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Abstract. In his seminal paper Cover used geometrical arguments to compute the probabil- 
ityofseparatingtwosetsof patterns witha perceptron. We extend these ideastofeedfonvard 
networks with hidden layers. There are intrinsic limitations to the number of patterns that 
a net of this kind can separate and we find quantitative bounds valid far any net with d 
input and h hidden neurons. 

1. Introduction 

Feedforward neural networks have become one of the popular paradigms in the rapidly 
expanding field of neural models: a sufficiently complex feedforward network is capable 
of carrying out complex pattern recognition tasks using only very elementary' processing 
units ('neurons'), and there are 'programming algorithms' that resemble-more or less 
closely-a learning process. 

The simplest such network is the perceptron (figure l), first devised by Rosenblatt 
[2]. A perception is made of a 'layer' of input units and of a processing unit. The 
processing unit computes a weighted sum of the states of the input units and outputs 
1 if the sum exceeds a given threshold value and 0 if it does not (or vice versa). In 
this way each input state is labelled by 0 or 1, and the perceptron acts as a simple 
pattern classifier. 
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of its efficiency. Minsky and Papert [3] showed that the perceptron is actually a rather 
poor classifier. 

However, the negative conclusions of Minsky and Papert cannot be extended to 
feedforward networks, and many workers have successfully programmed feedforward 
networks to solve some rather complex logical and pattern recognition problems. 

In the next section we start with a brief review of the results of Cover. Then, 
following the same guidelines, we calculate an upperbound for the number of mappings 
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Figure 1. A simple perceptron. 
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that can be implemented by a feedforward neural network with hidden layers and we 
show that there exists a maximum number of patterns that a given network architecture 
can separate without errors. Our results extend and generalize those of Mitchison and 
Durbin [4] obtained with a similar approach. In the last section we give some numerical 
results and simple rules for good network design. 

2. The perceptron 

It is well known that the input patterns of a perceptron with d input neurons can be 
thought of as points in d-dimensional space and that in this frame the action of the 
output neuron corresponds to separating these points with an oriented hyperplane. 
We take perceptrons with d input neurons and n input patterns ( n  s Z d  since, without 

Consider now the possible input patterns of the perceptron with d = 2  input units 
(figure 2): they are the Zd =4 vertices of a square. Different perceptron functions 
correspond to different ways of drawing a straight line among them. Since each straight 
line corresponds to two threshold functions and there are seven different ways to draw 
a line, there are 14 different perceptron functionst. 
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Figure 2. Space of d = 2 perceptron. 

On the other hand n = 4 objects can be partitioned in 2" = 16 ways. This means 
that there are 16 - 14 = 2 functions that this perceptron cannot compute, and it is well 
known that they are the XOR and its complement. 

This counting argument was used by Cover [ 11, to find general results for perceptrons 
with d neurons and n input patterns. 

Let C(n, d )  be the number of ways in which one can put an oriented hyperplane 
between n points in general position in d-dimensional space. C(n, d )  has been derived 
several times by different authors (see [l, 51 and references therein) and is given by 

C ( n , d ) = 2  1 
k=O 

t In this paper we treat the terms 'threshold function', 'linear partition' and 'half-space' almost as synonyms. 
Ifs, is the state of the ith input neuron and w,,  0 are given constants, then the inequality X, wIs, > 0 separates 
the input space in two parts (the 'half-spaces'). The same concept can be rephrased in terms of the step 
function of the argumcnt (5, w,a, -@)--and this is what we call the 'threshold function'. The value of the 
step function in each half-space 'labels' that half-space, and therefore reversing the inequality amounts to 
an exchange of the half-space labels. Notice also that since the points in the input spacc belong to a discrete 
lattice, then threshold functions are grouped in equivalence classes of functions that perform the same 
anion on the laltice points. In what follows we do not distinguish between a threshold function and the 
equivalence class to which it belongs. 
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then 

C(n ,d )=O(nd)  for n >> d 

Each of the C(n, d)  ways to put an oriented hyperplane between the n points 
corresponds to a different perceptron function. Cover compared this number with the 
total number of partitions of the n points, i.e. 2", to obtain the probability P ( n ,  d )  of 
separating with a perceptron two subsets of a set of n random points in d-spacet 

2 i 
(2) 

number of linear partitions - x = ~  - 
2" 

P(n,  d)  = 
total number partitions 

3. Feedforward networks 

The case of the perceptron is actually quite simple: there is just one separating 
hyperplane, and all the points that fall on one side of this hyperplane are labelled the 

network behaves as a good classifier or not. 
T h e  perceptron can he easily generalized by introducing more layers, with neurons 

that behave individually like simple perceptrons. When there is no feedback loop these 
networks are called 'feedforward networks'. Also, without loss of generality, we assume 
that each layer of neurons is connected only to the adjacent layers. 

Feedforward networks with at least one hidden layer are much more complex than 
perceptrons: now there are more labellings-i.e. those provided by the hidden layers- 
and this intermediate pattern classification may lead to a loss of information. 

In order to clarify what we mean, consider a network with just one layer of k 
hidden neurons (figure 3). 

Any neuron of the hidden layer is a perceptron and so for any of them we can 
have C(n, d )  different functions. 

Therefore the total number of mappings of the input layer to the hidden layer is 
C(n ,  d ) h .  

Not all mappings are worthy of consideration: take for example the extreme case 
in which all hidden neurons output 0 in response to every input pattern. The output 

szme wzy 2nd it is easy !e !e!! whether thiS !abc!!ing is ;ns! wha! we "Z"! axd if :'.e 
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Figure 3. A net with one hidden layer. 

- 
t This result is strictly valid only when the n points are in general position in d-space (i.e. if and only if 
any k-tuple ( k s d +  I )  of them is linearly independent) but it has been shown that the results apply also 
to digital neurons even though hypercube vertices are not always in general position [6] .  
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layer does not receive any information from the hidden layer and cannot classify the 
input patterns. 

To proceed further in this direction, we start by defining the concepts of ‘problem’, 
‘network function’ and ‘solution’. Consider a network with d input neurons and n 
input patterns, an unspecified number of hidden layers (even no hidden layers at  all, 
i.e. a perceptron), and a single output neuron, then: 

(i) A problem is one of the 2” different-ways of partitioning the set of n input 
patterns in two subsets. 

(ii) A networkfunction is specified by the set of the threshold functions associated 
with all the neurons after the input layer. Two network functions are different when 
the associated sets of threshold functions are different. Just as it did for the perceptron, 
a network function assigns a label to each input pattem. However, in a multilayer net, 
different network functions can return the same labelling of the input patterns. The 
set of all the labellings generated by all the possible network functions is a subset of 
the set of problems: we will call it the set of soluble problems. 

(iii) A solution is any network function that partitions the set of input patterns as 
in the original problem. 

Figures 4, 5 and 6 illustrate these concepts graphically for a net like that of figure 
3. The patterns are represented as small circles, and the axes are shown only to remind 
us that the patterns are actually points in a d-dimensional space. 

lnpul layer Space 

O O 0 i  

0 

0 

Figure 4. A problem in input space. 
0 0  

Figure 5 illustrates the concept of network function: the upper part part shows the 
input space and the two broken lines are the separating hyperplanes in this space 
corresponding to the threshold functions of two hidden neurons. This choice partitions 
the input space: all the patterns contained in the regions marked 00 to 11 in input 
space are mapped to the corresponding patterns marked 00 to 11 in the hidden layer 
space depicted in the lower graph. The hidden layer space is in turn partitioned by 
the output neuron threshold function, and each input pattem is thus labelled in this 
final pass. 

Finally in figure 6 we see that the network function of figure 5 is actually a solution 
for the particular problem of figure 4, since all the ‘black‘ patterns are assigned the 
label ‘0’ and all the ‘white’ patterns are assigned the label $1’. 

replacing the threshold function ‘x’ with that marked ‘x” in figure 6 is also a solution. 
This is not true for the perceptron where, if a solution exists, then it is unique (to be 
convinced simply look at  the perceptron solution realized in the two lower frames of 
figure 6: any change of the separating line no longer gives the exact solution). 

The same probkem may admi! differen! sa!??!ions, e.g. !he network f!!nction obtained 



Properties of feedfonvord neural networks 

Input layer space 

. o  

0 '  

0 

- 
0 

, 

Hidden layer Space 

1907 

+ 
Output layer Space - 

0 1  

Figure 5. A network funnion for d = 2, h = 2 

With these definitions the probability Ps that a randomly chosen problem has a 
solution is 

number of soluble problems - number of soluble problems - 
2" 

P. = 
number of problems 

This is a number that we do not know how to compute. However, the total number 
of network functions is at least as great as the number of soluble problems, and we 
calculate the upper bound, 

(3) 
number of soluble problems number of network functions 

6 
2" 2" 

Ps = 

where the equality holds in the perceptron case for which the number of soluble 
problems is equal to the number of network functions given by (2). 

Let us see how the number of network functions can be calculated exactly in the 
general case of feedforward networks. 

We start by considering a net with an input layer with d neurons connected to a 
layer of h neurons. n patterns are presented to the network, and any particular network 
function maps these n d-bit patterns onto m h-bit patterns. 
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Input layer space 

Hldden layer space 

Output layer space 

,- 

(I I 

Figure 6. A solution for a (I net like that of figure 3. 

m may vary between 1 and the maximum value R(h, d) ,  which is the number of 

Let B,(n, d, h) be the number of network functions that map n patterns in d-space 
regions in which d-space is divided by h hyperplanes in general position. 

onto exactly m patterns in h-space, then 

R ( h , d )  
B,,,(n,d,h)=C(n,d)h. 

m=, 

It is easy to show (e.g. see [7]) that 

C ( h + l ,  d )  
2 

R(h ,d)=  

(4) 

and, therefore, using (1) and assuming that h s d (a very natural and common choice), 

R(h,  d ) = 2 h  if h s d. ( 6 )  

Then, if the output neuron is also taken into account we can calculate exactly the 
total number of network functions that map the input layer onto the output neuron. 
For each mapping of the input layer onto the hidden layer there are C(m, h) threshold 
functions that map the hidden layer onto the output neuron (the hidden layer and the 
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output neuron form a simple perceptron); therefore, the total number of network 
functions is 

(7) 
R ( h , d )  

C B A n ,  4 h ) C ( m ,  h ) .  
m - l  

If there are more hidden layers one proceeds similarly, so that for two hidden 
layers one obtains 

With the approximate values of Bm(n, d, h )  derived in the appendix (14) these 
formulae lead to an explicit estimate of the upper bound (3). However, a tighter bound 
can be derived by introducing the subset of 'non-mixing' functions. 

The concept of the 'mixing' function can be easily understood as follows: take a 
problem, i.e. partition the set of input patterns into two sets-call them 'black' and 
'white'-then, if a network function maps one black and one white pattern onto the 
same intermediate pattern, some information is lost and an exact solution can no 
longer be found. This is what we call a mixing function (figure 7). The upper bound 
(3) can be made tighter if we take into account only the subset of non-mixing network 
functions: 

(8) 
number of non-mixing functions 

2" 
Ps s 

If a network function maps the n input patterns onto exactly m hidden layer 
patterns, there are 2"' ways of assigning the m patterns to one of the two subsets of 

Input layer Space 

Hidden layer space 

Figure 1. A mixing function for a d = 2, h = 2 net 
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the partition. Since the total number of partitions of the input space is 2", the average 
number of non-mixing functions that map the input layer to the hidden layer is t  

M Budinich and E Milotti 

Using (4) we can get exact upper and lower bounds for expression (9): 

so that 

From (1) and (5) we find that the bounds (10) approach 0 when n >> 1, so that there 
is (obviously) an intrinsic limit to the number of patterns n that a single layer can 
treat without losing information. Similar formulae hold for more layers. 

The inequalities (10) give bounds for the average number of non-mixing functions 
per problem for a layer with d input to h hidden neurons. 

Now if we go back to (3) ana (8j we see that the probabiiity Ps can also be 
interpreted as an average number of network functions per problem. In this sense the 
upper bound in (10) is also an upper bound to the probability of finding a 'good' 
(non-mixing) function for a d-to-h layer and consequently an upper limit for the 
probability Ps of any net whose first layer is a d-to-h layer. In other words, whatever 
the net after layer h, the probability Ps that it can solve a random problem is bounded 
by 

In the next section we give numerical and approximate solutions for this formula. 
Formula (11) resembles superficially the bound obtained by Mitchison and Durbin 

in [4]. They quote an upper bound P s s  C(n,  d)h/2" for a net with d input and h 
hidden neurons. However, their resuit is for a net with a fixed output function while 
(11) applies whatever the mapping that follows the first hidden layer. But if the output 
function is fixed, the network can solve less problems than a 'free' network, and this 
is the origin of their lower bound$. 

4. Results and conclusions 

It is interesting to choose the network size-i.e. d and h-and compare the behaviour 
of the approximate average number of non-mixing functions (given in the appendix, 
see (lS)), and of the bounds (10) versus the number of input patterns n. 

t We average over all problems, because the number of non-mixing functions i s  different for different 
probiems. A similar caicuiation, but with the perhaps more iamiiiar terminoingy of baiis ana boxes used 
in combinatorial problems, is performed in the appendix. 
t The bound of Mitchison and Durbin can be obtained replacing the factor C(m, h )  in (7) with 1 (remember 
that they fix the output function) thus ahtaining, with (4). their total number of functions. This  number of 
functions is then plugged into inequality (3). 
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We did this for d = 10 and h = 5 and plotted the logarithms of the results in figure 
8. There, the upper full line represents C ( n ,  d ) h  and the broken lines are the bounds 
(10) for a net with d = 10 and h = 5.  The approximate number of non-mixing functions 
(15) is bracketed between them. Now we wish to pinpoint some of its features. 

When n is small the average number of non-mixing functions is a large fraction 
of the total number of functions C(n ,  d ) h .  As n grows, C(n ,  d ) h  changes slope because 
of the change of regime from 2" to nd  (see ( l ) ) ,  and at the same time the average 
number of non-mixing functions reaches a maximum and ihen approaches 0. 

From (10) it is easy to find the approximate position of the maximum nmaX (of 
both bounds) and of the zero-crossing value nzero (of the upper bound)t: 

n,.,,-2h + dh2 (if 2h >> dh log, nzerJ 
dh 

log 2 = - 

the probability of finding a solution vanishes if the number of patterns n is larger than 
2h + dh2. 

Figure 9 contains the same kind of plot as in figure 8, i.e. the approximate number 

The task of finding a non-mixing function becomes increasingly difficult as n grows. 
of non-mixing functions done for several values of h ranging from 1 to 6. 

This can be seen from the ratio 

average number of non-mixing functions 
c(n, dIh  

plotted in figure 10 for a net with d = 10 and various h. This ratio is also the probability 
of finding a non-mixing function taking a random set of weights. 

From (10) we easily obtain bounds for this ratio: 

1 average number of non-mixing functions 2R'h,d' -< s- 
2" C(n ,  d ) h  2" 

and the upper bound is $ when n = 2h + 1 (if h s d and (6 )  can be used) 

150 

100 

... 

n 

Figure 8. Plot of the logarithm of the number of functions versus n for a net with d = IO 
and h = 5. 

- 
1' It is sufficient to use the asymptotic value ( I )  and then take logarithms. 
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n 
Figure 9. Plot of the logarithm of the number of functions versus n far a net with d = 10. 

Figure 10. Plot of the fraction of the average number of non-mixing functions versus n 
for a net with d = IO and various values of h. 

How can these results be used to synthesize a working network? We remark that 
in general for interesting problems d is rather large, and that all n = 2* pattems may 
he presented to the network. 

Moreover, we give bounds for the probability of finding exact solutions to the 
original problem. However, it is seldom desired to find an exact solution and more 
often one is content with an efficient algorithm, i.e. something that gives a reasonable 
answer with a reasonably high efficiency. 

The answer to this dilemma is that the programmer can choose a ‘skeleton’ of p 
( < < 2 d )  pattems for which the exact answer is desired. Then a first layer is constructed 
with a number h of hidden neurons such that the probability of finding a non-mixing 
function is fairly high. This means that the subsequent ‘teaching’ of this first layer is 
an ‘easy’ task (it may be accomplished by  back propagation, etc.). The process can 
then be iterated layer by layer until a complete exact solution for the p patterns is found. 

In a way such a strategy resembles the ‘tilting algorithm’ of Mezard and Nadal [SI 
and the hope is that this may eventually provide an efficient network. We are planning 
to explore this and similar algorithms in the near future. 
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Appendix 

Here we give an approximation for B,(n, d, h )  as defined in (4). 
Take n balls and Rb boxes: there are R; different arrangements of the balls in the 

boxes. Let A, (n)  be the number of ways in which one can put n balls into exactly m 
boxes leaving no box empty. Then, since there are 

(3 
ways of choosing the m boxes, one finds 

R ; =  (Rb)A,(n) m 

and A , ( n )  can be obtained from the inclusion-exclusion principle [9]: 
m 

k=O 

If the balls are painted black and white and we ask what is the number of ways 
in which we can put the balls in the Rb boxes without mixing balls of different colour 
in the same box we obviously find a number which is smaller than R : .  Now there is 
a totai o i  (i&j" ways o i  painiing baiis and iiiiing boxes: on iiie other hand there are 
2"' ways of choosing the colour of the balls in the m boxes. Therefore, the number of 
ways in which we can put balls without mixing is 

and, if we divide this number by 2", we find the average over all the possible colourings: 

Notice that (12) and (13) correspond to (4) and (9), the only difference being that 
while in the earlier problem we were limited to linear functions in transforming d-bit 
pII,E,,,S \u'ar,a, lll," ,,-U11 y ' & " c L L L "  ,"""CU, 

we do not know how to calculate B,(n, d, h )  in (9) we can calculate its corresponding 
term 
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This suggests a way to perform an approximation, 
The basic idea is that B,(n, d, h )  behaves like 
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with an 'equivalent number of objects' ne.  TO calculate n, we request that the total 
number of functions in ( 4 )  and (12)  be the same when we have the same number of 
boxes, say R(h, d ) .  This means that n. must satisfy 

M Budinich and E Milotti 

R(h, d)"c= C ( n , d ) h  

then by taking logarithms 

and remembering that under the assumption h G d then R(h,  d )  = Z h  (6) we have 

n.(n, d ) = b  C(n ,  d )  

that this equality extends to individual terms, i.e. 

if h < d .  

With this definition of ne the sums ( 4 )  and (12)  are equal and we further assume 

With this approximation the number of non-mixing functions ( 9 )  becomes 

and that is the approximation we used for the numerical calculations of section 4. 
Assumption (14)  is further justified by the fact that it is exactly true for low n and h. 
Indeed, if n G d + 1 and h G d, then C (  n, d j = 2" and linear functions can implement 
any partition of the n points. 
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