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History of the K-means algorithm 

The K-means problem belongs to the class of NP problems. However, K-means is an efficient heuristic 
solution and a very popular unsupervised algorithm used for clustering tasks. 

The algorithm was originally proposed by the Polish Mathematician Hugo Steinhaus in 1956. 
Hugo Steinhaus made amazing contributions to functional analysis (see, e.g, the Banach-Steinhaus 
Theorem). He also played a key role in the reconstruction of mathematics in Poland after WWII. 

Later on, in 1967, James MacQueen introduced the term K-Means in his article “Some Methods for 
Classification and Analysis of Multivariate Observations” published by University of California. 

The standard algorithm was first proposed by Stuart Lloyd of Bell Labs in 1957 as a technique for 
pulse-code modulation, although it was not published as a journal article until 1982. 
In 1965, Edward W. Forgy published essentially the same method, which is why it is sometimes 
referred to as the Lloyd–Forgy algorithm.
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Abstract-It has long been realized that in pulse-code modulation 
(PCM), with a given ensemble of signals to handle, the quantum values 
should be spaced more closely in the voltage regions where the signal 
amplitude is more likely to fall. It has been shown by Panter and Dite that, 
in the limit as the number of quanta becomes infinite, the asymptotic 
fractional density of quanta per unit voltage should vary as the one-third 
power of the probability density per unit voltage of signal amplitudes. In 
this paper the corresponding result for any finite number of quanta is 
derived; that is, necessary conditions are found that the quanta and 
associated quantization intervals of an optimum finite quantization scheme 
must satisfy. The optimization criterion used is that the average quantiza- 
tion noise power be a minimum. It is shown that the result obtained here 
goes over into the Panter and Dite result as the number of quanta become 
large. The optimum quantization schemes for 26 quanta, b = 1,2, t ,7, are 
given numerically for Gaussian and for Laplacian distribution of signal 
amplitudes. 

I. INTRODUCTION 

T HE BASIC IDEAS in the pulse-code modulation 
(PCM) system [ 11, [2, ch. 191 are the Shannon-Nyquist 

sampling theorem and the notion of quantizing the sample 
values. 

The sampling theorem asserts that a signal voltage s(t), 
- 00 < t < cc, containing only frequencies less than W 
cycles/s can be recovered from a sequence of its sample 
values according to 

s(t) = f$ s(tj)K(t - t,), -ccoOttm, (1) 
jz-00 

where s(tj) is the value of s at thejth sampling instant 

t,=&k -coCj-Co3, 

and where 
sin2rWt 

K(t) = 2mJ,J,7t T -KloOttco, (2) 

is a “sin t/t ” pulse of the appropriate width. 
The pulse-amplitude modulation (PAM) system [2, ch. 

161 is based on the sampling theorem alone. One sends 
over the system channel, instead of the signal values s(t) 
for all times t, only a sequence 

. . . > s(t-I>, &), s(t*>, * * - (3) 
of samples of the signal. The (idealized) receiver constructs 
the pulses K(t - tj) and adds them together with the 

Manuscript received May 1, 1981. The material in this paper was 
presented in part at the Institute of Mathematical Statistics Meeting, 
Atlantic City, NJ, September lo- 13, 1957. 

The author is with Bell Laboratories, Whippany Road, Whippky, NJ 
0798 1. 

received amplitudes s!i’), as in (1), to produce an exact 
reproduction of the ongmal band-limited signal s. 

PCM is a modification of this. Instead of sending the 
exact sample values (3), one partitions the voltage range of 
the signal into a finite number of subsets and transmits to 
the receiver only the information as to which subset a 
sample happens to fall in. Built into the receiver there is a 
source of fixed representative voltages-“quanta’‘-one 
for each of the subsets. When the receiver is informed that 
a certain sample fell in a certain subset, it uses its quantum 
for that subset as an approximation to the true sample 
value and constructs a band-limited signal based on these 
approximate sample values. 

We define the noise signal as the difference between the 
receiver-output signal and the original signal and the noise 
power as the average square of the noise signal. The prob- 
lem we consider is the following: given the number of 
quanta and certain statistical properties of the signal, de- 
termine the subsets and quanta that are best in minimizing 
the noise power. 

II. QUANTIZATION 

Let us formulate the quantization process more ex- 
plicitly. A quantization scheme consists of a class of sets 
{Q,, Qz>. . -> Q,} and a set of quanta {q,, q2;. -,q,}. The 
{Q,} are any v disjoint subsets of the voltage axis which, 
taken together, cover the entire voltage axis. The {qa} are 
any v finite voltage values. The number v of quanta is to be 
regarded throughout as a fixed finite preassigned number. 

We associate with a partition (Q,} a label function y(x), 
- 00 < x < co, defined for all (real) voltages x by 

y(x) = 1 if x liesin Q,, 
y(x) =2 if x liesin Q2, (4) 

y(x) = v if x liesin Q,. 
If s(t,) is the jth sample of the signal s, as in Section I, 
then we denote by aj the label of the set that this sample 
falls in: 

aj = Y(s(tj)), -m<j<co. 

In PCM the signal sent over the channel is (in some code 
or another) the sequence of labels 

. . . ,a-,,a,,q;~~, (5) 
each aj being one of the integers { 1,2,. . +, v}. The technol- 
ogy of this transmission does not concern us, except that 
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The problem can be generalized to clusters in D-dimensional space

• K means (one for each expected cluster):

• association of a data point to a given cluster is given by the matrix

• the association of a point to a cluster is obtained by minimizing the following objective function 
(the distortion measure)

<latexit sha1_base64="r0/YeitekbEHDE10TMoY6peZzaU="></latexit>

[rnk] =

0

BBBBB@

1 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 0 . . . 1
...

...
...

...
...

0 1 0 0 . . . 0

1

CCCCCA

• D x K matrix (K is the number  of clusters)
• One row per D-dimensional data point
• Each row contains a single 1 entry in column 

k if the n-th data point is in the k-th cluster 
(1-of-K coding)

• This means that there is just one entry per 
row, but there can be more than one entry 
per column 

<latexit sha1_base64="WQzZ+bRlu+QtcMRBzjDKjOZTIcQ=">AAACEHicbVBLTsMwFHTKr5RfKEs2FhUSqypBqLCsYMOySLRFaqLIcZzWqmNHtoOool6CA7CFI7BDbLkBJ+AaOG0WtGUky6OZ9/RGE6aMKu0431ZlbX1jc6u6XdvZ3ds/sA/rPSUyiUkXCybkQ4gUYZSTrqaakYdUEpSEjPTD8U3h9x+JVFTwez1JiZ+gIacxxUgbKbDrXihYpCaJ+XIvyabBOLAbTtOZAa4StyQNUKIT2D9eJHCWEK4xQ0oNXCfVfo6kppiRac3LFEkRHqMhGRjKUUKUn8+yT+GpUSIYC2ke13Cm/t3IUaKKeGYyQXqklr1C/M8bZDq+8nPK00wTjueH4oxBLWBRBIyoJFiziSEIS2qyQjxCEmFt6lq4EtIh5VpNa6YZd7mHVdI7b7qtZuvuotG+LjuqgmNwAs6ACy5BG9yCDugCDJ7AC3gFb9az9W59WJ/z0YpV7hyBBVhfv0zWneI=</latexit>µk

<latexit sha1_base64="ZxjpJ50MJClxYzB/VG9Wq9SSOIw=">AAACV3icbVDBThsxEHW2FNJQaFKOXCwipF4a7SKUckFCcEFFQiA1QBWHldfxJtba3pU9i4iW/bZ+Rz4AcYNPKN6whwIdaeQ3b95oxi/KpLDg+/OG92Hp4/JK81Nr9fPa+pd25+uFTXPD+IClMjVXEbVcCs0HIEDyq8xwqiLJL6PkqOpf3nBjRap/wSzjI0UnWsSCUXBU2P79E+9jYnMVFno/KK9P6yKpihNsHJ2UmEgeA7nDRFGYRnFxW4Yaf8ckSuXYzpR7CqLyMkwwMWIyddLrnbDd9Xv+IvB7ENSgi+o4C9sPZJyyXHENTFJrh4GfwaigBgSTvGyR3PKMsoRO+NBBTRW3o2JhQYm3HTPGcWpcasAL9t+JgipbXeqU1R/s215F/q83zCHeGxVCZzlwzV4WxbnEkOLKTzwWhjOQMwcoM8LditmUGsrAuf5qSyQmQoMtW86Z4K0P78HFTi/o9/rnu92Dw9qjJtpEW+gbCtAPdICO0RkaIIb+oHv0iJ4a88Zfb9lrvki9Rj2zgV6F13kGM4y3Bw==</latexit>

J =
NX

n=1

KX

k=1

rnk kxn � µkk
2
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The minimization of the distorsion measure is achieved by iteration of the following two steps

•  E step: change the assignments of data points to centers to minimize J, i.e., 

• M step: minimize with respect to the means, setting derivatives to 0, 

to find the solution 

• Since the denominator of this expression is just equal to the total number of points assigned to the k-th cluster and the sum is only 
over the data points in the cluster, this sum equals the mean of all the data points in the cluster, hence the name k-means.

9.1. K-means Clustering 425

assigned vector µk. Our goal is to find values for the {rnk} and the {µk} so as to
minimize J . We can do this through an iterative procedure in which each iteration
involves two successive steps corresponding to successive optimizations with respect
to the rnk and the µk. First we choose some initial values for the µk. Then in the first
phase we minimize J with respect to the rnk, keeping the µk fixed. In the second
phase we minimize J with respect to the µk, keeping rnk fixed. This two-stage
optimization is then repeated until convergence. We shall see that these two stages
of updating rnk and updating µk correspond respectively to the E (expectation) and
M (maximization) steps of the EM algorithm, and to emphasize this we shall use theSection 9.4
terms E step and M step in the context of the K-means algorithm.

Consider first the determination of the rnk. Because J in (9.1) is a linear func-
tion of rnk, this optimization can be performed easily to give a closed form solution.
The terms involving different n are independent and so we can optimize for each
n separately by choosing rnk to be 1 for whichever value of k gives the minimum
value of ∥xn − µk∥2. In other words, we simply assign the nth data point to the
closest cluster centre. More formally, this can be expressed as

rnk =
{

1 if k = arg minj ∥xn − µj∥2

0 otherwise.
(9.2)

Now consider the optimization of the µk with the rnk held fixed. The objective
function J is a quadratic function of µk, and it can be minimized by setting its
derivative with respect to µk to zero giving

2
N∑

n=1

rnk(xn − µk) = 0 (9.3)

which we can easily solve for µk to give

µk =
∑

n rnkxn∑
n rnk

. (9.4)

The denominator in this expression is equal to the number of points assigned to
cluster k, and so this result has a simple interpretation, namely set µk equal to the
mean of all of the data points xn assigned to cluster k. For this reason, the procedure
is known as the K-means algorithm.

The two phases of re-assigning data points to clusters and re-computing the clus-
ter means are repeated in turn until there is no further change in the assignments (or
until some maximum number of iterations is exceeded). Because each phase reduces
the value of the objective function J , convergence of the algorithm is assured. How-Exercise 9.1
ever, it may converge to a local rather than global minimum of J . The convergence
properties of the K-means algorithm were studied by MacQueen (1967).

The K-means algorithm is illustrated using the Old Faithful data set in Fig-Appendix A
ure 9.1. For the purposes of this example, we have made a linear re-scaling of the
data, known as standardizing, such that each of the variables has zero mean and
unit standard deviation. For this example, we have chosen K = 2, and so in this
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Example, using the Old Faithful data set

https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat 

In the example run shown in the next slide, these 
data have been standardized, i.e., each variable 
has zero mean and unit standard deviation.

https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
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Figure 9.1 Illustration of the K  means algorithm using the re scaled Old Faithful data set. (a) Green points
denote the data set in a two dimensional Euclidean space. The initial choices for centres µ1 and µ2 are shown
by the red and blue crosses, respectively. (b) In the initial E step, each data point is assigned either to the red
cluster or to the blue cluster, according to which cluster centre is nearer. This is equivalent to classifying the
points according to which side of the perpendicular bisector of the two cluster centres, shown by the magenta
line, they lie on. (c) In the subsequent M step, each cluster centre is re computed to be the mean of the points
assigned to the corresponding cluster. (d)ñ (i) show successive E and M steps through to fi nal convergence of
the algorithm.
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Figure 9.2 Plot of the cost function J given by
(9.1) after each E step (blue points)
and M step (red points) of the K 
means algorithm for the example
shown in Figure 9.1. The algo
rithm has converged after the third
M step, and the fi nal EM cycle pro
duces no changes in either the as
signments or the prototype vectors.

J

1 2 3 4
0

500

1000

case, the assignment of each data point to the nearest cluster centre is equivalent to a
classifi cation of the data points according to which side they lie of the perpendicular
bisector of the two cluster centres. A plot of the cost function J given by (9.1) for
the Old Faithful example is shown in Figure 9.2.

Note that we have deliberately chosen poor initial values for the cluster centres
so that the algorithm takes several steps before convergence. In practice, a better
initialization procedure would be to choose the cluster centres µk to be equal to a
random subset of K data points. It is also worth noting that the K  means algorithm
itself is often used to initialize the parameters in a Gaussian mixture model before
applying the EM algorithm.Section 9.2.2

A direct implementation of the K  means algorithm as discussed here can be
relatively slow, because in each E step it is necessary to compute the Euclidean dis
tance between every prototype vector and every data point. Various schemes have
been proposed for speeding up the K  means algorithm, some of which are based on
precomputing a data structure such as a tree such that nearby points are in the same
subtree (Ramasubramanian and Paliwal, 1990; Moore, 2000). Other approaches
make use of the triangle inequality for distances, thereby avoiding unnecessary dis
tance calculations (Hodgson, 1998; Elkan, 2003).

So far, we have considered a batch version of K  means in which the whole data
set is used together to update the prototype vectors. We can also derive an on line
stochastic algorithm (MacQueen, 1967) by applying the Robbins Monro procedureSection 2.3.5
to the problem of fi nding the roots of the regression function given by the derivatives
of J in (9.1) with respect to µk. This leads to a sequential update in which, for eachExercise 9.2
data point xn in turn, we update the nearest prototype µk using

µnew
k = µold

k + ηn(xn − µold
k ) (9.5)

where ηn is the learning rate parameter, which is typically made to decrease mono
tonically as more data points are considered.

The K  means algorithm is based on the use of squared Euclidean distance as the
measure of dissimilarity between a data point and a prototype vector. Not only does
this limit the type of data variables that can be considered (it would be inappropriate
for cases where some or all of the variables represent categorical labels for instance),
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560 12. CONTINUOUS LATENT VARIABLES

Figure 12.1 A synthetic data set obtained by taking one of the off-line digit images and creating multi-
ple copies in each of which the digit has undergone a random displacement and rotation
within some larger image field. The resulting images each have 100 × 100 = 10, 000
pixels.

that the manifold will be nonlinear because, for instance, if we translate the digit
past a particular pixel, that pixel value will go from zero (white) to one (black) and
back to zero again, which is clearly a nonlinear function of the digit position. In
this example, the translation and rotation parameters are latent variables because we
observe only the image vectors and are not told which values of the translation or
rotation variables were used to create them.

For real digit image data, there will be a further degree of freedom arising from
scaling. Moreover there will be multiple additional degrees of freedom associated
with more complex deformations due to the variability in an individual’s writing
as well as the differences in writing styles between individuals. Nevertheless, the
number of such degrees of freedom will be small compared to the dimensionality of
the data set.

Another example is provided by the oil flow data set, in which (for a given ge-Appendix A
ometrical configuration of the gas, water, and oil phases) there are only two degrees
of freedom of variability corresponding to the fraction of oil in the pipe and the frac-
tion of water (the fraction of gas then being determined). Although the data space
comprises 12 measurements, a data set of points will lie close to a two-dimensional
manifold embedded within this space. In this case, the manifold comprises several
distinct segments corresponding to different flow regimes, each such segment being
a (noisy) continuous two-dimensional manifold. If our goal is data compression, or
density modelling, then there can be benefits in exploiting this manifold structure.

In practice, the data points will not be confined precisely to a smooth low-
dimensional manifold, and we can interpret the departures of data points from the
manifold as ‘noise’. This leads naturally to a generative view of such models in
which we first select a point within the manifold according to some latent variable
distribution and then generate an observed data point by adding noise, drawn from
some conditional distribution of the data variables given the latent variables.

The simplest continuous latent variable model assumes Gaussian distributions
for both the latent and observed variables and makes use of a linear-Gaussian de-
pendence of the observed variables on the state of the latent variables. This leadsSection 8.1.4
to a probabilistic formulation of the well-known technique of principal component
analysis (PCA), as well as to a related model called factor analysis.

In this chapter w will begin with a standard, nonprobabilistic treatment of PCA,Section 12.1
and then we show how PCA arises naturally as the maximum likelihood solution to

Consider an artificial data set constructed by taking one of the off-line digits, represented by a 64 × 64 pixel 
grey-level image, and embedding it in a larger image of size 100×100 by padding with pixels having the value 
zero (corresponding to white pixels) in which the location and orientation of the digit is varied at random.

Each of the resulting images is represented by a point in the 100 × 100 = 10,000-dimensional data space. 
However, across a data set of such images, there are only three degrees of freedom of variability, 
corresponding to the vertical and horizontal translations and the rotations. The data points will therefore live on 
a subspace of the data space whose intrinsic dimensionality is three.

(this and other material is adapted from C. M. Bishop, "Pattern recognition and machine learning", Springer 
(2006)).
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12.1. Principal Component Analysis 561

Figure 12.2 Principal component analysis seeks a space
of lower dimensionality, known as the princi
pal subspace and denoted by the magenta
line, such that the orthogonal projection of
the data points (red dots) onto this subspace
maximizes the variance of the projected points
(green dots). An alternative defi nition of PCA
is based on minimizing the sum of squares
of the projection errors, indicated by the blue
lines.

x2

x1

xn

x̃n

u1

a particular form of linear Gaussian latent variable model. This probabilistic reforSection 12.2
mulation brings many advantages, such as the use of EM for parameter estimation,
principled extensions to mixtures of PCA models, and Bayesian formulations that
allow the number of principal components to be determined automatically from the
data. Finally, we discuss briefl y several generalizations of the latent variable concept
that go beyond the linear Gaussian assumption including non Gaussian latent vari
ables, which leads to the framework of independent component analysis, as well as
models having a nonlinear relationship between latent and observed variables.Section 12.4

12.1. Principal Component Analysis

Principal component analysis, or PCA, is a technique that is widely used for appli
cations such as dimensionality reduction, lossy data compression, feature extraction,
and data visualization (Jolliffe, 2002). It is also known as the Karhunen Loève trans
form.

There are two commonly used defi nitions of PCA that give rise to the same
algorithm. PCA can be defi ned as the orthogonal projection of the data onto a lower
dimensional linear space, known as the principal subspace, such that the variance of
the projected data is maximized (Hotelling, 1933). Equivalently, it can be defi ned as
the linear projection that minimizes the average projection cost, defi ned as the mean
squared distance between the data points and their projections (Pearson, 1901). The
process of orthogonal projection is illustrated in Figure 12.2. We consider each of
these defi nitions in turn.

12.1.1 Maximum variance formulation
Consider a data set of observations {xn} where n = 1, . . . , N , and xn is a

Euclidean variable with dimensionality D. Our goal is to project the data onto a
space having dimensionality M < D while maximizing the variance of the projected
data. For the moment, we shall assume that the value of M is given. Later in this

56,-7,%#&)78$%8-'-/)#-#&9+,+)+'':+)#)+%#7')84)&8;'6)
2,$'-+,8-#&,/9():-8;-)#+)/0')%6,-7,%#&)+*<+%#7' %$&!&+$)(+&!74!
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560 Prof. K. Pearson ot~ Liltes and Planes of 
of leg-lengths; but a point at a given time will have 
one position only, although our observations of both time 
and position may be in error, and vary t'roul experiinent to 
experim0nt. In the case we are about to deal with, we sup- 
pose the observed variables--all subject to error--to be plotted 
in plane, three-dimensioned or higher space, and we endeavour 
to take a line (or plane) which ~vill be the "best  f i t"  to such 
a svsteln of points. 

Of course the term " best f i t "  is really arbitrary; but a 
good fit will clearly be obtained if we make the sum of the 
squares of the perpendiculars fl'om the system of points upon 
the line or plane a minimum. 

For example : - -Let  P1, P~,.-  9 P ,  be the system of points 
with coordinates xl, yj ; x2, ,Y2 ; .   9  9 x, y~, and perpendicular 
distances pl, 192,... p,  from a line A B. Then we shall make 

U = S ( p  ~) = a  minimum. 

If  y were the dependent variable, we should have made 

S (y'--y) ~ = a minimum 

(y' being the ordinate of the theoretical line at the point 
x which corresponds to y), had we wanted to determine the 
best-fitting line in the usual manner. 

8 
Now clearly U = S ( p  ~) is the moment of momentum, the 

second moment of the system of points, supposed equally 
loaded, about the line AB.  But the second moment of a 
system about a series of parallel lines is always least for the 

[ 559 ] 

L I I I .  On Lines and lJlanes o f  Closest Fit  to S.qstems o f  ]Points 
in Space. B y  KARL P~,ARSOS, F . R . S . ,  University College, 
London *. 

(1) -]IN many physical, statistical, and biological investi- 
l_  gations it is desirable to represent a system of 

points in phme, three, or higher dhnensioned space by the 
" best-fits straight line or plane. Analytically this 
consists in taking 

y = a o + a l x ,  or Z = a o + a l x + b , y  , 
or z = a o + a~xl + a2x 2 + aaxa +  9  9  9 + at, xn, 

where y, x, z, xl, x,~,.., x~ are variables, and determining the 
" b e s t "  values for the constants a0, a,, bl, a0, al, a2, as,  9  9  9 as 
in relation to the observed corresponding values of the 
variables. ]n nearly all the cases dealt with in the text-books 
of least squares, the variables on the right of our equations 
are treated as the independent, those on the left as the de- 
pendent variables. The result of this treatment is that we 
get one straight line or plane if we treat some one variable as 
independent, and a quite different one if we treat another 
variable as the independent variable. There is no paradox 
about this ; it is, in ihct, an easily understood and most im- 
portant feature of the theory of a system of correlated 
variables. The most probable value of y for a given value 
of x, say, is not given by the s~me relation as the most pro- 
bable value of x tbr a given value of y. Or, to take a concrete 
example, the most probable stature of a man with a given 
length of leg I being s, the most probable length of leg for a 
man of stature s will not be I. The "bes t - f i t t ing"  lines and 
planes for the cases of z up to n variables for a correlated 
system are given in my memoir on regression t. They 
depend upon a determination of the means~ standard-devia- 
tions, and correlation-coefficients of the system. In such 
cases the values of the independent variables are supposed to 
be accurately known, and the probable value of the dependent 
variable is a~certained. 

(2) In many cases of physics and biology, however, the 
" independent"  variable is subject to just as much deviation 
or error as the ~' dependent"  variable. We do not, for 
example, know x accurately and then proceed to find y, but 
both x and y are found by experiment or observation. We 
observe x and y and seek tbr a unique functional relation 
between them. Men of given stature may have a variety 

 9 Communicated by the Author. 
t Phil. Trans. re1. clxxxvii. A, pp. 301 et ~e~[. 

As a curiosity, consider the very similar figure in a 
paper published in 1901 by Karl Pearson

21
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Maximum variance of the projected data samples

• N  D-dimensional data samples

• Projection of the D-dimensional data samples onto an 1-dimensional subspace identified by 

• mean of data samples

• projected mean

• variance of      with  
projected data
         (covariance matrix) 
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<latexit sha1_base64="Ta2LH7KFg6lojVXTQ+kWQAONLi8="></latexit>

S =
1

N � 1

NX

n=1

(xn � x̄) (xn � x̄)T



23

Maximum variance of the projected data samples – 2

• variance of
projected data

• variance maximization with constraint 

i.e., the variance is maximized taking a vector that is the normalized eigenvector with the 
largest eigenvalue (this eigenvector is the first principal component)

In particular, the variance is 

• we can find more components by iterating this procedure (they are the eigenvectors of the covariance 
matrix, in order of eigenvalue magnitude)
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Singular Value Decomposition (SVD)

This is a general method to find all the components.

We start with the following matrix where the rows (N) list the D-dimensional data vectors, where we 
assume that the mean value has already been subtracted from all data vectors

(i.e., A is a N x D matrix). The covariance matrix is a D x D matrix given by the matrix product 
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Since

then the same D x D orthogonal matrix U of normalized eigenvectors of V diagonalizes 
both V and ATA, i.e., 

where STS  is a diagonal D x D matrix, diag(l1, ... , lD), the lk are the eigenvalues of ATA 
usually listed in descending order, and W is an N x N matrix such that

so that S is an N x D matrix. The transpose operations have been chosen so that the 
final transformation of the A matrix looks like a transformation of a square matrix.

<latexit sha1_base64="IzJlNTBssuI0TfRn9RsXNtaUA1M=">AAACZnicbVHLTgIxFC3jC/GFGuPCTSMxgQTJjPG1MfGxcWU0ATQBnHRKBwptZ9J2CGQyv+jeL9APcKuxDCwUvUnTc8+5t/fm1AsZVdq2XzPW3PzC4lJ2Obeyura+kd/cqqsgkpjUcMAC+eQhRRgVpKapZuQplARxj5FHr38z1h8HRCoaiKoehaTFUUdQn2KkDeXmu8Wr5yq8KrkxLfcSeAGbKuJu3L9wkuc7ODSoTJPJncpFceiUYJMj3ZU8xsEgKaaJ58fDxKVl+CPrlUxDffJyzs0X7IqdBvwLnCkogGncu/m3ZjvAESdCY4aUajh2qFsxkppiRpJcM1IkRLiPOqRhoECcqFacOpLAA8O0oR9Ic4SGKfuzI0ZcqRH3TOV4XzWrjcn/tEak/fNWTEUYaSLwZJAfMagDOLYXtqkkWLORAQhLanaFuIskwtp8wq8pHu1QoVXqjDPrw19QP6o4p5WTh+PC5fXUoyzYA/ugCBxwBi7BLbgHNYDBC/gAn+Ar826tWzvW7qTUykx7tsGvsOA3FUO5Tg==</latexit>

(ATA)i,j =
NX

k=1

xk,ixk,j = (n� 1)cov(xi,xj) = Vi,j

<latexit sha1_base64="Y+ku7vpDRtf+bs57ouRnXX2beMU="></latexit>

STS = UT (ATA)U = (AU)T (AU) = (WTAU)T (WTAU)

<latexit sha1_base64="eMakIS6rlqLwH6Khmj8gnnL3PBg=">AAACLHicbVDLTgIxFO3gC/GFunTTSExckRlj0I0J6MYlCgMkvNIpBRo6nbG9oyGEv/A7/AC3+glujHGrv2GBWQh6kiYn55ybe3u8UHANtv1uJZaWV1bXkuupjc2t7Z307l5FB5GizKWBCFTNI5oJLpkLHASrhYoR3xOs6g2uJn71ninNA1mGYciaPulJ3uWUgJHa6WwJX+Bqq1xwceMuIh3cuOW9PhClgodYKUwSuITdVhm30xk7a0+B/xInJhkUo9hOfzc6AY18JoEKonXdsUNojogCTgUbpxqRZiGhA9JjdUMl8Zlujqb/GuMjo3RwN1DmScBT9ffEiPhaD33PJH0Cfb3oTcT/vHoE3fPmiMswAibpbFE3EhgCPCkJd7hiFMTQEEIVN7di2ieKUDBVzm3xeI9L0OOUacZZ7OEvqZxknVw2d3OayV/GHSXRATpEx8hBZyiPrlERuYiiR/SMXtCr9WS9WR/W5yyasOKZfTQH6+sHMyiluA==</latexit>

S = WTAU ) A = WSUT
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We have defined matrices so that A is an N × D matrix, U is a D × D matrix, S is N × D 
matrix and W is an N x N matrix. 

Notice also that we can easily diagonalize the N × N matrix AAT as follows 

and we conclude that W is the matrix of the normalized eigenvectors of AAT .

The matrix  A = WSUT with

is called the singular value decomposition of A, and it works even when the S matrix is 
singular. 

<latexit sha1_base64="rLy0j+fd+ncEI0OdIIIPcG+EyMs=">AAACP3icbVDLTgIxFO34RHyNunTTSExwQ2aMQRNjArpxiYEBEhhIpxRo6HQmbceETPgev8MPcKvxC9gZt+4sMCECnqTNuefcm9seL2RUKsv6NNbWNza3tlM76d29/YND8+i4KoNIYOLggAWi7iFJGOXEUVQxUg8FQb7HSM0bPEz82jMRkga8ooYhcX3U47RLMVJaapvFIiy2KvAOZmuwDJ1W5aJ5O6dTIymgA8v6rs21pEq3zYyVs6aAq8ROSAYkKLXNcbMT4MgnXGGGpGzYVqjcGAlFMSOjdDOSJER4gHqkoSlHPpFuPP3qCJ5rpQO7gdCHKzhV/07EyJdy6Hu600eqL5e9ifif14hU98aNKQ8jRTieLepGDKoATnKDHSoIVmyoCcKC6rdC3EcCYaXTXdji0R7lSo4mydjLOayS6mXOzufyT1eZwn2SUQqcgjOQBTa4BgXwCErAARi8gDfwDj6MV2NsfBnfs9Y1I5k5AQswfn4BGLCokw==</latexit>

AAT = (WSUT ) (WSUT )T = WSUTUSTWT = WSSTWT

<latexit sha1_base64="bBcYHsdoLs6rTuR4XhjciswmUa8="></latexit>
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We can use the matrix equations to obtain a straightforward geometric interpretation. 

Since 

where x(i) is the vector result of the i-th measurement, and we see that the term AU 
corresponds to a rotation of all the initial measurement vectors to a new frame of 
reference. 
The r.h.s. of the equation in the middle shows what happens: W is a large N x N matrix 
that encodes the measurement data in a different way, and each of its rows is acted 
upon by the matrix S which may contain null eigenvalues and has plenty of zeros. 

This means that most of the information of W is nulled and that additional components 
can be neglected because of null or near-zero eigenvalues, i.e., the transformation AU 
acts both as a rotation that makes the transformed random variable independent and 
clearly points to the dependent variables (those with null or near-zero eigenvalues). 

<latexit sha1_base64="rncjmWVgGdjfB9O4WOH59TzO3d4="></latexit>

A = WSUT ) AU = WS )
DX

k=1

xikUkl =
DX

k=1

(UT )lkx
(i)
k
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Face recognition

When viewed as vectors, images are very-high-dimensional vectors. However, amid all these vectors, very 
few correspond to actual faces.

With PCA, we can find a compact representation of human (or animal!) faces.

Image from Turk and Pentland, J. of Cognitive Neuroscience, 3 (1991) 71
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Turk and Pentland, J. of Cognitive Neuroscience 3 (1991) 71
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PCA is used in many applications such as face recognition. Start with N pictures of faces, then the 
basic idea goes as follows: 

• take the image vector fi,j with i, j = 1, . . . , D (each element represents the gray level encoded in a 
pixel at position i,j) and form the new vector fj+(i−1)D = fi,j 

• average the individual pixel values to form an average face fAV 
• for each image calculate the difference from the mean j = f - fAV; this is called the caricature 
• form an N×D2 matrix where the N rows are the individual caricatures j
• apply the SVD to this matrix 
• it is empirically found that there are only few large eigenvectors, and all images fall in a low 

dimensional subspace of the global space (potentially a dimension D2 space, or at least that there 
are only few dimensions that really matter in the rotated reference frame)

• different faces correspond to different regions in the subspace, and to recognize a face it is 
sufficient to find the distance (limited to this subspace) of the new rotated caricature from the 
centers of the regions that represent the individual faces (the eigenfaces) 

• This method was first developed by Sirovich and Kirby in 1987, and their original paper contains a 
nice selection of illustrative images. 
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Figure 5.18 Face modeling and compression using eigenfaces (Moghaddam and Pentland
1997) © 1997 IEEE: (a) input image; (b) the first eight eigenfaces; (c) image reconstructed
by projecting onto this basis and compressing the image to 85 bytes; (d) image reconstructed
using JPEG (530 bytes).

In more detail, we start with a collection of training images {xj}, from which we compute
the mean image m and a scatter or covariance matrix

C =
1

N

N�1X

j=0

(xj � m)(xj � m)T . (5.41)

We can apply the eigenvalue decomposition (A.6) to represent this matrix as

C = U⇤UT =
N�1X

i=0

�iuiu
T

i
, (5.42)

where the �i are the eigenvalues of C and the ui are the eigenvectors. For general im-
ages, Kirby and Sirovich (1990) call these vectors eigenpictures; for faces, Turk and Pentland
(1991) call them eigenfaces (Figure 5.18b).13

Two important properties of the eigenvalue decomposition are that the optimal (best ap-
proximation) coefficients ai for any new image x can be computed as

ai = (x � m) · ui, (5.43)

and that, assuming the eigenvalues {�i} are sorted in decreasing order, truncating the ap-
proximation given in (5.40) at any point M gives the best possible approximation (least
error) between x̃ and x. Figure 5.18c shows the resulting approximation corresponding to
Figure 5.18a and shows how much better it is at compressing a face image than JPEG.

Truncating the eigenface decomposition of a face image (5.40) after M components is
equivalent to projecting the image onto a linear subspace F , which we can call the face space

13In actual practice, the full P ⇥P scatter matrix (5.41) is never computed. Instead, a smaller N ⇥N matrix con-
sisting of the inner products between all the signed deviations (xi�m) is accumulated instead. See Appendix A.1.2
(A.13–A.14) for details.

.2)3!P"!>K+-'5Z'1!_^)3;0(+2!L'5')$A!M-:)2'(*35!%$&!M;;-'6%(')$51!T$&!+&"_1!>;2'$:+2!@TFTTD



35

Im
ag

e 
fr

om
 T

ur
k 

an
d 

Pe
nt

la
nd

, 
J. 

of
 C

og
ni

tiv
e 

N
eu

ro
sc

ie
nc

e,
 3

 (1
99

1)
 7

1



36

Image from Turk and Pentland, J. of Cognitive Neuroscience, 3 (1991) 71
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Short list of applications of PCA in physics/astrophysics

• Astrophysical object classification (https://www.aanda.org/articles/aa/pdf/2011/11/aa17529-11.pdf)

• Eigenspectra of the VIPERS spectral database (www.vipers.inaf.it )

• Correlation analysis in LHC data (https://arxiv.org/pdf/1708.07113.pdf)

• Analysis of astro-geodetic data (https://ui.adsabs.harvard.edu/abs/2018RoAJ...28..113G/abstract)

https://www.aanda.org/articles/aa/pdf/2011/11/aa17529-11.pdf
http://www.vipers.inaf.it/
https://arxiv.org/pdf/1708.07113.pdf
https://ui.adsabs.harvard.edu/abs/2018RoAJ...28..113G/abstract
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ABSTRACT

Context. The study of superclusters of galaxies helps us to understand the formation, evolution, and present-day properties of the
large-scale structure of the Universe.
Aims. We use data about superclusters drawn from the SDSS DR7 to analyse possible selection effects in the supercluster catalogue,
to study the physical and morphological properties of superclusters, to find their possible subsets, and to determine scaling relations
for our superclusters.
Methods. We apply principal component analysis and Spearman’s correlation test to study the properties of superclusters.
Results. We have found that the parameters of superclusters do not correlate with their distance. The correlations between the physical
and morphological properties of superclusters are strong. Superclusters can be divided into two populations according to their total
luminosity: high-luminosity ones with Lg > 400 × 1010 h−2 L⊙ and low-luminosity systems. High-luminosity superclusters form two
sets, which are more elongated systems with the shape parameter K1/K2 < 0.5 and less elongated ones with K1/K2 > 0.5. The first two
principal components account for more than 90% of the variance in the supercluster parameters. We use principal component analysis
to derive scaling relations for superclusters, in which we combine the physical and morphological parameters of superclusters.
Conclusions. The first two principal components define the fundamental plane, which characterises the physical and morphological
properties of superclusters. Structure formation simulations for different cosmologies, and more data about the local and high redshift
superclusters are needed to understand the evolution and the properties of superclusters better.

Key words. cosmology: observations – large-scale structure of the Universe – galaxies: clusters: general

1. Introduction

The large-scale distribution of the dark and baryonic matter in
the Universe can be described as the cosmic web – the net-
work of galaxies, groups, and clusters of galaxies connected
by filaments (Joeveer et al. 1978; Gregory & Thompson 1978;
Zeldovich et al. 1982; de Lapparent et al. 1986). In this net-
work superclusters are the largest density enhancements formed
by the density perturbations on a scale of about 100 h−1 Mpc
(H0 = 100 h km s−1 Mpc−1). Numerical simulations show that
high-density peaks in the density distribution (the seeds of su-
percluster cores) are seen already at very early stages of the for-
mation and evolution of structure (Einasto 2010). These are the
locations of the formation of the first objects in the Universe
(e.g. Venemans et al. 2004; Mobasher et al. 2005; Ouchi et al.
2005; Hatch et al. 2011). Studying the properties of superclus-
ters helps us to understand the formation, evolution, and proper-
ties of the large-scale structure of the Universe (Hoffman et al.
2007; Araya-Melo et al. 2009a; Bond et al. 2010, and references
therein). Comparison of observed and simulated superclusters,
especially extreme systems among them, is a test of cosmolog-
ical models (Kolokotronis et al. 2002; Einasto et al. 2007a,e;
Araya-Melo et al. 2009a; Einasto et al. 2011b; Sheth & Diaferio
2011).

The first step in supercluster studies is to compile su-
percluster catalogues, which serve as observational databases.
Supercluster catalogues have been constructed using the friend-
of-friend method or using a smoothed density field of galax-
ies. The first method has been applied to the data on rich
(Abell) clusters of galaxies to obtain catalogues of superclus-
ters of rich clusters, both from observations and simulations
(Zucca et al. 1993; Einasto et al. 1994; Kalinkov & Kuneva
1995; Einasto et al. 1997, 2001; Wray et al. 2006). Density
field superclusters have been determined using data of deep sur-
veys of galaxies (Basilakos 2003; Einasto et al. 2003a; Erdoğdu
et al. 2004; Einasto et al. 2006, 2007b; Liivamägi et al. 2010;
Costa-Duarte et al. 2011; Luparello et al. 2011). The properties
of superclusters have been studied, for example, by Jaaniste et al.
(1998), Kolokotronis et al. (2002), Costa-Duarte et al. (2011),
Luparello et al. (2011), Wray et al. (2006), and Einasto et al.
(2001, 2007a,c,e, 2011a). These studies show that the proper-
ties of superclusters are correlated. More luminous superclus-
ters are richer and larger, contain richer galaxy clusters, and
have higher maximum densities of galaxies than less luminous
systems. High-luminosity superclusters are more elongated and
have more complicated inner structure than low-luminosity ones.

In the present paper we use the Spearman’s correlation test
and the principal component analysis (PCA), an excellent tool
for multivariate data analysis, to investigate how strong the

Article published by EDP Sciences A36, page 1 of 12
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Principal-component analysis of two-particle azimuthal correlations
in PbPb and pPb collisions at CMS

A. M. Sirunyan et al.∗

(CMS Collaboration)
(Received 23 August 2017; published 5 December 2017)

For the first time a principle-component analysis is used to separate out different orthogonal modes of
the two-particle correlation matrix from heavy ion collisions. The analysis uses data from

√
s

NN
= 2.76 TeV

PbPb and
√

s
NN

= 5.02 TeV pPb collisions collected by the CMS experiment at the CERN Large Hadron
Collider. Two-particle azimuthal correlations have been extensively used to study hydrodynamic flow in heavy
ion collisions. Recently it was shown that the expected factorization of two-particle results into a product of the
constituent single-particle anisotropies is broken. The new information provided by these modes may shed light
on the breakdown of flow factorization in heavy ion collisions. The first two modes (“leading” and “subleading”)
of two-particle correlations are presented for elliptical and triangular anisotropies in PbPb and pPb collisions
as a function of pT over a wide range of event activity. The leading mode is found to be essentially equivalent
to the anisotropy harmonic previously extracted from two-particle correlation methods. The subleading mode
represents a new experimental observable and is shown to account for a large fraction of the factorization breaking
recently observed at high transverse momentum. The principle-component analysis technique was also applied
to multiplicity fluctuations. These also show a subleading mode. The connection of these new results to previous
studies of factorization is discussed.

DOI: 10.1103/PhysRevC.96.064902

I. INTRODUCTION

The primary goal of experiments with heavy ion collisions
at ultrarelativistic energies is to study nuclear matter under
extreme conditions. Quantum chromodynamics on the lattice
predicts the formation of a quark-gluon plasma (QGP) at
energy densities that are attainable in relativistic heavy ion
collisions. Measurements carried out at the Relativistic Heavy
Ion Collider (RHIC) indicate that a strongly interacting QGP
is produced in heavy ion collisions [1–4]. The presence of
azimuthal anisotropy in the emission of final state hadrons
revealed a strong collective flow behavior of this strongly
coupled hot and dense medium [5,6]. The significantly higher
energies available at the CERN Large Hadron Collider (LHC)
compared to RHIC have allowed the ALICE, ATLAS, and
CMS experiments to make very detailed measurements of
the QGP properties [7–15]. The collective expansion of the
QGP can be described by hydrodynamic flow models [16–18].
In the context of these models, the azimuthal anisotropy of
hadron emission is the response to the initial density profile
of the overlap region of the colliding nuclei. Such anisotropic
emission, for a given event, can be quantified through a Fourier
decomposition of the single-particle distribution

dN

d p
=

∞∑

n=−∞
Vn(p)e−inφ, (1)

∗Full author list given at the end of the article.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

with Vn(p) = vn(p)ein"n(p) and dppp = dpT dφ dη, where p is a
shorthand notation for pT and η. This single-particle distribu-
tion is the invariant yield of emitted particles N expressed
in phase space pT, η, and φ, i.e., transverse momentum,
pseudorapidity, and azimuthal angle. Here, vn corresponds to
the real single-particle anisotropy and "n(p) represents the
nth order event plane angle. Also, because of the reflection
symmetry of the overlap region, the relation V ∗

n = V−n holds
for the complex harmonics. Using this relation and integrating
Eq. (1) over a given pseudorapidity and pT window yields

dN

dφ
= N

2π

(

1 + 2
∞∑

n=1

vn(p) cos[n(φ − "n(p))]

)

. (2)

Note that the single-particle anisotropy coefficient vn is
generally a function of pT and η, which is also the case
for the event plane angle. The azimuthal correlation of Npairs

emitted particle pairs (with particles labeled a and b) as a
function of their azimuthal separation %φab = φa − φb can
be characterized by its own Fourier harmonics,

dNpairs

d%φab
= Npairs

2π

(

1 + 2
∞∑

n=1

Vn%(pa,pb) cos(n%φ)

)

, (3)

where Vn% is the two-particle harmonic. In a pure hydro-
dynamic picture, as a consequence of independent particle
emission, the flow hypothesis connects the single- and two-
particle spatial anisotropies from Eqs. (2) and (3) through
factorization. In other words, particles carry information only
about their orientation with respect to the whole system and the
two-particle distribution can therefore be factorized based on

〈
dNpairs

d%φab

〉
=

〈
dN

dφa

dN

dφb

〉
, (4)

2469-9985/2017/96(6)/064902(21) 064902-1 ©2017 CERN, for the CMS Collaboration
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Abstract. The paper demonstrates the application of statistical based methodology for
the analysis of the vertical deviation angle. The studied data set contains astro-geodetic
observations. The Principal Component Analysis and the Multiple Linear Regression
models are embedded within a bootstrap procedure, in order to overcome the difficulties
related to data correlation, while taking advantage of all the information provided. The
methodology is applied on real data. The obtained results indicate that the pressure,
the temperature and the humidity are variables that may influence the measure of the
vertical deviation.

Key words: vertical deviation – astro-geodetic data – principal component analysis –
multi-linear regression – bootstrap – statistics.

1. INTRODUCTION

The vertical deviation angle is a notion of great interest in the field of Geodesy,
since it is used to establish a link between two surfaces that approximate the shape of
the Earth: the geoid and the ellipsoid. The vertical deviation is defined by the angle
between the direction of the plumb line and the normal to the ellipsoid through the
same point on the surface of Earth (Featherstone, 1999).

The vertical deviation angle can be obtained with a geodetic total station that
has attached a CCD camera and GNSS (Global Navigation Satellite System) receiver.
This type of ensemble measures the azimuth, the zenith distance of a star that crosses
its reticular wires and the time of these intersections. The horizontal coordinates
are transformed into astronomic coordinates (�, ⇤) of the observation location. The
geodetic coordinates (', �) of the observation location are obtained with a GNSS
instrument (which has as reference surface an ellipsoid). The vertical deviation or-
thogonal components are obtained with the equation (1), where ⇠ is the meridian
component - on North South direction and ⌘ is the prime vertical component - on

Romanian Astron. J. , Vol. 28, No. 2, p. 113–124, Bucharest, 2018
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The END!




