
Computer Algebra 
Symbols as well as numbers can be manipulated by a computer. 

New, general-purpose algorithms can undertake a wide variety 

of routine mathematical work and solve intractable problems 

by Richard Pavelle, Michael Rothstein and John Fitch 

Of all the tasks to which the com
puter can be applied none is 
more daunting than the manipu

lation of complex mathematical expres
sions. For numerical calculations the 
digital computer is now thoroughly es
tablished as a device that can greatly 
ease the human burden of work. It is less 
generally appreciated that there are 
computer programs equally well adapt
ed to the manipulation of algebraic ex
pressions. In other words, the computer 
can work not only with numbers them
selves but also with more abstract sym
bols that represent numerical quantities. 

Perhaps one reason the algebraic ca
pabilities of the computer have not been 
fully exploited is that computer pro
gramming itself is much like algebra in 
character. It might therefore seem there 
is a natural division of labor: the pro
grammer manipulates algebraic sym
bols, whereas the computer is confined 
to arithmetic calculations, or "number 
crunching." Yet the dichotomy between 
the programmer and the computer was 
recognized to be a false one as early as 
1844 by Augusta Ada Byron, Countess 
of Lovelace, the daughter of Lord By
ron and possibly the first computer pro
grammer. Lady Lovelace was a bene
factor of Charles Babbage's and devised 
some of the programs for the early me
chanical computer that Babbage called 
the difference engine. She pointed out 
that the computer could "arrange and 
combine its numerical quantities exact
ly as if they were letters or any other 
general symbols; and in fact it might 
bring out its results in algebraic nota
tion, were provisions made according
ly." Similarly, the modern digital com
puter is a general-purpose machine that 
can carry out any algorithm, or precise
ly specified procedure. The algorithms 
of algebra can be executed by a comput
er as readily as those of arithmetic. 

In 1973 one of us (Pave lie) undertook 
an algebraic calculation pertaining to 
the general theory of relativity; the cal
culation required three months of work 
with pencil and paper. The following 
year a more formidable problem arose 
in an attempt to define the mathematical 
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properties that might d istinguish gener
al relativity from various other theories 
of gravitation. Instead of attempting an
other calculation by hand, Pavelle de
cided to construct a computer program 
for manipulating mathematical expres
sions of the kind that commonly appear 
in gravitational theories. The program 
was then written in the computer lan
guage of a powerful system of algebraic 
programs called MACSYMA, then under 
development at the Massachusetts In
stitute of Technology. Once Pavelle's 
program was installed in MACSYMA, the 
1973 problem was solved as a test; the 
computer confirmed the results of the 
three-month calculation in two minutes. 
The experience is not unusual among 
users of computer-algebra systems. 

In order to understand the need for au
tomatic systems of algebraic manip

ulation it must be appreciated that many 
concepts in science are embodied in 
mathematical statements where there is 
little point to numerical evaluation. 
Consider the simple expression 3TT2/TT. 
As any student of algebra knows, the 
fraction can be reduced by canceling TT 
from both the numerator and the de
nominator to obtain the simplified form 
3TT. The numerical value of 3TT may be 
of interest, but it may also be sufficient, 
and perhaps of greater utility, to leave 
the expression in the symbolic, nonnu
me rica I form. With a computer pro
grammed to do only arithmetic, the 
expression 3TT2/TT must be evaluated; 
when the calculation is done with a pre
cision of 10 significant figures, the value 
obtained is 9.424777958. The number, 
besides being a rather uninformative 
string of digits, is not the same as the 
number obtained from the numerical 
evaluation (to 10 significant figures) of 
3TT. The latter number is 9.424777962; 
the discrepancy in the last two decimal 
places results from round-off errors in
troduced by the computer. The equiva
lence of 3TT2/TT and 3TT would probably 
not be recognized by a computer pro
grammed in this way. 

The example ill ustrates three advan
tages that algebraic programs have over 

purely numerical ones. First, it is fre
quently more economical of computer 
time to simplify an expression algebrai
cally before evaluating it numerically. 
Although in this example the saving in 
computer time is trivial, there are many 
complicated problems in which the 
economy that results from algebraic 
simplification is significant. Second, un
like the numerical approximations gen
erated by a computer, algebraic answers 
are exact. Approximations necessarily 
introduce errors; if there are many suc
cessive numerical operations, the errors 
can accumulate and make nonsense of 
the final result. Only if a careful error 
analysis is undertaken can the final an
swer be stated with confidence, and such 
error analysis is one of the most com
plex problems faced in many fields. 

The third and perhaps the most im
portant advantage is that the goals of 
scientific investigation are often better 
served by a result in algebraic form. As 
Richard W. Hamming of Bell Laborato
ries has written, "the purpose of com
puting is insight, not numbers." Insight 
is sometimes obtained by evaluating a 
mathematical expression, but in many 
cases the relations of the quantities are 
made clearer by algebraic means. 

In the study of a chemical process, for 
example, it is possible to express alge
braically the relation between the stabil
ity of the process and the relative quan
tities of the substances present. From 
such a relation one can predict quite ac
curately whether a small change in one 
quantity will cause a violent reaction or 
a controlled one. Similarly, in the theory 
of stellar evolution one can examine al
gebraically how a number of variables 
determine whether a star will become a 
neutron star or a black hole, or how the 
variables interact to predict the exis
tence of a new object. 

There is a fourth advantage of the au
tomatic systems we shall call computer
algebra systems, which is brought out by 
considering some pragmatic aspects of 
the accumulation of scientific knowl
edge. A scientific theory is often stated 
in a concise and quite general math
ematical expression that suggests the 

© 1981 SCIENTIFIC AMERICAN, INC



form the theory will take under certain 
assumptions. For example, a portion of 
the general theory of relativity, known 
as the Einstein field equations, can be 
written down in one line, given certain 
widely accepted notational conventions. 
To explore the physical implications of 
the theory is to explore the mathemati
cal implications of the field equations, 
but with some exceptions the explora
tion requires algebraic operations that 
are intractable if they are done by hand. 
Even under assumptions that simplify 
the problem enormously, the algebra is 
so taxing that few investigators will risk 
their health, happiness and professional 
well-being attempting a solution. 

The results of such work, even if they 
are admitted to the main body of sci
entific knowledge, stand as isolated in
tellectual outposts, untested by other 
workers and accepted primarily on the 
reputation of the investigator rather 
than on any promise of future critical 
examination. Such a regretta.ble state of 
affairs can prevail in any scientific field 
at what might be called the frontiers of 
intractability. For many fields computer 
algebra has now significantly expanded· 
the frontiers. 

In celestial mechanics there is a distin
guished tradition of long algebraic 

calculations. In 1847 the French astron
omer Charles Delaunay began to cal
culate the position of the moon as a 
function of time. In a sense the calcula
tion is a straightforward application of 
Newton's theory of universal gravita
tion. In Newton's theory the orbit of a 
point mass around a spherical mass of 
uniform density is an ellipse, but the 
characteristics of the earth-moon sys
tem make the moon's orbit a curve con
siderably more complex than an ellipse. 
The plane of the moon's orbit around 
the earth is inclined at a small angle to 
the plane of the earth's orbit around the 
sun, and the angle varies under the per
turbing influence of the sun's gravita
tional field. The sun also causes the lu
nar perigee (the point in the moon's 
orbit where it is closest to the earth) to 
precess slowly with respect to the stars. 

Because of such complications the po
sition of the moon has often been deter
mined not from some function of time, 
as Delaunay set out to do, but by numer
ical extrapolation from a previous lunar 
position. Over short periods the errors 
accumulated in the extrapolation are 
small, and a correction can be made by 
again determining the position of the 
moon by observation. Calculating fast 
enough to keep up with the progress of 
the moon is fairly difficult even for the 
fastest computers, and the required ob
servations are both time-consuming and 
costly. Delaunay's calculation avoided 
these difficulties, but it had one serious 
shortcoming: it demanded 20 years of 
his life to carry out and check. 

The results of Delaunay's work were 
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COMPUTER ALGORITHM for simplifying an algebraic expression by combining like 

terms closely resembles the standard manual method of simplification. For the computer each 

step of the procedure must be precisely specified. In the upper diagram the effect of each step 

on a simple algebraic expression is illustrated. In the lower diagram the application of �he algo

rithm to the more complicated expression shown in color is illustrated by a flow chart. The col

ored letters that label the arrows in the flow chart correspond to the elementary operations in 

the upper diagram. The simplified form of the expression generated by the algorithm is given 

in color at the bottom. Simplification is one of the tasks that must be done by any set of comput

er programs intended to solve mathematical problems expressed in symbols rather than numer

ical quantities. Although the simplification algorithm usually yields a useful and manageable 

algebraic expression, no single algorithm can reduce every expression to its simplest form. 
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COMPUTER-ALGEBRA SYSTEM called MACSYMA, developed at the Massachusetts In
stitute of Technology, is a general-purpose set of programs that can solve prohlems in algehra 
far beyond the abilities of most mathematicians. The system communicates with the user in a 
conversational style. After logging in to the system the user types the algehraic expression to be 
manipulated on the C line, or command line, in a computer language that resembles ALGOL 
or FORTRA:-;. The system responds on the D line with a rewritten version of the expression that 
is closer to the way it would appear on a printed page. The user then types a second command, 
and the computer carries out the indicated operation. In the first two examples the computer 
finds an expression for the sum of the first n terms of a series, where each term has the form of 
the expression next to the letter I. (Ik2 is a way of writing 12 + 22 + 32 + ... + 1/2.) In the next 
two examples the computer expands.a binomial expression and solves a nonnumerical cubic 
equation exactly. The upward-pointing arrows indicate exponentiation and ·the llsterisks indi
cate multiplication. The final example illustrates some of the computational power of the sys
tem. The maximum area of a hexagon inscribed in a circle with a diameter of 1 is one of the 
roots of the enormous 40th-degree pOlynomial shown. Manual methods of finding roots are 
unable to cope with a polynomial of this size; it is easier to factor the polynomial and find 
the roots of the factors. The computer-algebra system gives the most complete factorization 
whose terms have integral coefficients. A computer can solve the problem in about two minutes. 
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published in two volumes in 1867, and 
they remained unchallenged for more 
than 100 years. During World War II 
there was interest in expressing the coor
dinates of fixed stars as a function of 
time in order to help in determining the 
positions of German U-boats, but there 
was no further work on the orbit of the 
moon or of other bodies in the solar sys
tem. With the advent of artificial earth 
satellites, however, Delaunay's method 
for determining orbits became economi
cally attractive. 

In order to devise algebraic expres
sions for satellite orbits, Andre Deprit, 
J acq ues Henrard and Arnold Rom, who 
were then at the Boeing Scientific Re
search Laboratories in Seattle, began to 
investigate algorithms for doing the De
launay calculation with a computer. In 
1970 they made the calculation in about 
20 hours of computer time. Remark
ably, they found only three errors in De
launay's work, all in terms of small val
ue; moreover, two of the errors were 
mere consequences of the third one. 
Computer-algebra systems have since 
been developed that extend Delaunay's 
method by taking into account the ef
fects of atmospheric drag and the non
spherical shape of the earth on a satellite 
in a low-altitude orbit. The algorithms 
are now sometimes employed in satellite 
tracking. 

Considering the human life span, a re
duction in the time needed for an opera
tion from 20 years to 20 hours is a quali
tative gain. Problems as complex as De
launay's problem can become the focus 
of research for an investigator who has 
far less patience than Delaunay had. 
Moreover, the investigator can spend a 
much greater proportion of his time 
weighing the significance of his alge
braic results. He can experiment with 
elaborate calc ulations without betting 
his career on the correctness and the util
ity of the answer. Perhaps the most tell
ing indication that computer algebra has 
shifted the frontier of intractability in 
celestial mechanics is that Delaunay's 
huge calculation has been undertaken as 
a test of new computer-algebra systems. 

How can a computer be programmed 
to carry out algebraic manipu

lations? Many of the algorithms em
ployed in computer algebra began as the 
basic procedures devised by earlier gen
erations of mathematicians that are now 
taught to algebra students in high school 
and college. For example, the methods 
for solving equations in which a single 
unknown quantity is raised to the first 
or the second power have been known 
since the time of Hammurabi, about 
1750 B.C. Unlike the student who may 
develop an intuitive but vague sense of 
how to proceed through such a solution, 
however, the computer must follow a 
rigorous procedure that sp�cifies at ev
ery point what the computer is to do. 

Consider how a student with a mod-
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NUMBER CRUNCHING INSIGHT ALGEBRAIC ALGORITHM 

1 + 2 = 3 1 ,275 + 51 = 1,326 
1,326 + 52 = 1 ,378 
1 ,378 + 53 = 1,431 

1 ,431 + 54 = 1 ,485 
1 ,485 + 55 = 1,540 

1 ,540 + 56 = 1 ,596 
1 ,596 + 57 = 1 ,653 
1 ,653 + 58 = 1 ,711 
1,71 1 + 59 = 1,770 
1,770 + 60 = 1 ,830 
1 ,830 + 61 = 1 ,891 
1 ,891 + 62 = 1 ,953 
1,953 + 63 = 2,01 6 
2,01 6 + 64 = 2,080 
2,080 + 65 = 2,145 
2,1 45 + 66 = 2,21 1 
2,211 + 67 = 2,278 
2,278 + 68 = 2,346 
2,346 + 69 = 2,41 5 
2,415 + 70 = 2,485 
2,485 + 71 = 2,556 
2,556 + 72 = 2,628 
2,628 + 73 = 2,701 
2,701 + 74 = 2,775 
2,775 + 75 = 2,850 
2,850 + 76 = 2,926 
2,926 + 77 = 3,003 
3,003 + 78 = 3,081 
3,081 + 79 = 3,1 60 
3,160 + 80 = 3,240 
3,240 + 81 = 3,321 
3,321 + 82 = 3,403 
3,403 + 83 = 3,486 
3,486 + 84 = 3,570 
3,570 + 85 = 3,655 
3,655 + 86 = 3,741 
3,741 + 87 = 3,828 
3,828 + 88 = 3,916 
3,916 + 89 = 4,005 
4,005 + 90 = 4,095 
4,095 + 91 = 4,186 
4,1 86 + 92 = 4,278 
4,278 + 93 = 4,371 
4,371 + 94 = 4,465 
4,465 + 95 = 4,560 
4,560 + 96 = 4,656 
4,656 + 97 = 4,753 
4,753 + 98 = 4,851 
4,851 + 99 = 4,950 

4.950 +100 = 5,050 

1 +2+3 48+49+50+51+52+53 98+99+1 00 

3 + 3 = 6 
6 + 4 = 10 

10 + 5 = 15 
15 + 6 = 21 
21 + 7 = 28 

LSW I WRITE GENERAL FORM 
OF EQUATION 

I 1 +2+3+ ... + N = AN2 + 8N + C I 
28 + 8 = 36 
36 + 9 = 45 
45 + 10 = 55 
55 + 1 1  = 66 
66 + 12 = 78 
78 + 13 = 91 
91 + 1 4  = 1 05 

1 05 + 15 = 1 20 
1 20 + 1 6  = 1 36 
1 36 + 1 7  = 153 

1 53 + 18 = 171 
1 71 + 1 9  = 1 90 
1 90 + 20 = 21 0 
21 0 + 21 = 231 
231 + 22 = 253 
253 + 23 = 276 

276 + 24 = 300 
300 + 25 = 325 
325 + 26 = 351 
351 + 27 = 378 
378 + 28 = 406 

406 + 29 = 435 
435 + 30 = 465 
465 + 31 = 496 

496 + 32 = 528 
528 + 33 = 561 
561 + 34 = 595 
595 + 35 = 630 
630 + 36 = 666 
666 + 37 = 703 
703 + 38 = 741 

741 + 39 = 780 
780 + 40 = 820 
820 + 41 = 861 
861 + 42 = 903 
903 + 43 = 946 
946 + 44 = 990 
990 + 45 = 1,035 

1,035 + 46 = 1,081 
1,081 + 47 = 1,128 
1 ,128 + 48 = 1,176 
1 ,176 + 49 = 1 ,225 

1 ,225 + 50 = 1,275 

1 01 

1 01 

101 

1 
EVALUATE GENERAL EQUATION 

FOR THREE VALUES OF N 

IFN = 1, 1 = A(1 )2 +8(1) +C 

IFN = 2, 1 + 2 = A(2)2 + 8(2) + C 

IF N = 3, 1 + 2 + 3 = A(3)2 + 8(3) + C 

1 
SOLV E THREE EQUATIONS 

IN THREE UNKNOWNS 

H BHe,} A = V2 
4A+28+C= 3 8 = V2 
9A+38+C= 6 c=o 

1 
SUBSTITUTE IN GENERAL 

EQUATION FOR A, 8 AND C 

1+2+3+ ... + N = 

'i2N2 + '/2N + 0 = 

V2N(N + 1) 

1 
SOLVE EQUATION 

FUR N = 100 

1 +2+3+ ... + 1 00 = 

'/2 X 1 00 x 101 = 

5,050 
1 01 

50 x 101 

~ 1 
I 5,050 I 

APPLICATION OF COMPUTER ALGEBRA to a numerical cal
culation can save computer-processing time by simplifying an alge
braic expression before it is evaluated numerically. To find the sum 
of the first 100 integers a numerical calculation requires 99 separate 
additions. A simpler algorithm employed by the computer-algebra 
program solves the problem by taking advantage of a general mathe
matical result showing that the sum of the first II integers is a quadrat
ic, or second-degree, polynomial function of II. Similarly, the algo
rithm would find the sum of the squares of the first II integers by 
constructing a third-degree polynomial function of II. Although the 

algorithm is effective, it is not necessarily the fastest way to solve the 
problem or the one that leads to the clearest understanding of it. Ac
cording to legend, the German mathematician Carl Friedrich Gauss 
noticed at the age of seven that the integers from 1 to 100 can be 
grouped in pairs so that all the pairs add to the same number, namely 
101. The sum of the first 100 integers is therefore equal to 101 multi
plied by SO, which is the number of pairs. Computer-algebra systems 
usually cannot recognize such patterns; on the other hand, Gauss's 
method cannot be applied to finding the sums of squares, cubes or 
higher powers of integers, as the computer-algebra algorithm can. 
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A CAR FOR THE LEFT SIDE 
OF YOUR B RAIN. 

The left side of your 
brain, recent investigations 
tell us, is the logical side. 

It figures out that 
1 + 1 = 2. And, in a few cases, 
that E=mc� 

On a more mundane level, 
it chooses the socks you 
wear, the cereal you eat, and 
the car you drive. All by means 
of rigorous Aristotelian logic. 

However, and a big 
however it is, for real satis
faction, you must achieve 
harmony with the other side 
of your brain. 

The right side, the poetic 
side, that says, "Yeah, Car X 
has a reputation for lasting a 
long time but it's so dull, 
who' d want to drive it that 
long anyway?" 

The Saab Turbo looked at 
from all sides. 

To the left side of your 
brain, Saab turbo charging is 
a technological feat that 
retains good gas mileage 
while also increasing 
performance. 

To the right side of your 
brain, Saab turbo charging is 
what makes a Saab go like a 
bat out of hell. 

The left side sees the 
safety in high performance. 
(Passing on a two-lane high
way. Entering a freeway in 
the midst of high-speed 
traffic.) 

The right side lives only 
for the thrills. 

The left side considers 
that Road & Track magazine 
just named Saab "The Sports 
Sedan for the Eighties:' By 
unanimous choice of its 
editors. 

The right side eschews 
informed endorsements by 
editors who have spent a life
time comparing cars. The 
right side doesn' t know much 
about cars, but knows what it 
likes. 

The left side scans this 
chart. 

Wheelbase . . . . . . . . . . . .. 99.1 inches 
Length ................ 187.6 inches 
Width . . . . . . . . . . . . . . .. 66.5 inches 
Height . . . . . . . . . . . . . . .. 55.9 inches 
Fuel-tank capacity. . . . . .. 16.6 gallons 
EPA City .............. 19 mpg* 
EPA Highway . . . . . . . . .. 31 mpg * 

The right side looks at 
the picture on the opposite 
page. 

The left side compares a 
Saab's comfort with that of a 
Mercedes. Its performance 
with that of a BMW. Its brak
ing with that of an Audi. 

The right side looks at 
the picture. 

The left side looks ahead 
to the winter when a Saab's 
front-wheel drive will keep a 
Saab in front of traffic. 

The right side looks at 
the picture. 

The left side also consid
ers the other seasons of the 
year when a Saab's front
wheel drive gives it the cor
nering ability of a sports car. 

The right side looks again 
at the picture. 

Getting what you need vs. 
getting what you want. 
Needs are boring; desires 

are what make life worth 
living. 

The left side of your brain 
is your mother telling you 
that a Saab is good for you. 
"Eat your vegetables:' (In 
today's world, you need a car 
engineered like a Saab.) "Put 
on your raincoat:' (The Saab 
is economical. Look at the 
price-value relationship.) 
"Do your homework:' (The 
passive safety of the con
struction. The active safety 
of the handling.) 

1982SAAB PRICE** LIST 

9003-Door 5-Speed $10,400 
Automatic 10, 750 

900 4-Door 5- Speed $10,700 
Automatic 11 ,050 

900S3-Door 5-Speed $12,100 
Automatic 12,450 

900S 4-Door 5-SPeed $12,700 
Automatic 13,050 

900 Turb03-Door 5-Speed $15,600 
Automatic 15,950 

900 Turbo 4-Door 5-Speed $16,260 
Automatic 16,610 

All turbo models include a Sony XR 70, 
4-Speaker Stereo Sound System as standard 
equipment. T he stereo can be, of course, 
perfectly balanced: left and right. 

The right side of your 
brain guides your foot to the 
clutch, your hand to the 
gears, and listens for the 
"zzzooommm:' 

Together, they see the 
1982 Saab Turbo as the 
responsible car the times 
demand you get. And the 
performance car you' ve al
ways, deep down, wanted 
with half your mind. 

* Saab 900 Turbo. Remember; use estimated mpg for comparison only. Mileage varies with speed, trip length, and weather: Actual highway mileage will 
probably be less. * * Manufacturer's suggested retail price. Not including taxes, license, freight, dealer charges or options desired by either side of your brain. 
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A CAR FOR THE RIGHT SIDE 
OF YOUR B RAIN. 

SAAB 
The most intelligent car ever built. 
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erate facility for simple algebra might 
solve the equation 3x - 1 = 2(x + 5). 
First he would "clear parentheses" by 
multiplying both terms within the pa
rentheses, x and 5, by 2, obtaining 
3x - 1 = 2x + 10. He would then trans
fer the term 2x to the left side of the 
equation and the term - 1  to the right, 
changing signs as he goes and adding or 
subtracting terms as necessary. Thus in 
a single additional step he would obtain 
the answer x = 1 1. 

In a computer-algebra program the 
steps to the solution of the problem 
have to be specified in somewhat tedious 
detail, and the shortcuts that might be 
recognized by a student during work on 
a particular problem must be spelled 
out. The first step in solving the equa
tion in our example wo uld probably not 
d iffer in the program from the stu
dent's method: the program would clear 
parentheses and obtain the expression 
3x - 1 = 2x + 10. In order to reach the 
last line, however, the program would 
have to transfer the terms of the equa
tion one by one to a convenient side of 
the equal sign. One way to do this would 
be to program the computer to add an 
expression called the additive inverse to 
all the numerical constants appearing 
on the left side of the equal sign and to 
all terms that include variables appear
ing on the right side of the equal sign. 
Since - 1 is the only constant to appear 
on the left of the equal sign, the comput
er would add its additive inverse, + 1, 
to both sides of the equation, obtain
ing 3x - 1 + 1 = 2x + 10 + 1. The pro
gram would then rearrange the terms, if 
necessary, and add or subtract where 
possible, obtaining 3x = 2x + 1 1. 

Next, the program would search the 
expressions on the right of the eq ual 

sign for terms including variables and 
find the additive inverse of the first such 
term it encountered. In the example the 
computer would construct the additive 
inverse of 2x (namely -2x) and add it 
to both sides of the equation, thereby 
obtaining 3x - 2x = 2x + 1 1  - 2x. Once 
again the terms would be rearranged so 
that like terms could be combined: 
3x - 2x = 2x - 2x + 1 1. Finally, the 
program would combine the terms hav
ing the same variable names and stop 
when a single variable appeared on the 
left side of the equation and a numerical 
constant appeared on the right: x = 11. 
Such an algorithm is neither the simplest 
nor the most efficient method one can 
devise for programming a computer to 
solve equations that have one unknown 
quantity, but it is not sufficiently com
plex either. There are many possibilities, 
such as the appearance of the expression 
2x = 22 at some step in the solution 
of the problem, that the algorithm as 
we have described it is not equipped to 
deal with. 

In developing an algorithm for com
puter algebra it is not necessary to fol-

low the procedure that is most efficient 
in manual calculation. Delaunay proved 
several theorems that he then employed 
to simplify intermediate calculations. 
Although the theorems could be incor
porated into a program, the effort nec
essary to express them in algorithmic 
form encouraged Deprit and his col
leagues to search for a method more 
compatible with mechanized execution. 
The one they invented requires transfor
mations that would have exceeded the 
abilities even of Delaunay, but the al
gorithm is easy to program and can be 
exec uted quickly with a computer. The 
development of new algorithms is one 
of the most active areas of investigation 
in computer algebra; it is largely be
cause of such work that computer-alge
bra systems have been improved signifi
cantly in the past few years. 

In order to represent an algebraic 
expression in a computer program, 

most systems store the minimum infor
mation needed to specify the expres
sion uniquely. Current representation
al schemes employ one of two basic ap
proaches or a combination of'the two. 
In one approach an expression is repre
sented as an inverted treelike structure 
in which the leaves are the operands. 
For example, suppose one wished to 
represent the expression 2(x + 4) in a 
computer. The leaves of the tree would 
be the terms 2, x and 4, although they 
would appear at d ifferent levels. Both 
the x and the 4 would be connected by 
upward-moving branches to a plus sign. 
The symbol 2, however, would not be 
linked to the plus sign. Instead branches 
from the 2 and from the plus sign would 

a 

j+\ 
b 

c 

/y�;/\ 

In [Ian (x + i)] - sin h-1 [Ian (2x)1 

SIMPLIFICATION of an expression pre
sents a problem of choice for a corn puter-al
gebra system: given several equivalent forms 
of an expression, such as those in the upper 
part of the illustration, which is to be consid
ered the simplest? Many systems now being 
designed leave the choice partly to the person 
working with the system. The complex ex
pression in the lower part of the illustration is 
equal to zero for all values of x for which the 
tangents are positive real numbers. The ex
pression does not vanish for all values of x, 
however. If a computer-algebra system were 
to substitute zero for the expression, the rela
tion of the final answer to the original prob
lem could become quite obscure. The expres
sions In, tan and sinh -1 are the standard nota
tions respectively for the natural logarithm, 
the tangent and the inverse hyperbolic sine. 

meet at the top, or root, of the tree, 
which would be labeled with a multipli
cation sign. The representation makes 
more efficient the search for subordinate 
expressions of predetermined form. 

In the second scheme "slots" are as
signed in some definite order to repre
sent the information carried by an ex
pression. To represent a polynomial in 
one variable, for instance, one slot is as
signed to the name of the variable, the 
next slot to the degree of the polynomial 
(the largest power of the variable that 
appears in the polynomial) and the fol-

x 3 2 3 II -I 
2x3 + 3x2 + Ilx - I 

y y y 

2 

3 11 -I 

4 /+,\ LEAVES /X\ 
8 C �3 E 

2 
0 

3y2 + 2y 

2 -I 

Ily + 2 -y -I 

4(8 + C) + (A - 3E) 2x3 + (3y2 + 2y)x2 + (Ily + 2)x + (-y - 1) 
� 2x3 + 3X2y2 + 2x2y + llxy + 2x - Y - 1 

REPRESENTING AN ALGEBRAIC FUNCTION in a computer may require several strat
egies. -The inverted tree diagram (a) is a simple and convenient means of representing the se
quence of operations that apply to the variables and constants in an expression. A polynomial 
function of one variable can be represented by a sequence (b) that consists of the name of the 
variable, the degree of the polynomial (equal to the largest power of the variable that appears 
in the polynomial) and the numerical values of the coefficients of descending powers of the 
variable. To represent a polynomial function of two variables (c) a generalization of the poly
nomial representation for one variable can be employed. Here the horizontal group of slots rep
resents a third-degree polynomial function of the variable x, whereas the vertical groups of 
slots represent polynomial functions of the variable y. The three polynomials in y are under
stood to be coefficients, or multipliers, of the terms of the polynomial in x that correspond 
to the three slots left blank. Hence the coefficient of the term x2 is 3y2 + 2y, the coefficient 
of the term x is 1 1y + 2 and the coefficient of the constant term of the pOlynomial in x is - y - 1. 
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QUESTAR: 12 on the 
QUESTAR MOUNT 

The Questar 12, latest addition to the Questar family of fine optical 
instruments, now has its own Questar-designed mount. A German 
equatorial type, it is notable for its 3600 continuous tracking in A.A. 
with precision tracking to better than 4 arc seconds. The Questar 
Mount is designed with over-sized components so that it can 
accommodate any Questar up to 18 inches. The standard mount 
shown is straightforward in design but can be modified so as to be 
compatible with more sophisticated tracking devices or other 
special equipment. 

The Questar 12 is a superb instrument for the serious astronomer, for 
the university astronomy department or the engineer seeking 
sophisticated tracking and surveillance equipment for which Questar 
Corporation has a noted reputation. 

Questar Corporation Box C, Dept. 20, New Hope, Pa. 18938 (215) 862-5277 

Observing domes suitable for 
housing the Questar 12 or 
larger telescopes are also 
available at Questar. 

C Questar Corporation 1981 
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lowing slots to the coefficients of de
scending powers of the variable. The 
set of information slots can be made 
a part of a tree-structure representa
tion when more complicated expres
sions must be stored.  

Although every representation in a 
I\. computer must be unambiguous, 
any given algebraic expression can be 
represented in a variety of equivalent 
ways. One might want to construct an 
algorithm that would always represent 
an expression in the simplest form possi
ble; in such an algorithm, for instance, 
x + x + x might always be represented 
as 3x. People disagree, however, over 
what constitutes the simplest form of an 
expression. Stylistic preferences differ in 
much the same way as political ideolo
gies do: programs designed by conserva
tives make no transformations on an ex
pression unless they are specifically in
structed by the user to do so, whereas 
programs designed by radicals always 
change the user's expression to their 
own preferred form. Many people like 
to retain some control over the simplifi
cation of an expression because the utili
ty of a particular form may depend on 
the circumstances in which it is encoun
tered.  In any event, even if people could 
agree on what is the simplest form of 
every expression, it is known that the 
construction of a general algorithm for 
simplification is impossible. 

Computer-algebra systems can sim
plify expressions that are exceedingly 
large and complex. Such expressions 
may incorporate not only the elementa
ry polynomial, trigonometric and log
arithmic functions but also the more 
complex functions that can arise in sci
entific work. The user of a computer-al
gebra system can also define his own 
functions, specify their properties and 

COMPUTE REMAINDER Rl 
WHENy + x 

PRINT 

GCO(x;y) = x 

GCO( 102.131 ;251.591) 

2 
102,131 ) 251,591 

204,262 

Rl = I 47,
329 

Rl = O? 

NO 

FLOW CHART diagrams the operation of 
the Euclidean algorithm, a rigorous proce
dure for determining the greatest common di
visor (GCD) of two integers. (The greatest 
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supply the rules of simplification appro
priate to them; indeed, the computer can 
sometimes be employed to find such 
rules. In most cases little is known in 
advance about how an expression will 
simplify. The most practical method is 
to retrieve from the computer's memory 
all the kinds of algebraic expression the 
program can already simplify, supply 
whatever additional algebraic identities 
the programmer can think of and allow 
the computer to proceed on its own. The 
method works surprisingly well: it can 
often simplify as effectively as an expert 
mathematician. 

Because of the need in algebraic cal
culations for exact rather than approxi
mate answers, a computer-algebra sys
tem must be able to manipulate huge 
numbers with unlimited precision. In 
most computers numbers are ordinarily 
represented with a fixed number of sig
nificant digits, although the precision 
of the arithmetic operations can some
times be doubled or even increased sev
eralfold. For the purposes of computer 
algebra, however, no limits on preci
sion can be set in advance. 

Consider one algorithm that can be 
employed to simplify a rational polyno
mial expression (one in which one poly
nomial is divided by another). The algo
rithm is a generalization and modifica
tion of a method called the Euclidean 
algorithm for determining the greatest 
common divisor (OCD) of two num
bers, which has been known for 2,200 
years. The OCD of two numbers, such 
as 6 and 8, is found by a fixed sequence 
of repeated divisions; once the OCD is 
found, a fraction can be reduced to its 
lowest terms by dividing both the nu
merator and the denominator by the 
OCD. For the fraction 6/8 the OCD is 2 
and the reduced form is 3/4. 

When the Euclidean algorithm is ap-

COMPUTE REMAINDER R2 
WHEN x + R1 

PRINT 

GCD(x;y) = R1 

� 47,329 

plied to a polynomial, however, the quo
tients and remainders in the repeated 
divisions can rapidly develop terms in 
which the fractional coefficients are ra
tios of enormous numbers. To avoid 
computing with enormous numbers, 
certain techniques have been devised 
for reducing the size of the numbers car
ried along in the computation. For ex
ample, a constant numerical factor can 
be eliminated from a polynomial in the 
Euclidean algorithm. Rounding any of 
the coefficients before the calculation 
is complete, however, would make non
sense of the final answer. 

One of the most important algorithms 
developed in the past 15 years for 

computer-algebra systems is an algo
rithm that can solve problems in indefi
nite integration. Integration is a basic 
method of calculus, first invented in
dependently by Newton and Leibniz, 
whereby an unlimited number of arbi
trarily small quantities can be combined 
to yield some specific quantity . In what 
is called indefinite integration, the meth
od is generalized :  the outcome of the 
integration is expressed as a function of 
at least one variable instead of as some 
definite quantity. Such problems are en
countered often in the physical and bio
logical sciences, but their difficulty has 
bedeviled mathematicians for hundreds 
of years. It was once thought that no 
general algorithm for the solution of 
such problems could be constructed; 
the standard approach to their solution 
calls both for guesswork and for con
sulting published tables of integrals. 

The algorithm that was successfully 
constructed for indefinite integration is 
similar to an algorithm subsequently de
veloped to determine an algebraic ex
pression for a finite sum of expressions 
that all have the same form [see illustra-

COMPUTE REMAINDER R3 
WHEN R1 + R2 

tion on page 139]. If an integral can be 
solved at all in closed form (rather than 
as the sum of an infinite series of terms), 
it is possible to predict the general alge
braic form of the solution and then work 
backward by differentiation (the reverse 
of integration) to determine the exact 
formula. The algorithm has been incor
porated into several computer-algebra 
systems. A numerical computer study of 
e ight widely employed tables of indefi
nite integrals discovered that about 10 
percent of the formulas are in error; one 
of the tables was found to have an error 
rate of 25 percent. 

The funds spent on the development 
of computer-algebra systems probably 
do not exceed $3 million per year in 
the U.S. Nevertheless, the systems al
ready exhibit great sophistication and 
diversity of design. There are about 60 
such systems today, and they can be 
classified into three main groups that re
flect their historical development. The 
systems in the first group are the de
scendants of the earliest attempts to 
write programs in computer algebra; 
they were designed to solve specific 
problems in fields such as mathematical 
physics and theoretical chemistry. Be
cause a special-purpose program can be 
finely tuned for the kind of inp ut expect
ed, it can operate at great speed. Cur
rently such programs exist for solving 
problems in quantum electrodynamics 
(ASHMEDAI), lunar theory and general 
relativity (CAMAL), high-energy physics 
(SCHOONSCHIP), indicial tensor manipu
lation (SHEEP) and celestial mechanics 
(TRIGMAN) and for solving equations 
limited to polynomials and rational 
functions (ALTRAN). There is even a 
special-purpose program called ALDES
sAc/2 that can assist in developing new 
computer-algebra programs. 

The systems in the second major 

COMPUTE REMAINDER R4 
WHEN R2 + R3 

�
L- _

R
_
4

_
=

_
0
_

? 
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I PRINT L.J:::\ 
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_
�

_
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_
)

_
=

_
R

_
3

_ --J1 �� PRINT 

GCD(x;y) = R2 

3 

7,473 
7,473 

R4= G 

R4 = O? 

YES 

GCD(102, 131; 

2 51.591) = 2 ,491 

STOP 

common divisor is the largest integer that will divide both given inte
gers without leaving a remainder.) The algorithm was discovered at 
least 2,200 years ago; except for the four elementary operations of 
arithmetic it is the oldest algorithm known. Colored arrows in the 

flow chart indicate the transitional states of the algorithm for the 
numerical example in the lower part of the diagram. The Euclide
an algorithm is not limited to integers; a slightly modified proce
dure can determine the greatest common divisor of two polynomials. 
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group are the general-purpose ones, 
which provide the investigator with as 
many mathematical capabilities as pos
sible. Such systems can carry out the 
four basic arithmetic operations, per
form definite and indefinite integration 
and solve equations, including ordinary 
differential equations that express alge
braically how the change in one variable 

depends on changes in other variables. 
The programs can also solve systems of 
linear or nonlinear algebraic equations, 
differentiate, simplify, factor, compute 
with finite or infinite sums of expres
sions called Taylor series and perform 
all the functions of the special-purpose 
systems, although not with as much 
speed and power. The four best-known 

P = XS + 15x' + 85x3 + 225x2 + 274x + 120 

o = 6x' + 77x3 + 304x2 + 363x + 90 

GCO(P;O) 

P+O 

6x' + 77x3 + 304x2 + 363x + 90) XS + 15x' + 85x3 + 

R1 = O? 

NO 

0+ R1 

XS + 15x' + 2.825x3 + 

Rl= 235x3 + 

10 152x + 45 180 
11,045 

235x3 + 1,970x2 + 4,605x + 3,150 )8x' 
+ 77x3 + 36 

225x2 + 

6 130x2 + 

1.970x2 + 

304x2 + 

6x4 + 77x3 + 
754, 192 x2 + 

R2 = O? 

NO 

R1 + R2 
R2 = _ 82.656x2 + 

274x + 

5,259x + 
36 

4.605x + 

36 

363x + 

1 ,333,515x + 
2,209 

531.648x + 
2,209 

_ 148 986 005x + 290 660 220 
854,001,792 ) 235x3 + 1 970x2 + 4,605x 

36 

120 

1,170 

3,150 

90 

790,650 

591,840 

+ 3,150 

235x3 + 1.970x2 762.992,310x + 540,793,800 
36 

+ 
5,930.568 R3 = O? 

NO 

R2 + R3 

_ 121,495 (x + 5) 
164,738 

R4 = O? 

YES 

GCO(P;O) = x + 5 

R3 = 
121,495 

- 164,738 (
x + 5) 

13.616.584,128x + 19,499.707.584 
268,382,455 ) _ 82,656x2 + 531.648x + 591,840 

2,209 

82,656x2 + 531.648x + 591,840 
2,209 

R4= G 
EUCLIDEAN ALGORITHM applied to polynomials determines their greatest common divi
sor by repeated divisions, in the same way as it determines the greatest common divisor of two 
integers. The algorithm can give rise to huge intermediate numerical results that cannot be 
rounded off. For this reason the arithmetic operations in a computer-algebra system must 
have unlimited precision. Ordinarily a number stored in a computer is allotted a fixed amount 
of space in the computer memory, but in a computer-algebra system no fixed allocation can be 
made. Mathematicians who study the properties of large numbers have been attracted to this 
feature of computer-algebra systems. Colored arrows and the statements printed in color cor
respond to the steps of the algorithm diagrammed in the illustration on pages 144 and 145. 
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general-purpose systems are MACSYMA; 
REDUCE, a system developed at Stanford 
University, the University of Utah and 
the Rand Corporation; SCRATCH PAD, de
veloped by the International Business 
Machines Corporation, and SMP, de
veloped at the California Institute of 
Technology. They represent the most 
advanced achievements in computer al
gebra so far. 

Computer-algebra systems designed 
to operate with microcomputers have 
now begun to appear. They are slower 
and less comprehensive than the general 
systems designed for large computers, 
but they can still perform far more com
plex calculations more accurately than 
many mathematicians can. The most so
phisticated and widely available such 
system is called mUMATH; it was devel
oped at the Soft Warehouse in Honolu
lu. MUMATH provides some of the capa
bilities of the general systems, although 
the size, memory and speed of the mi
crocomputer do not allow mUMATH to 
attack very complex problems. Never
theless, such systems (or their more 
powerful descendants) may find their 
way into personal microcomputers and 
perhaps even notebook-size calculators 
before the end of the decade. 

Computer-algebra systems tend in
creasingly to be written in simple, 

high-level programming languages that 
resemble ordinary mathematical ex
pressions. The systems are also general
ly designed to interact with the pro
grammer in a conversational manner. 
The beginner can often learn in a few 
minutes to solve many kinds of nontrivi
al problem beyond his power to solve by 
hand. With most general systems the 
user types in a command in a language 
similar to the computer languages AL
GOL or FORTRAN. If the command in
cludes fractions, exponents or other 
symbols that do not normally appear on 
the same line in print, the computer re
plies with a rewritten version of the ex
pression that d isplays it in more natural 
form. The user can then specify certain 
operations to be carried out on the ex
pression, such as adding it to itself, rais
ing it to a power, differentiating it or 
integrating it. The computer executes 
the operation, simplifies the resulting 
expression and prints it or displays it on 
a video terminal. If the operation de
pends on, say, whether the positive or 
the negative square root of an expres
sion is to be extracted, the computer 
queries the user before the calculation is 
finished. 

Computer algebra has been applied in 
a variety of disciplines, including acous
tics, algebraic geometry, economics, flu
id mechanics, structural mechanics and 
number theory, and in the design of pro
pellers, ship hulls, helicopter blades, 
electron microscopes and large-scale in
tegrated circuits. We shall describe three 
additional applications in which com-
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ffWe're taking 
gteat color photos 
of Oldahoma-
16,000 feet down': 

C.). Waidelich. President and Chief Executive Officer. 
Cities Service Company. Tulsa. Oklahoma 

A major breakthrough in seismology 
is increasing our success ratio in finding 
new energy reserves. 

Mapping underground terrain - like 
we're doing here in Oklahoma - is nothing 
new. But Cities Service geophysicists are 
taking basic seismic data and adding a 
significant twist- the ability to isolate and 
recognize geophysical findings and 
attributes through a unique color process. 

We call this development Cit·Chrome� 
Now when we look at seismic sections, 
we're able to see things we might have 
missed before. 

Color seismic is helping us do a better 
job of finding new deposits - before a 
wildcat is even drilled. So when we do 
drill, our ratio of successful wells goes up. 

This is just one of many advanced 
technological tools Cities Service is using. 
We're also using computers that process 
seismic data so that the subsurface can be 
visualized in three dimension, and satellite 
telemetry photos to help pinpoint untapped 
energy resources. 

Cities Service geophysical information 
from all over the world is fed into our 
Technology Center in Tulsa for in·depth 
analysis. It's the newest, and one of the 
most advanced centers of its kind. This 
multimillion dollar complex symbolizes 
the commitment we've made to change 
America's energy future for the better. 

CITIES SERVICE 
COMPANY 

On top of the problem, 
part of the solution. 
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Everything about David Plastowrepresents his 
companys philosophy. Which is why he wears a Rolex. 

David Plastow is the cus
todian of a long and famous 
engineering tradition. 

He is the Chief Execu
tive of Rolls-Royce Motors , 
and indeed, his manner and 
personal appearance exact-
1y reflect the ethos of that 
company. That of the skilled 
engmeer. 

Plastow takes a personal 
interest in any modification, 
however small .  

"All our developments 
at Rolls-Royce are always 
evolutionary rather than 
revolutionary," he says . 

"We are a highly personal business , and 
both our craftsmen and our customers have 
clearly defined ideas about what a Rolls
Royce should be. But while we don't tamper 
with those fundamental ideas , we are , of 
course , constantly searching for improve
ment. For instance, years ago, the gear 
selection on a Rolls-Royce car became com
pletely electronic. But, a driver likes to 'feel' 

that the gear selection lever 
is doihg something . . .  so 
we engineered the 'feel' 
back into it - so it's satisfying 
to use ." 

David Plastow recog
nizes the similar philosophy 
behind the watch he wears . 

"It's a Rolex Oyster 
Datejust. I'm told that the 
engineering concept of the 
Oyster case first appeared 
in 1926. 

"Obviously this watch 
has changed and improved 
over the years but Rolex 
has stayed with the basic 

idea because it was a very good one. It's ex
tremely tough, very reliable , and superbly 
engineered. After 50 years of development 
it's almost perfect': 

Which, from the man who makes the 
finest cars in the world, is quite a compliment. 

� 
ROLE X 

Write /or broch u re. Rolex Walch, U. S.A . , Inc. ,  Dept. 298, Rolex B uilding, 665 Fifth Aven ue, New York, N. Y 10022. 
World headquarters in Geneva. Other offices in Canada and major countries around the world. 
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puter algebra is making contributions. 
For investigations in plasma physics 

and the development of fusion-energy 
sources some calculations require nu
merical and algebraic computer tech
niques to be combined. The algebraic 
formulas that describe the properties of 
a plasma in a magnetic field can become 
quite complex, and they tend to impede 
physical understanding. What has been 
lacking is a means for obtaining approx
imate rather than exact analytic expres
sions for such phenome'na. To solve the 
problem the Plasma Theory Group at 

M. I.T. has devised a computer-algebra 
technique capable of partitioning the 
terms in the computation according to 
the physical processes thal generate 
them. By numerical methods one can 
then eliminate from the series of terms 
describing each process those that are 
relatively small. The result is an alge
braic expression that describes the dom
inant properties and remains sufficiently 
simple for the physical significance of 
each term to be perceived. 

In order to derive testable predictions 
from theories of the interactions of ele-

Ja fonction R ne contient plus alleun terme periQdique ; e1le se trouve dont: 
reduite it son temle non periodique selll , tel'me qni, en tenant ('ompte des 
parties fOllrnics par Ies operations I �91 �6o l 349 et 4 1 5, a pour valeul" 

- (t; 

MASSIVE ALGEBRAIC CALCULATION completed by hand in 1867 was recomputed for 
the first time in 1970 with a computer-algebra system. The original calculation was undertak. 
en by the French astronomer Charles Delaunay and was published in two volumes; a page 
of the second volume is reproduced here. Delaunay's calculation, which took 10 years to fin. 
ish and another 10 years to check, gave the position of the moon as a function of time to a preci. 

sion never before attained. Three errors were detected when the calculation was checked by 

Andre Deprit, Jacques Henrard and Arnold Rom of the Boeing Scientific Research Laborato

ries in Seattle. The major error, which gave rise to the other two errors, is outlined in color; the 

expression should be 3 3 / 1 6  y2e'2. The checking required about 20 hours of running time on a 

computer. Although computer algebra was responsible for exposing Delaunay's errors, the tao 
bles have since been turned: the remarkable precision of the calculation has been employed 

to test a few new computer-algebra systems for accuracy before they were put into service. 

No more cold coHee 

with MUG·MATE 
Your personal cup heater. 

Keep you r  coffee/tea/so u p  hot to 
the last d rop on this m i n iatu re hot 
p l ate.  Pe rfect for off ice ,  home or 
school ! M oney back guarantee. 
S pecial  Christmas Gift Oller! 
10% d i scount  on o rd e rs of 12 or 
more.  Send us you r  g ift J i st;  we ' l l  
s h i p  w i t h  g i ft card i n  yo u r  name.  

Ch ristmas del ivery guaranteed . 

R U S H  me __ MUG·MATE s @ 
$ 12 .95 + $1 .50 shipping each ( i n  Calif. 
add 78¢ ST.).  Enclosed is 0 check/M .D. 
or charge to 0 Visa or 0 M asterCard . 
Card # Exp. 

Name 

Address 

City State 

HO� I. 

Apt 

Zip  

1 485  Bayshore Blvd.,  San Francisco, CA 94124 

Garden Camera 
! CALCU LATORS 

Hewlett Packard 
HP 67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  $ 288.50 
HP 97 . .  . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  568.50 
HP 3 1 E  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34.50 
HP 32E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42.50 
HP 37E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57.95 
HP 33C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68.50 
HP 34C . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  1 1 4.50 
HP 38C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1 4.50 
H P 4 1 C  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 88.50 
H P 4 1 CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C.1I 
Syslem I . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  Call 
Accessories . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  , .  Call 

Texas Instruments 
TI 5 8 C  . . . . . . . . . . . . . . . . . . . . .  . .  . . . . .  79.95 
TI 59 . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . .  . . . . . . 1 88.50 
PC 1 00C . .  . .  . .  . . .. . .  . 1 5 5.00 
TI M8A . . . . . . . .  . .  . . .  52.50 

Chess Challenger 
Level 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  . . .  78.50 
Level 8 . . . . . . . . . . . . . . . . . . . . . . . . .  . .  . . .  1 04.95 
Level 1 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1 9.50 
Voice . . . .  . . . .  . . .  . .  . .  . .  . . . .  . .  . . . . .  . .  . . . .  . .  . . . .  , . .  229.50 
Bridge . . . . . . . . . . .  . . . . . . .  . 229.50 

• VISA' 

P rice. subject to 
chlnu, w ithout notici 

Speed your order 
TOll F R E E !  

r------., 
I C I I I  t o r  l o w  price. I 
I on N l k o n ,  M l n o l t a .  I O l y m p u l  e n d . 1 I  I M ajor B ro n d  I I C a m er . .  I �- - - -- - . 

Call 1 (800) 223-0595 
Or Send postlgl . nd h a n d l i n g  to  

GARDE" CAMERA 
345 Se.ent h  A.enue, N . Y . ,  N . Y. t OOOI 

N ew York, AI • •  k. & H l w l l i  C a l l :  

Tel :  (21 2) 868·1 420 O p e n  Weekd a y s  8:30-6:00 
OPEN SU N D AYS 1 0-4 p.m, C l o s ed Saturdays 

1 5 1  
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computique computique computique 
ti·.,.. axnputar 

S�·t 
. .. 

4 - }. . .. 
�\ ' 

• APPLE II. I I  PLUS • APPLE WRITER • MICRO·COURIER 

• �W�l�I�' 48KI : ��APHICS TABLET : �����
NICS 

: ���LPPLOT • �Im�� I PAYROILI : ��L��TYPE 
• APPLE PASCAL l64KI • ODW JONES NEWS • ANAOEX 

: �rs"i�(��J RtE� • gE���J�S • ml�s�MOLOR 

• VISIPLDT EVALUATOR ' EXTENDED 
• VISIT RENO • CONTROLLER WARRANTY 

AUTHORIZED DEALER AND SER VICE CENTER 
G E6� ������:TE Texas Instruments 
PROGRAM MABLE. 

TI ·59 960 PROG . . . . . .  1 79.9S 
PC-l00C . . . . . . . . . . . .  1 69.9S 
LCD-PROG NEW . S9.9S 
TI-30 1 1  NEW . 1 8.9S 
TI-35SP SCI  . . . . .  22.50 
TI-40 SCI NEW . . 28.9S 
BUS A N A L  I . . .  1 9.9S "SPEAK & SPELL.  READ S9.9S 
BUS ANAL I I  . 44.9S SPEAK & MATH . . . . .  ' S9.9S 
BUS CARD . 39.9S TOU C H  & TELL NEW . S4.9S 
MBA . . . . . .  . .  . . . .  . S4.9S TI-5100 D iSPLAy . . . . . 39.9S 
INVEST A N A LYST . 48.9S TI-5010 H A N D / PR INT . 49.9S 
TI-54 SCI NEW . 39.9S TI-5120 PR INTER . . . . .  59.95 
TI-551 1  NEW . . . .  44.95 TI-5130 PR INT/D ISP . 79.95 
TI-57 PROG SCi . . . . .  39.9S TI-5135 PRINT/ D ISP  . .  79.9S 
TI-58C PROG CALC . 89.9S TI-5142 PR INT/ D I S P . 99.95 

F/3 HEWLETT 
Your �n� PACKARD Headquarters 

THE HP·85 !  
Complete Enhancements, 

Peripherals 
and Accessories 

H P -61 . . .  289.95 
HP-91 . . . . . . . . 584.95 

HP-33C S C I  19.95 

HP':34C SCI . . .  1 14.95 

HP-38C BUS/RE . 1 1 9.9 5  

HP-32c  SC I  49.95 

HP-37E BUS . . . . . . . 59.95 

HP-l I C  NEW . . . . .  CALL 
HP-12C NEW . . .  CALL 

HP-43.  4 1 C V  . CALL 
HP-85 . CALL 

HP-125 NEW . . . . .  CALL 

• T O U C H  T H E  FUTU R E  

"'." ATA R I  400 ( 1 6 K )  . . . . . . . . . . . . . . . . .  349.95 
ATARr V I S I CA L C  AVA I LA B L E  . . . . .  CALL 

.1:: C H E S S  CHAL L E N G E R  1 . .  ..",. S E N S O R Y  C H E S S  . . . . . .  . 
89.95 

. 1 29.95 

_ 5813 S C I  P R O G R A M M A B L E  . . . . . 34.95 
1 1 82A P R I N T/ D i S P LAy . . . . . . . . . .  74.95 

SHARP TAL K I N G  CLOCK . . . . . . . . . . . . . . 79.95 _ EL-6200 DIG EXEC SEC . . . . . . . . . 89.95 

CASIO AA-81 D I G/ANALOG A L A R M  . 69.95 
VL-T O N E  M U S I CAL 
I N S T R U M EN T/ CA L C . . .  . 69.95 

Wl00 D E P T H  T E S T E D  A L A R M  C H R O N O  . . . 39.95 
FX7 1 00 SCI C H R O N O  ALARM CALC . . . 49.95 
FX3500 SCI P R O G R A M M A B L E  CALC . . . . . .  39.95 

(71 4) 549-7373 (800) 432-7066 (800) 854-0523 
INFORMATION LINE TOLL FREE (Within CAl TOLL FREE I Oul,lde CAl 

WE W I L L  MEET OR BEAT ANY COMPETITOR'S ADVE RTISED PRICE ON MOST ITEMS I F  HE  HAS THE M O S E .  ON HAND. 
V I SA ,  MAST E R C A R D .  M O N E Y  O R D E R ,  P E A S .  C K . ( 1 4  WA KG . DAYS TO C L A J .  COO ACC E P T E D :  M IN . $4 .95 S H I P P I N G  U .S .A . ; 
A I R ON R E QST. ·  C A L  R ES A DR 6% SALES T X  ' A L L  MRSE SUBJ TO A V A i l . '  P R I C E S  S U B J .  TO C H A N G E :  S A·p 

32 1 1  so. HARBOR BLVD. 

SANTA A N A ,  CA 92704 
N EWPORT 

1 7 1 4 1 549-7313 

W R I T E 
OR CA L L  

F O R  
F R E E  

CATA LOG 

PASAD E N A  M I D-W I LSH I R E  

(2 1 3 1 795-3007 1 2 1 3 1 385-77 7 7  

T A R Z A N A  LAWN D A L E  

1 2 1 3 1 705-7507 (2 1 3 )  370-5795 

WEST LOS A N G E L E S  B R E A  

(2 1 3 )  82 00423 ( 7 1 4 1 990-6600 

PROFESSIONAL D ISC O U NTS 

"Ph,sieist's rire" 
with the Texas Fireframe® Grate 

.. Amazing amount of heat'" 

AND GARDENS; "Easy to start" TIME; "slow
burning" NEW YORK TIMES; "No rotation or 
stirring of the logs" SCIENTIFIC AMERICAN; 
"2 .6  x more efficient" POPULAR SCIENCE. 
" Easy to maintain" D. J. Ticko, New Fairfield , 
cr. "Does a fantastic job" Frank Stanton NYC. 

For full scientific description , see L. Cranberg, 
Am. Jour. Physics ,  June ' S I .  Reprints on request. 

Grate Model 5-25: 25" front width, 2 1 "  back width , 1 3 "  
deep . Model KS-25:  same, heavy-duty , gill-boxed. 
Model U-25:  25 x 2 1 x 1 5 . Model U - I 7 :  1 7 x 1 4 x 1 3 .  
Model U-33 :  33 x 29 x  1 5 . Copyrighted instruction s .  

--,>-25 @ $44 . 95 (26 #); ---11-25 @ $44.95 (28 #) 
---11- 17 @ $ 3 6 . 95 (20 #) ;  ...:.JJ-33  @ $56.95 (35 #) 

---1<5-25 @$5 1 . 95 (3 1 #) ; --.Reprint ( s-a envelope) 
Add 1 0% for shippi ng in U . S .; Endose check or 
Visa, MC # Exp. Date __ 
Name 

Address 

City State __ Zip ____ _ 
TEXAS FIREFRAME CO. 

P.O. Box 3435 Austin, Texas 78764 

152 

cAnyo1\.e for 
Te1\.ons? __ 

If your racket  is tenons, doubles or s i ngles,  and 
you want a perfect  match every t ime,  you can 
l e a rn from t h e  profe s s i o n a l s .  They know a 
classic  way to join  two pieces of wood toge ther  i s  
w i th a tenon t h a t  f i l s  i n t o  a mort i se .  

Fine Woodwork ing maga z i n e  s p e a k s  t h i s  
l a nguage to more t h a n  200,000 readers-people 
se riou sly i n t e rested i n  making beau t i fu l  things 
out of wood.  Whether you a re an asp i r i n g  novice 
o r  an accompl i shed expert,  you ' l l  f ind i t  an e spe
c i a l l y  i n furmative magazi ne, with  fi nely detai led 
a r t i c l e s  abuu t techniques and tuuls ,  materials  
and design.  I t ' s  wri t ten by master c raftsmen whu 
sha re the i r  many years of woodwurking expe r
ience.  A n d  i t ' s  pr inted on heavy paper to with
stand years of refe rence. A l l  back issues a re in 
print and i n dexed periodic a l l y .  

I f  y o u  wan t to become a be t t e r  woodwo rke r, 
send $ 14.00 fur a une-year subscri ptiun (6 i ssues). 
Or c a l l  us  tol l -free, 1 -800-243-7252 .  to cha rge 
your order to V i sa or MasterCard (Connec t i c u t  
res idents  c a l l  1 -426-8 1 7 1 ). 

Fine 
wrn\\brking® 

The Taunlon Press 
52 Church Hill Rd. 
P.O. Box 355KC 
Newtown 
Connecticut 06470 

mentary particles it has been necessary 
to evaluate expressions that can include 
thousands of integrals, many of which 
have unusual and deceptive mathemati
cal properties. The numerical evalua
tion is open to two of the criticisms 
of numerical methods we have already 
mentioned: it is not as useful as an alge
braic result for showing how contribu
tions from various physical phenomena 
affect the interaction, and it introduces 
errors of approximation_ As experimen
tal techniques are refined the uncertain
ties introduced by approximation can 
become so large that the predictions of 
the theories cannot be distinguished.  It is 
likely the application of computer-alge
bra methods will be of great help in gen
erating theoretical predictions of the re
quired precision. 

In the study of theoretical alternatives 
to general relativity a test called Bir k 
hoff's theorem has recently become 
popular . The mathematician George 
David Birkhoff of Harvard University 
showed in 1923 that the general theory 
of relativity excludes the propagation 
through space of gravitational p ulses 
that might conceivably be generated by 
radial pulsations of matter in a star. Be 
cause no such pulses have been detected .  
and because they are impossible accord
ing to both Einstein's and Newton's the 
ories of gravity, the exclusion of  the pul 
ses has come to be expected of any po
tential gravitational theory. The calcu
lation req uired to determine whether or 
not a theory of gravity satisfies Birk
hoff's theorem is lengthy, but it has now 
become straightforward with computer
algebra systems. A gravitational theory 
formulated by C. N. Yang of the State 
University of New York at Stony Brook 
was recently shown by the use of a com
puter-algebra system to violate Birk
hoff's theorem. The calculation correct
ed a hand calculation that had been be
lieved and cited for many years. 

I t is important to recognize that com
puter-algebra systems need not be 

employed solely for large calculations. 
Relatively simple problems often arise 
for which algebraic manipulation can 
contribute to understanding or make nu
merical calculation more efficient. One 
can sometimes reduce numerical com
puter-processing time by a factor of 100 
or more by the j udicious application of 
algebraic processing. Moreover, com
puter-algebra programs can substitute 
for an entire library of mathematical 
reference works. "Knowledge-based" 
programs that include integration meth
ods, methods for solving differential 
equations and the like may make such 
reference works as obsolete as a table 
of logarithms. As inexpensive comput
ers are improved, computer algebra will 
become available for teaching, study, 
research and perhaps unthought-of ap
plications to all interested people in 
their own offices and homes. 
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