point in Freeman Dyson’s life occurred during a
meeting in the Spring of 1953 when Enrico Fermi criticized
the complexity of Dyson’s model by quoting Johnny von
Neumann:' “With four parameters I can fit an elephant, and
with five I can make him wiggle his trunk.” Since then it has
become a well-known saying among physicists, but nobody
has successfully implemented it.

To parametrize an elephant, we note that its perimeter can
be described as a set of points (x(¢),y(z)), where ¢ is a pa-
rameter that can be interpreted as the elapsed time while
going along the path of the contour. If the speed is uniform,
t becomes the arc length. We expand x and y separately2 as a
Fourier series

x(1) = X, (Af cos(kr) + B sin(k)), (1)
k=0

y() = X, (A} cos(kr) + B} sin(kr)), (2)
k=0

where Ay, By, A}, and By are the expansion coefficients. The
lower indices k apply to the kth term in the expansion, and
the upper indices denote the x or y expansion, respectively.

Using this expansion of the x and y coordinates, we can
analyze shapes by tracing the boundary and calculating the
coefficients in the expansions (using standard methods from
Fourier analysis). By truncating the expansion, the shape is
smoothed. Truncation leads to a huge reduction in the infor-
mation necessary to express a certain shape compared to a
pixelated image, for example. Székely et al.® used this ap-
proach to segment magnetic resonance imaging data. A simi-
lar approach was used to analyze the shapes of red blood
cells,* with a spherical harmonics expansion serving as a 3D
generalization of the Fourier coordinate expansion.

The coefficients represent the best fit to the given shape in
the following sense. The k=0 component corresponds to the
center of mass of the perimeter. The k=1 component corre-
sponds to the best fit ellipse. The higher order components
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trace out elliptical corrections analogous to Ptolemy’s
epicycles.5 Visualization of the corresponding ellipses can be
found at Ref. 6.

We now use this tool to fit an elephant with four param-
eters. Wei’ tried this task in 1975 using a least-squares Fou-
rier sine series but required about 30 terms. By analyzing the
picture in Fig. 1(a) and eliminating components with ampli-
tudes less than 10% of the maximum amplitude, we obtained
an approximate spectrum. The remaining amplitudes were

( a) Pattern

~10050 50 0 50 100

Fig. 1. (a) Outline of an elephant. (b) Three snapshots of the wiggling trunk.
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Table I. The five complex parameters p, ...
including its wiggling trunk.

,Ds that encode the elephant

Parameter Real part Imaginary part
p1=50-30i B1=50 B{=-30
pr=18+8i B3=18 B)=8
p3=12-10i A3=12 By=-10
ps=—14-60i A=-14 AY=-60
ps=40+20i Wiggle coeff.=40 Xeye=Yeye=20

slightly modified to improve the aesthetics of the final image.
By incorporating these coefficients into complex numbers,
we have the equivalent of an elephant contour coded in a set
of four complex parameters (see Fig. 1(b)).

The real part of the fifth parameter is the “wiggle param-
eter,” which determines the x-value where the trunk is at-
tached to the body (see the video in Ref. 8). Its imaginary
part is used to make the shape more animal-like by fixing the
coordinates for the elephant’s eye. All the parameters are
specified in Table L.

The resulting shape is schematic and cartoonlike but is
still recognizable as an elephant. Although the use of the
Fourier coordinate expansion is not new,” our approach
clearly demonstrates its usefulness in reducing the number of
parameters needed to describe a two-dimensional contour. In

649 Am. J. Phys., Vol. 78, No. 6, June 2010

the special case of fitting an elephant, it is even possible to
lower it to four complex parameters and therein implement a
well-known saying.
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