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A. The K-means algorithm



History of the K-means algorithm

The K-means problem belongs to the class of NP problems. However, K-means is an efficient heuristic
solution and a very popular unsupervised algorithm used for clustering tasks.

The algorithm was originally proposed by the Polish Mathematician Hugo Steinhaus in 1956.
Hugo Steinhaus made amazing contributions to functional analysis (see, e.g, the Banach-Steinhaus
Theorem). He also played a key role in the reconstruction of mathematics in Poland after WWII.

Later on, in 1967, James MacQueen introduced the term K-Means in his article “Some Methods for
Classification and Analysis of Multivariate Observations” published by University of California.

The standard algorithm was first proposed by Stuart Lloyd of Bell Labs in 1957 as a technique for
pulse-code modulation, although it was not published as a journal article until 1982.

In 1965, Edward W. Forgy published essentially the same method, which is why it is sometimes
referred to as the Lloyd-Forgy algorithm.
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Least Squares Quantization in PCM

STUART P. LLOYD
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PCM is a modification of this. Instead of sending the
exact sample values (3), one partitions the voltage range of
the signal into a finite number of subsets and transmits to
the receiver only the information as to which subset a
sample happens to fall in. Built into the receiver there is a
source of fixed representative voltages—“quanta”-—one
for each of the subsets. When the receiver is informed that
a certain sample fell in a certain subset, it uses its quantum
for that subset as an approximation to the true sample
value and constructs a band-limited 51gnal based on these
approximate sample values.

We define the noise signal as the difference between the
receiver-output signal and the original signal and the noise
power as the average square of the noise signal. The prob-
lem we consider is the following: given the number of
quanta and certain statistical properties of the signal, de-
termine the subsets and quanta that are best in mintmizing
the noise power.
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The problem can be generalized to clusters in D-dimensional space

« K means (one for each expected cluster): Mg

* association of a data point to a given cluster is given by the matrix
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D x K matrix (K is the number of clusters)
One row per D-dimensional data point

Each row contains a single 1 entry in column
k if the n-th data point is in the k-th cluster
(1-of-K coding)

This means that there is just one entry per
row, but there can be more than one entry
per column

* the association of a point to a cluster is obtained by minimizing the following objective function

(the distortion measure)

N K
T=> > ranlxn — pll”

n=1 k=1
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The minimization of the distorsion measure is achieved by iteration of the following two steps

* E step: change the assignments of data points to centers to minimize J, i.e.,

1 if k = arg min; ||x, — ,U’jH2
'nk — .
0O otherwise.

* M step: minimize with respect to the means, setting derivatives to 0,

to find the solution

o, = Zn I'nkXn
" Zn I'nk

* Since the denominator of this expression is just equal to the total number of points assigned to the k-th cluster and the sum is only
over the data points in the cluster, this sum equals the mean of all the data points in the cluster, hence the name k-means.




Example, using the Old Faithful data set

0ld Faithful Geyser Data

Description: (From R manual): In the example run shown in the next slide, these
Waiting time between eruptions and the duration of the eruption data have been StandardiZEd, i.e., eaCh Val’iab/e
for the 0ld Faithful geyser in Yellowstone National Park, Wyoming, . i .
USA. has zero mean and unit standard deviation.

A data frame with 272 observations on 2 variables.

eruptions numeric Eruption time in mins
waiting numeric Waiting time to next eruption

References:

Hardle, W. (1991) Smoothing Techniques with Implementation in S.
New York: Springer.

Azzalini, A. and Bowman, A. W. (1990). A look at some data on the
0ld Faithful geyser. Applied Statistics 39, 357-365.

eruptions waiting

1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55
7 4.700 88
8 3.600 85
9 1.950 51
10 4.350 85

https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat



https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat

[llustration of the K-means algorithm using the
re-scaled Old Faithful data set.

 Green points denote the data set in a two-
dimensional Euclidean space. The initial choices
for centres 4 and p, are shown by the red and blue
crosses, respectively.

* |Intheinitial E step, each data pointis assigned
either to the red cluster or to the blue cluster,
according to which cluster centre is nearer. This is
equivalent to classifying the points according to
which side of the perpendicular bisector of the two
cluster centres, shown by the magenta line, they lie
on.

* Inthe subsequent M step, each cluster centre is re-
computed to be the mean of the points assigned to
the corresponding cluster.

* show successive E and M steps through to final
convergence of the algorithm.

(adapted from C. M. Bishop, "Pattern recognition and machine
learning", Springer (2006))
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Plot of the cost function J after each E step (blue points) and M step (red points) of the K- means algorithm
for the Old Faithful example. The algorithm has converged after the third M step, and the final EM cycle

produces no changes in either the assignments or the prototype vectors.

(adapted from C. M. Bishop, "Pattern recognition and machine learning", Springer (2006))
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Datasets for machine learning research

In addition to the Old Faithful data, there are many more datasets that can be used
for ML research and training purposes.

* The MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/),
which has a training set of 60,000 examples, and a test set of 10,000 examples. It
is a subset of a larger set available from NIST (https://www.nist.gov/srd/nist-
special-database-19). The digits are size-normalized and centered in a fixed-size
image.

* Visualization of the MNIST database (https://github.com/mbornet-
hl/MNIST/tree/master/IMAGES/GROUPS)

* The extended EMNIST dataset (https://www.nist.gov/itl/products-and-
services/emnist-dataset), which is a set of handwritten character digits derived
from the NIST Special Database 19 and converted to a 28x28 pixel image format
and dataset structure that directly matches the MNIST dataset. For more
information, see https://arxiv.org/pdf/1702.05373.pdf.

* Wikipedia on MNIST, https://en.wikipedia.org/wiki/MNIST database

 Wikipedia on datasets for ML research
https://en.wikipedia.org/wiki/List of datasets for machine-learning research

v A0 Lwh=0

bOLOOVCE@POOOL0OD
BEAS "R SE R R TS
IREIBFLELILE AN LD
238325383831 333
$red4a9 4L Fydd Ny
§5853558§855<s6r5r555
LbblLbblbbdcéébGel
YRYITEFY R FRT DT
EIRE I PP EPTEYTRC I
179999%799%493449929

Sample images from MNIST test dataset
(https://en.wikipedia.org/wiki/MNIST databas
e#/media/File:MnistExamplesModified.png)

15


http://yann.lecun.com/exdb/mnist/
https://www.nist.gov/srd/nist-special-database-19
https://www.nist.gov/srd/nist-special-database-19
https://github.com/mbornet-hl/MNIST/tree/master/IMAGES/GROUPS
https://github.com/mbornet-hl/MNIST/tree/master/IMAGES/GROUPS
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://arxiv.org/pdf/1702.05373.pdf
https://en.wikipedia.org/wiki/MNIST_database
https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
https://en.wikipedia.org/wiki/MNIST_database
https://en.wikipedia.org/wiki/MNIST_database

B. Principal Component Analysis



Reprinted from Journal of the Optical Society of America A, Vol. 4, page 519, March 1987
Copyright © 1987 by the Optical Society of America and reprinted by permission of the copyright owner.

Low-dimensional procedure for the characterization of
human faces

L. Sirovich and M. Kirby

Division of Applied Mathemetics, Brown University, Providence, Rhode Island 02912

Received August 25, 1986; accepted November 10, 1986

A method is presented for the representation of (pictures of) faces. Within a specified framework the representa-
tionisideal. This resultsin the characterization of a face, to within an error bound, by a relatively low-dimensional
vector. The method is illustrated in detail by the use of an ensemble of pictures taken for this purpose.
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Consider an artificial data set constructed by taking one of the off-line digits, represented by a 64 x 64 pixel
grey-level image, and embedding it in a larger image of size 100%x100 by padding with pixels having the value
zero (corresponding to white pixels) in which the location and orientation of the digit is varied at random.

Each of the resulting images is represented by a pointin the 100 x 100 = 10,000-dimensional data space.
However, across a data set of such images, there are only three degrees of freedom of variability,
corresponding to the vertical and horizontal translations and the rotations. The data points will therefore live on
a subspace of the data space whose intrinsic dimensionality is three.

(this and other material is adapted from C. M. Bishop, "Pattern recognition and machine learning", Springer
(2006)).
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Principal component analysis seeks a space of lower
dimensionality, known as the principal subspace and denoted by
the magenta line, such that the orthogonal projection of the data
points (red dots) onto this subspace maximizes the variance of the
projected points (green dots).

An alternative definition of PCA is based on minimizing the sum-of-
squares of the projection errors, indicated by the blue lines (a least-
squares method).
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As a curiosity, consider the very similar figure in a
paper published in 1901 by Karl Pearson
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LIII. On Lines and Planes of Closest Fitto Systems of Points
in Space. By KarrL PrarsoN, F.R.S., University College,
London *,
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Maximum variance of the projected data samples

« N D-dimensional data samples {Xn}‘nzl,...,N

Projection of the D-dimensional data samples onto an 1-dimensional subspace identified by 1,

N
_ 1
* mean of datasamples X = N zjlxn
n—

« projected mean i X
- > -

. : 2 _ T AT - _ e _
variance of 0" = 7 Z (07 x, — 0 X) with S = N1 Z (%, — X) (X,
projected data n=1 n=1

1 N T - (covariance matrix)
:—N—lnz_:lﬁl (Xn—}_()(Xn—}_() ﬁl



Maximum variance of the projected data samples -2

 variance of o? =17 Sy
projected data

e variance maximization with constraint
AT A ~T A A N N A
uy Su; + M\ (1 — U 111) = Su;— M\ =0 = St =\

l.e., the variance is maximized taking a vector that is the normalized eigenvector with the
largest eigenvalue (this eigenvector is the first principal component)

In particular, the variance is
alSo; = nala =)

* we can find more components by iterating this procedure (they are the eigenvectors of the covariance
matrix, in order of eigenvalue magnitude)



Singular Value Decomposition (SVD)
This is a general method to find all the components.

We start with the following matrix where the rows (N) list the D-dimensional data vectors, where we
assume that the mean value has already been subtracted from all data vectors

11 192 ce X1,D

21 L29 ce X2 D
A=lzi] =

IN1 IN2 .- IN,D

(i.e., A is a N x D matrix). The covariance matrix is a D x D matrix given by the matrix product

ATA Zxk iLk,j = n - 1)COV(X27XJ) ‘/z’,j



Since

ATA Z Tk,iTk,j = (n — 1)cov(x;, x5) = Vi

then the same D x D orthogonal matrix U of normalized eigenvectors of }J diagonalizes
both Vand 474, i.e.,

STS =UT (AT AU = (AU)1 (AU) = (W AU (W' AD)

where S’S is a diagonal D x D matrix, diag(A,, ... , Ap), the A, are the eigenvalues of 474
usually listed in descending order, and Wis an N x N matrix such that

S=W'AU = A=WSU?’

so that Sis an N x D matrix. The transpose operations have been chosen so that the
final transformation of the 4 matrix looks like a transformation of a square matrix.



We have defined matrices sothat4Aisan N x D matrix, Uisa D x D matrix, Sis N x D
matrix and Wis an N x N matrix.

Notice also that we can easily diagonalize the N x N matrix A4’ as follows
AAT = (wsuh)y (wsuhH)! =wsvutustw!t =wsstwt
and we conclude that W is the matrix of the normalized eigenvectors of 44" .

The matrix 4 = WSUT with

ou . 0
( 0 Vi ... 0 \
o R v
0 0 0
IR

is called the singular value decomposition of 4, and it works even when the § matrix is
singular.



We can use the matrix equations to obtain a straightforward geometric interpretation.

Since

D
A=WwSUT = AU=WS = Y auUu=3Y U )y
k=1 k=1

where x¥ is the vector result of the ji-th measurement, and we see that the term AU

corresponds to a rotation of all the initial measurement vectors to a new frame of
reference.

The r.h.s. of the equation in the middle shows what happens: Wis a large N x N matrix
that encodes the measurement data in a different way, and each of its rows is acted
upon by the matrix S which may contain null eigenvalues and has plenty of zeros.

This means that most of the information of W is nulled and that additional components
can be neglected because of null or near-zero eigenvalues, i.e., the transformation AU
acts both as a rotation that makes the transformed random variable independent and
clearly points to the dependent variables (those with null or near-zero eigenvalues).
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Face recognition

When viewed as vectors, images are very-high-dimensional vectors. However, amid all these vectors, very
few correspond to actual faces.

With PCA, we can find a compact representation of human (or animal!) faces.

Image from Turk and Pentland, J. of Cognitive Neuroscience, 3 (1991) 71
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Turk and Pentland, J. of Cognitive Neuroscience 3 (1991) 71

Eigenfaces for Recognition

Matthew Turk and Alex Pentland

Vision and Modeling Group
The Media Laboratory
Massachusetts Institute of Technology

Abstract

B We have developed a near-real-time computer system that
can locate and track a subject’s head, and then recognize the
person by comparing characteristics of the face to those of
known individuals. The computational approach taken in this
system is motivated by both physiology and information theory,
as well as by the practical requirements of near-real-time per-
formance and accuracy. Our approach treats the face recog-
nition problem as an intrinsically two-dimensional (2-D)
recognition problem rather than requiring recovery of three-
dimensional geometry, taking advantage of the fact that faces
are normally upright and thus may be described by a small set
of 2-D characteristic views. The system functions by projecting

face images onto a feature space that spans the significant
variations among known face images. The significant features
are known as “eigenfaces,” because they are the eigenvectors
(principal components) of the set of faces; they do not neces-
sarily correspond to features such as eyes, ears, and noses. The
projection operation characterizes an individual face by a
weighted sum of the eigenface features, and so to recognize a
particular face it is necessary only to compare these weights to
those of known individuals. Some particular advantages of our
approach are that it provides for the ability to learn and later
recognize new faces in an unsupervised manner, and that it is
easy to implement using a neural network architecture. Il
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PCA is used in many applications such as face recognition. Start with N pictures of faces, then the
basic idea goes as follows:

* take the image vector ¢, ; withi,j=1, ..., D (each element represents the gray level encoded in a
pixel at position /,j) and form the new vector ¢;,_)p = ¢;;

* average the individual pixel values to form an average face ¢,

« for each image calculate the difference from the mean ¢ = ¢ — ¢,; this is called the caricature
« form an NxD? matrix where the N rows are the individual caricatures ¢

 applythe SVD to this matrix

* itis empirically found that there are only few large eigenvectors, and all images fall in a low
dimensional subspace of the global space (potentially a dimension D? space, or at least that there
are only few dimensions that really matter in the rotated reference frame)

* different faces correspond to different regions in the subspace, and to recognize a face itis
sufficient to find the distance (limited to this subspace) of the new rotated caricature from the
centers of the regions that represent the individual faces (the eigenfaces)

 This method was first developed by Sirovich and Kirby in 1987, and their original paper contains a
nice selection of illustrative images.



Any face in the training set can be expressed as a linear combination of a set of
eigenfaces

(d)

Figure 5.18 Face modeling and compression using eigenfaces (Moghaddam and Pentland
1997) © 1997 IEEE: (a) input image; (b) the first eight eigenfaces; (c) image reconstructed

by projecting onto this basis and compressing the image to 85 bytes, (d) image reconstructed
using JPEG (530 bytes).

From R. Szeliski, "Computer Vision: Algorithms and Applications, 2nd ed.", Springer (2022)
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Image from Turk and Pentland, J. of Cognitive Neuroscience, 3 (1991) 71
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Short list of applications of PCA in physics/astrophysics

* Astrophysical object classification (https://www.aanda.org/articles/aa/pdf/2011/11/aa17529-11.pdf)

* Eigenspectra of the VIPERS spectral database (www.vipers.inaf.it)

* Correlation analysis in LHC data (https://arxiv.org/pdf/1708.07113.pdf)

* Analysis of astro-geodetic data (https://ui.adsabs.harvard.edu/abs/2018R0AJ...28..113G/abstract)
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SDSS DR7 superclusters

Principal component analysis
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ABSTRACT

Context. The study of superclusters of galaxies helps us to understand the formation, evolution, and present-day properties of the
large-scale structure of the Universe.

Aims. We use data about superclusters drawn from the SDSS DR7 to analyse possible selection effects in the supercluster catalogue,
to study the physical and morphological properties of superclusters, to find their possible subsets, and to determine scaling relations
for our superclusters.

Methods. We apply principal component analysis and Spearman’s correlation test to study the properties of superclusters.

Results. We have found that the parameters of superclusters do not correlate with their distance. The correlations between the physical
and morphological properties of superclusters are strong. Superclusters can be divided into two populations according to their total
luminosity: high-luminosity ones with L, > 400 x 10'® /7% L, and low-luminosity systems. High-luminosity superclusters form two
sets, which are more elongated systems with the shape parameter K; /K, < 0.5 and less elongated ones with K; /K, > 0.5. The first two
principal components account for more than 90% of the variance in the supercluster parameters. We use principal component analysis
to derive scaling relations for superclusters, in which we combine the physical and morphological parameters of superclusters.
Conclusions. The first two principal components define the fundamental plane, which characterises the physical and morphological
properties of superclusters. Structure formation simulations for different cosmologies, and more data about the local and high redshift
superclusters are needed to understand the evolution and the properties of superclusters better.



PHYSICAL REVIEW C 96, 064902 (2017)

Principal-component analysis of two-particle azimuthal correlations
in PbPb and pPb collisions at CMS

A. M. Sirunyan et al.*
(CMS Collaboration)
(Received 23 August 2017; published 5 December 2017)

For the first time a principle-component analysis is used to separate out different orthogonal modes of
the two-particle correlation matrix from heavy ion collisions. The analysis uses data from /s, = 2.76 TeV
PbPb and /s, = 5.02 TeV pPb collisions collected by the CMS experiment at the CERN Large Hadron
Collider. Two-particle azimuthal correlations have been extensively used to study hydrodynamic flow in heavy
ion collisions. Recently it was shown that the expected factorization of two-particle results into a product of the
constituent single-particle anisotropies is broken. The new information provided by these modes may shed light
on the breakdown of flow factorization in heavy ion collisions. The first two modes (“leading” and “subleading”)
of two-particle correlations are presented for elliptical and triangular anisotropies in PbPb and pPb collisions
as a function of pr over a wide range of event activity. The leading mode is found to be essentially equivalent
to the anisotropy harmonic previously extracted from two-particle correlation methods. The subleading mode
represents a new experimental observable and is shown to account for a large fraction of the factorization breaking
recently observed at high transverse momentum. The principle-component analysis technique was also applied
to multiplicity fluctuations. These also show a subleading mode. The connection of these new results to previous
studies of factorization is discussed.

DOI: 10.1103/PhysRevC.96.064902



STATISTICAL ANALYSIS OF ASTRO-GEODETIC DATA
THROUGH PRINCIPAL COMPONENT ANALYSIS, LINEAR
MODELLING AND BOOTSTRAP BASED INFERENCE

ANDREEA IOANA GORNEA 2, ALEXANDRU CALIN!, PAUL DANIEL DUMITRU', DAN
ALIN NEDELCU?, RADU STEFAN STOICA3

"Technical University of Civil Engineering Bucharest
Lacul Tei Bvd. 122 - 124, 020396 Bucharest, Romania, gornea.andreea @ gmail.com
2 Astronomical Institute of Romanian Academy
Str. Cutitul de Argint 5, 040557 Bucharest, Romania
3Université de Lorraine, Institut Elie Cartan de Lorraine
54506 Vandoeuvre-lés-Nancy Cedex, France

Abstract. The paper demonstrates the application of statistical based methodology for
the analysis of the vertical deviation angle. The studied data set contains astro-geodetic
observations. The Principal Component Analysis and the Multiple Linear Regression
models are embedded within a bootstrap procedure, in order to overcome the difficulties
related to data correlation, while taking advantage of all the information provided. The
methodology is applied on real data. The obtained results indicate that the pressure,
the temperature and the humidity are variables that may influence the measure of the
vertical deviation.

Key words: vertical deviation — astro-geodetic data — principal component analysis —
multi-linear regression — bootstrap — statistics.
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