
1. Phys. A: Math. Gen. 25 (1992) 1903-1914. Printed in the UK

Properties of feedforward neural networks

Marco Budinich and Edoardo Milotti
Dipanimento di Fisica dell'UniversitPdi Trieste and lnstituto Nazionalc di Fisica Nucleare
Trieste, Via Valerio 2, 1-34127 Trieste, Italy

Received 1 May 1991

Abstract. In his seminal paper Cover used geometrical arguments to compute the probabil-
ityofseparatingtwosetsof patterns witha perceptron. We extend these ideastofeedfonvard
networks with hidden layers. There are intrinsic limitations to the number of patterns that
a net of this kind can separate and we find quantitative bounds valid far any net with d
input and h hidden neurons.

1. Introduction

Feedforward neural networks have become one of the popular paradigms in the rapidly
expanding field of neural models: a sufficiently complex feedforward network is capable
of carrying out complex pattern recognition tasks using only very elementary' processing
units ('neurons'), and there are 'programming algorithms' that resemble-more or less
closely-a learning process.

The simplest such network is the perceptron (figure l), first devised by Rosenblatt
[2]. A perception is made of a 'layer' of input units and of a processing unit. The
processing unit computes a weighted sum of the states of the input units and outputs
1 if the sum exceeds a given threshold value and 0 if it does not (or vice versa). In
this way each input state is labelled by 0 or 1, and the perceptron acts as a simple
pattern classifier.

L n ,YO'+ L U V C I L ' J blUUlCU LllC yclccyrlulr 111 d gc",,,G,LLLu, scrrrllg all" gu"r S D L I I I L a L s J

of its efficiency. Minsky and Papert [3] showed that the perceptron is actually a rather
poor classifier.

However, the negative conclusions of Minsky and Papert cannot be extended to
feedforward networks, and many workers have successfully programmed feedforward
networks to solve some rather complex logical and pattern recognition problems.

In the next section we start with a brief review of the results of Cover. Then,
following the same guidelines, we calculate an upperbound for the number of mappings

1- *A<" ,. r * , >:->.I. :- ---..-.L--, ""&.:--"..A "...,"""*:-".""

Input - OUlPUt

d - 2

Figure 1. A simple perceptron.

0305-4470/92/071903+ 12P04.50 0 1992 IOP Publishing Ltd 1903

1904 M Budinich and E Milotti

that can be implemented by a feedforward neural network with hidden layers and we
show that there exists a maximum number of patterns that a given network architecture
can separate without errors. Our results extend and generalize those of Mitchison and
Durbin [4] obtained with a similar approach. In the last section we give some numerical
results and simple rules for good network design.

2. The perceptron

It is well known that the input patterns of a perceptron with d input neurons can be
thought of as points in d-dimensional space and that in this frame the action of the
output neuron corresponds to separating these points with an oriented hyperplane.
We take perceptrons with d input neurons and n input patterns (n s Z d since, without

Consider now the possible input patterns of the perceptron with d = 2 input units
(figure 2): they are the Zd =4 vertices of a square. Different perceptron functions
correspond to different ways of drawing a straight line among them. Since each straight
line corresponds to two threshold functions and there are seven different ways to draw
a line, there are 14 different perceptron functionst.

=f gsne;a!i:y, .~~ +,gita; nsi;;ons),

Figure 2. Space of d = 2 perceptron.

On the other hand n = 4 objects can be partitioned in 2" = 16 ways. This means
that there are 16 - 14 = 2 functions that this perceptron cannot compute, and it is well
known that they are the XOR and its complement.

This counting argument was used by Cover [11, to find general results for perceptrons
with d neurons and n input patterns.

Let C(n, d) be the number of ways in which one can put an oriented hyperplane
between n points in general position in d-dimensional space. C(n, d) has been derived
several times by different authors (see [l, 51 and references therein) and is given by

C (n , d) = 2 1
k=O

t In this paper we treat the terms 'threshold function', 'linear partition' and 'half-space' almost as synonyms.
Ifs, is the state of the ith input neuron and w,, 0 are given constants, then the inequality X, wIs, > 0 separates
the input space in two parts (the 'half-spaces'). The same concept can be rephrased in terms of the step
function of the argumcnt (5, w,a, -@)--and this is what we call the 'threshold function'. The value of the
step function in each half-space 'labels' that half-space, and therefore reversing the inequality amounts to
an exchange of the half-space labels. Notice also that since the points in the input spacc belong to a discrete
lattice, then threshold functions are grouped in equivalence classes of functions that perform the same
anion on the laltice points. In what follows we do not distinguish between a threshold function and the
equivalence class to which it belongs.

Properties of feedforward neural networks 1905

then

C(n ,d)=O(nd) for n >> d

Each of the C(n, d) ways to put an oriented hyperplane between the n points
corresponds to a different perceptron function. Cover compared this number with the
total number of partitions of the n points, i.e. 2", to obtain the probability P (n , d) of
separating with a perceptron two subsets of a set of n random points in d-spacet

2 i
(2)

number of linear partitions - x = ~ -
2"

P(n, d) =
total number partitions

3. Feedforward networks

The case of the perceptron is actually quite simple: there is just one separating
hyperplane, and all the points that fall on one side of this hyperplane are labelled the

network behaves as a good classifier or not.
T h e perceptron can he easily generalized by introducing more layers, with neurons

that behave individually like simple perceptrons. When there is no feedback loop these
networks are called 'feedforward networks'. Also, without loss of generality, we assume
that each layer of neurons is connected only to the adjacent layers.

Feedforward networks with at least one hidden layer are much more complex than
perceptrons: now there are more labellings-i.e. those provided by the hidden layers-
and this intermediate pattern classification may lead to a loss of information.

In order to clarify what we mean, consider a network with just one layer of k
hidden neurons (figure 3).

Any neuron of the hidden layer is a perceptron and so for any of them we can
have C(n, d) different functions.

Therefore the total number of mappings of the input layer to the hidden layer is
C(n , d) h .

Not all mappings are worthy of consideration: take for example the extreme case
in which all hidden neurons output 0 in response to every input pattern. The output

szme wzy 2nd it is easy !e !e!! whether thiS !abc!!ing is ;ns! wha! we "Z"! axd if :'.e

d . 2 h - 2

Figure 3. A net with one hidden layer.

-
t This result is strictly valid only when the n points are in general position in d-space (i.e. if and only if
any k-tuple (k s d + I) of them is linearly independent) but it has been shown that the results apply also
to digital neurons even though hypercube vertices are not always in general position [6] .

1906 M Budinich and E Milotti

layer does not receive any information from the hidden layer and cannot classify the
input patterns.

To proceed further in this direction, we start by defining the concepts of ‘problem’,
‘network function’ and ‘solution’. Consider a network with d input neurons and n
input patterns, an unspecified number of hidden layers (even no hidden layers at all,
i.e. a perceptron), and a single output neuron, then:

(i) A problem is one of the 2” different-ways of partitioning the set of n input
patterns in two subsets.

(ii) A networkfunction is specified by the set of the threshold functions associated
with all the neurons after the input layer. Two network functions are different when
the associated sets of threshold functions are different. Just as it did for the perceptron,
a network function assigns a label to each input pattem. However, in a multilayer net,
different network functions can return the same labelling of the input patterns. The
set of all the labellings generated by all the possible network functions is a subset of
the set of problems: we will call it the set of soluble problems.

(iii) A solution is any network function that partitions the set of input patterns as
in the original problem.

Figures 4, 5 and 6 illustrate these concepts graphically for a net like that of figure
3. The patterns are represented as small circles, and the axes are shown only to remind
us that the patterns are actually points in a d-dimensional space.

lnpul layer Space

O O 0 i

0

0

Figure 4. A problem in input space.
0 0

Figure 5 illustrates the concept of network function: the upper part part shows the
input space and the two broken lines are the separating hyperplanes in this space
corresponding to the threshold functions of two hidden neurons. This choice partitions
the input space: all the patterns contained in the regions marked 00 to 11 in input
space are mapped to the corresponding patterns marked 00 to 11 in the hidden layer
space depicted in the lower graph. The hidden layer space is in turn partitioned by
the output neuron threshold function, and each input pattem is thus labelled in this
final pass.

Finally in figure 6 we see that the network function of figure 5 is actually a solution
for the particular problem of figure 4, since all the ‘black‘ patterns are assigned the
label ‘0’ and all the ‘white’ patterns are assigned the label $1’.

replacing the threshold function ‘x’ with that marked ‘x” in figure 6 is also a solution.
This is not true for the perceptron where, if a solution exists, then it is unique (to be
convinced simply look at the perceptron solution realized in the two lower frames of
figure 6: any change of the separating line no longer gives the exact solution).

The same probkem may admi! differen! sa!??!ions, e.g. !he network f!!nction obtained

Properties of feedfonvord neural networks

Input layer space

. o

0 '

0

-
0

,

Hidden layer Space

1907

+
Output layer Space -

0 1

Figure 5. A network funnion for d = 2, h = 2

With these definitions the probability Ps that a randomly chosen problem has a
solution is

number of soluble problems - number of soluble problems -
2"

P. =
number of problems

This is a number that we do not know how to compute. However, the total number
of network functions is at least as great as the number of soluble problems, and we
calculate the upper bound,

(3)
number of soluble problems number of network functions

6
2" 2"

Ps =

where the equality holds in the perceptron case for which the number of soluble
problems is equal to the number of network functions given by (2).

Let us see how the number of network functions can be calculated exactly in the
general case of feedforward networks.

We start by considering a net with an input layer with d neurons connected to a
layer of h neurons. n patterns are presented to the network, and any particular network
function maps these n d-bit patterns onto m h-bit patterns.

1908 M Budinich and E Milotti

Input layer space

Hldden layer space

Output layer space

,-

(I I

Figure 6. A solution for a (I net like that of figure 3.

m may vary between 1 and the maximum value R(h, d) , which is the number of

Let B,(n, d, h) be the number of network functions that map n patterns in d-space
regions in which d-space is divided by h hyperplanes in general position.

onto exactly m patterns in h-space, then

R (h , d)
B,,,(n,d,h)=C(n,d)h.

m=,

It is easy to show (e.g. see [7]) that

C (h + l , d)
2

R(h ,d)=

(4)

and, therefore, using (1) and assuming that h s d (a very natural and common choice),

R(h, d) = 2 h if h s d. (6)

Then, if the output neuron is also taken into account we can calculate exactly the
total number of network functions that map the input layer onto the output neuron.
For each mapping of the input layer onto the hidden layer there are C(m, h) threshold
functions that map the hidden layer onto the output neuron (the hidden layer and the

Properties of feedfonvard neural networks 1909

output neuron form a simple perceptron); therefore, the total number of network
functions is

(7)
R (h , d)

C B A n , 4 h) C (m , h) .
m - l

If there are more hidden layers one proceeds similarly, so that for two hidden
layers one obtains

With the approximate values of Bm(n, d, h) derived in the appendix (14) these
formulae lead to an explicit estimate of the upper bound (3). However, a tighter bound
can be derived by introducing the subset of 'non-mixing' functions.

The concept of the 'mixing' function can be easily understood as follows: take a
problem, i.e. partition the set of input patterns into two sets-call them 'black' and
'white'-then, if a network function maps one black and one white pattern onto the
same intermediate pattern, some information is lost and an exact solution can no
longer be found. This is what we call a mixing function (figure 7). The upper bound
(3) can be made tighter if we take into account only the subset of non-mixing network
functions:

(8)
number of non-mixing functions

2"
Ps s

If a network function maps the n input patterns onto exactly m hidden layer
patterns, there are 2"' ways of assigning the m patterns to one of the two subsets of

Input layer Space

Hidden layer space

Figure 1. A mixing function for a d = 2, h = 2 net

1910

the partition. Since the total number of partitions of the input space is 2", the average
number of non-mixing functions that map the input layer to the hidden layer is t

M Budinich and E Milotti

Using (4) we can get exact upper and lower bounds for expression (9):

so that

From (1) and (5) we find that the bounds (10) approach 0 when n >> 1, so that there
is (obviously) an intrinsic limit to the number of patterns n that a single layer can
treat without losing information. Similar formulae hold for more layers.

The inequalities (10) give bounds for the average number of non-mixing functions
per problem for a layer with d input to h hidden neurons.

Now if we go back to (3) ana (8j we see that the probabiiity Ps can also be
interpreted as an average number of network functions per problem. In this sense the
upper bound in (10) is also an upper bound to the probability of finding a 'good'
(non-mixing) function for a d-to-h layer and consequently an upper limit for the
probability Ps of any net whose first layer is a d-to-h layer. In other words, whatever
the net after layer h, the probability Ps that it can solve a random problem is bounded
by

In the next section we give numerical and approximate solutions for this formula.
Formula (11) resembles superficially the bound obtained by Mitchison and Durbin

in [4]. They quote an upper bound P s s C(n, d)h/2" for a net with d input and h
hidden neurons. However, their resuit is for a net with a fixed output function while
(11) applies whatever the mapping that follows the first hidden layer. But if the output
function is fixed, the network can solve less problems than a 'free' network, and this
is the origin of their lower bound$.

4. Results and conclusions

It is interesting to choose the network size-i.e. d and h-and compare the behaviour
of the approximate average number of non-mixing functions (given in the appendix,
see (lS)), and of the bounds (10) versus the number of input patterns n.

t We average over all problems, because the number of non-mixing functions i s different for different
probiems. A similar caicuiation, but with the perhaps more iamiiiar terminoingy of baiis ana boxes used
in combinatorial problems, is performed in the appendix.
t The bound of Mitchison and Durbin can be obtained replacing the factor C(m, h) in (7) with 1 (remember
that they fix the output function) thus ahtaining, with (4). their total number of functions. This number of
functions is then plugged into inequality (3).

Properties of feedfonvard neural networks 1911

We did this for d = 10 and h = 5 and plotted the logarithms of the results in figure
8. There, the upper full line represents C (n , d) h and the broken lines are the bounds
(10) for a net with d = 10 and h = 5. The approximate number of non-mixing functions
(15) is bracketed between them. Now we wish to pinpoint some of its features.

When n is small the average number of non-mixing functions is a large fraction
of the total number of functions C(n , d) h . As n grows, C(n , d) h changes slope because
of the change of regime from 2" to nd (see (l)) , and at the same time the average
number of non-mixing functions reaches a maximum and ihen approaches 0.

From (10) it is easy to find the approximate position of the maximum nmaX (of
both bounds) and of the zero-crossing value nzero (of the upper bound)t:

n,.,,-2h + dh2 (if 2h >> dh log, nzerJ
dh

log 2 = -

the probability of finding a solution vanishes if the number of patterns n is larger than
2h + dh2.

Figure 9 contains the same kind of plot as in figure 8, i.e. the approximate number

The task of finding a non-mixing function becomes increasingly difficult as n grows.
of non-mixing functions done for several values of h ranging from 1 to 6.

This can be seen from the ratio

average number of non-mixing functions
c(n, dIh

plotted in figure 10 for a net with d = 10 and various h. This ratio is also the probability
of finding a non-mixing function taking a random set of weights.

From (10) we easily obtain bounds for this ratio:

1 average number of non-mixing functions 2R'h,d' -< s-
2" C(n , d) h 2"

and the upper bound is $ when n = 2h + 1 (if h s d and (6) can be used)

150

100

...

n

Figure 8. Plot of the logarithm of the number of functions versus n for a net with d = IO
and h = 5.

-
1' It is sufficient to use the asymptotic value (I) and then take logarithms.

1912 M Budinich and E Milotti

n
Figure 9. Plot of the logarithm of the number of functions versus n far a net with d = 10.

Figure 10. Plot of the fraction of the average number of non-mixing functions versus n
for a net with d = IO and various values of h.

How can these results be used to synthesize a working network? We remark that
in general for interesting problems d is rather large, and that all n = 2* pattems may
he presented to the network.

Moreover, we give bounds for the probability of finding exact solutions to the
original problem. However, it is seldom desired to find an exact solution and more
often one is content with an efficient algorithm, i.e. something that gives a reasonable
answer with a reasonably high efficiency.

The answer to this dilemma is that the programmer can choose a ‘skeleton’ of p
(< < 2 d) pattems for which the exact answer is desired. Then a first layer is constructed
with a number h of hidden neurons such that the probability of finding a non-mixing
function is fairly high. This means that the subsequent ‘teaching’ of this first layer is
an ‘easy’ task (it may be accomplished by back propagation, etc.). The process can
then be iterated layer by layer until a complete exact solution for the p patterns is found.

In a way such a strategy resembles the ‘tilting algorithm’ of Mezard and Nadal [SI
and the hope is that this may eventually provide an efficient network. We are planning
to explore this and similar algorithms in the near future.

Properties of feedforward neural networks 1913

Acknowledgments

We warmly acknowledge stimulating discussions with Lucian0 Ristori.

Appendix

Here we give an approximation for B,(n, d, h) as defined in (4).
Take n balls and Rb boxes: there are R; different arrangements of the balls in the

boxes. Let A, (n) be the number of ways in which one can put n balls into exactly m
boxes leaving no box empty. Then, since there are

(3
ways of choosing the m boxes, one finds

R ; = (Rb)A,(n) m

and A , (n) can be obtained from the inclusion-exclusion principle [9]:
m

k=O

If the balls are painted black and white and we ask what is the number of ways
in which we can put the balls in the Rb boxes without mixing balls of different colour
in the same box we obviously find a number which is smaller than R : . Now there is
a totai o i (i&j" ways o i painiing baiis and iiiiing boxes: on iiie other hand there are
2"' ways of choosing the colour of the balls in the m boxes. Therefore, the number of
ways in which we can put balls without mixing is

and, if we divide this number by 2", we find the average over all the possible colourings:

Notice that (12) and (13) correspond to (4) and (9), the only difference being that
while in the earlier problem we were limited to linear functions in transforming d-bit
pII,E,,,S \u'ar,a, lll," ,,-U11 y ' & " c L L L " ,"""CU,

we do not know how to calculate B,(n, d, h) in (9) we can calculate its corresponding
term

-___ fL-nI-1 I. I-:+ -n+tan- Iha-n.1 -,. .:-.:lnrrartArtinn n v i e t e hn-0 Il..t ..,h:lp
,I" I l l . . l . Y . L I I L . . C L . Y . . I " l lL , , .."1*. Y Y L nlllll

This suggests a way to perform an approximation,
The basic idea is that B,(n, d, h) behaves like

1914

with an 'equivalent number of objects' ne. TO calculate n, we request that the total
number of functions in (4) and (12) be the same when we have the same number of
boxes, say R(h, d) . This means that n. must satisfy

M Budinich and E Milotti

R(h, d)"c= C (n , d) h

then by taking logarithms

and remembering that under the assumption h G d then R(h, d) = Z h (6) we have

n.(n, d) = b C(n , d)

that this equality extends to individual terms, i.e.

if h < d .

With this definition of ne the sums (4) and (12) are equal and we further assume

With this approximation the number of non-mixing functions (9) becomes

and that is the approximation we used for the numerical calculations of section 4.
Assumption (14) is further justified by the fact that it is exactly true for low n and h.
Indeed, if n G d + 1 and h G d, then C (n, d j = 2" and linear functions can implement
any partition of the n points.

References

[I] CoverT M 1965 Geometrical and statistical properties of systems of linear inequalities with applications

[2] Rosenblatt F 1962 Rineiples of Neurodynomier (New York: Spartan)
[3] Minsky M L and Papert S 1988 Pmeptrons 3rd edn (Cambridge, MS: MIT) pp. xv-292
[4] Mitchison G J and Durbin R M 1989 Bounds on the learning capacity of some multi-layer networks

[5] Winder R 0 1966 Partitions of N-space by hyperplanes SIAM I. Appl. Math. 14(4) 811-18
[6] Budinich M 1991 On linear separability of random subsets of hypercube vertices I. Phys. A: Math. Gen.

171 Budinich M and Milotti E 1992 Geometrical interpretation of the back-propagation algorithm for the

181 Mezard M and Nadal J-P 1989 Learnins in feedfonvard lavered networks: the tilinp, alnorithm I. Phvs.

in pattem recognition IEEE Zions. Electronic Computers EC14 326-34

Bio. Cyber. 60 345-56

24 L2ll-13

perceptron Physico A in press
~

. . ._
A : Moth. Gen. 22 2191-203

pp xviii-510
[9] Feller W 1970 An Introduction to Probobility Theow and its Applieotion 3rd edn. voI 1 (New York Wiley)

