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Conditional probabilities and Bayes’ Theorem

P(AB) = P(A|B)P(B) = P(B|A)P(A) lointprobability and

conditional probabilities

B|A)P(A) Bayes’ theorem
P(B)

palB) = 2L
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Conditional probabilities and Bayes’ Theorem

P(AB) = P(A|B)P(B) = P(B|A)P(A) lointprobability and

conditional probabilities

P(B A P A Bayes’ theorem: a purel
P(A‘B) — ( ;(;)( ) Iog»;calstatement Py
P(D|H) Bayes’ theorem again:
now as an inferential
P(H‘D) — P(D) P(H) statement
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P(B1A)-P(A)

P(AIB)= P(B)

P(A,1B)= P(Blﬁ(";f(Ak) k=1,..,N

if the events A, are mutually P(BIA;)P(A;)

exclusive, and they fill the universe

P(B):iP(BIAk).P(Ak)




P(AIB)= P(B1A)-P(A)

P(B)
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P(D|Hy)
>_; P(D|H;)P(H;)

» MAP estimates

P(Hy|D) =

P(Hy)

Edoardo Milotti - Bayesian Methods - Spring 2024



Example of MAP inference: the case of the Phoenix virus

Identification of an infectious progenitor
for the multiple-copy HERV-K human
endogenous retroelements

Marie Dewannieux,'* Francis Harper,>* Aurélien Richaud,'* Claire Letzelter,'
David Ribet," Gérard Pierron,? and Thierry Heidmann'->

"Unité des Rétrovirus Endogénes et Eléments Rétroides des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy,
94805 Villejuif Cedex, France; “Laboratoire de Réplication de I’ADN et Ultrastructure du Noyau, UPR1983 Institut André Lwoff,
94801 Villejuif Cedex, France

Human Endogenous Retroviruses are expected to be the remnants of ancestral infections of primates by active
retroviruses that have thereafter been transmitted in a Mendelian fashion. Here, we derived in silico the sequence of
the putative ancestral “progenitor” element of one of the most recently amplified family—the HERV-K family—and
constructed it. This element, Phoenix, produces viral particles that disclose all of the structural and functional
properties of a bona-fide retrovirus, can infect mammalian, including human, cells, and integrate with the exact
signature of the presently found endogenous HERV-K progeny. We also show that this element amplifies via an
extracellular pathway involving reinfection, at variance with the non-LTR-retrotransposons (LINEs, SINEs) or
LTR-retrotransposons, thus recapitulating ex vivo the molecular events responsible for its dissemination in the host
genomes. We also show that in vitro recombinations among present-day human HERV-K (also known as ERVK) loci
can similarly generate functional HERV-K elements, indicating that human cells still have the potential to produce
infectious retroviruses.

1548 Genome Research 16:1548-1556 ©2006 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/06; www.genome.org
Www.genome.org

*DOI: 10.1101/gr.5565706
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Amplification
+ genetic drift

------- LT PR PP PP E R
Infection of primate Present-day
ancestor germ cell human genome
Phoenix, the ancestral HERV-K(HML2) retrovirus Notes:

To construct a consensus HERV-K(HML2) provirus, we assembled
all of the complete copies of the 9.4-kb proviruses that are human
specific (excluding those with the 292-nt deletion at the begin-
ning of the env gene) and aligned their nucleotide sequence to

* Nearly 8% of the human genome is composed of
sequences of retroviral origin.

* HERV = Human Endogenous RetroVirus

*  ORF = Open Reading Frame. The part of the

generate the consensus in silico, taking for each position the reading frame that has the potential to be
most frequent nucleotide. The resulting provirus sequence con- translated, a continuous stretch of codons that
tains, as expected, ORFs for all of the HERV-K(HML2)-encoded does not contain the stop codon.

proteins (Gag, Pro, Pol, Env, and the accessory Rec protein), with * The three major proteins encoded within the
gag, pro, and pol separated by — 1 frameshifts. Noteworthily, this retroviral genome: Gag, Pol, and Env:

o Gag is a polyprotein and is an acronym for
Group Antigens (ag).

o Polis the reverse transcriptase.

o Envinthe envelope protein.

consensus provirus is distinct from each of the sequences used to
generate it, with at least 20 amino acid changes on the overall
sequences (Fig. 1).

* provirus = virus genome integrated into DNA of host cell
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Image of representative particles obtained after transfection with an
expression vector for the Phoenix pro mutant. Scale bar 100 nm.
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A problem of male twins (Efron, 2003)

-

Fraternal: 2/3 of all cases

.
o \‘\

Identical: 1/3 of all cases

Pregnant with twins:
fraternal or identical?

Edoardo Milotti - Bayesian Methods - Spring 2024

S —
What is the probability of

identical twins IF both boys
in sonogram?
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Answer provided by Bayes theorem

P(Identical|Both boys) =

P(Both boys|Identical)

P(Both boys)

P(Identical)
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P(Identical

P(Fraternal

P(Both boys|Identical
P(Both boys|Fraternal

)=1/31 _. .
-  Prior probabilities
) =2/3 _
) — 1/2 ) Conditional probabilities from
) — 1/4 - simple counting argument

P(Both boys) = P(Both boys|Identical) P(Identical)
+ P(Both boys|Fraternal) P(Fraternal)

= (1/2)(1/3) + (1/4)(2/3) = 1/3

P(Identical| Both boys) =

P(Both boys|Identical)

P(Both boys) | (Ldentical
(1/2)
=13 /3 =1/2
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A simple application to medical tests (HIV testing)

P(positivel|infected) = 1; P(positive|not infected) = 0.015

what is the probability P(infected|positive) ?

A common answer is 98.5% ... and it is wrong!

P(BIA, )-P(Ak)

Let’'s use Bayes’ theorem ...  P(4,1B)=
Y P(BIA)P(4)

P(positivelinfected) x P(infected)
P(positivelinfected) x P(infected) + P(positive|not infected) x P(not infected)

P(infected|positive) =

B P(positive|infected) « P(infected)
| P(positive|infected) x P(infected) + P(positive|not infected) x P(not infected)
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The estimate depends on the size of the infected population

i.e., on the probabilities

P(infected) P(not infected)

P(positive|infected)
P(positive|infected) x P(infected) + P(positive|not infected) x P(not infected)

P(infected|positive) = [ ] x P(infected)

The posterior estimate strongly depends on prior probability



Example: AIDS testing

(data from https://en.wikipedia.org/wiki/List of countries by HIV/AIDS adult prevalence rate, accessed May 7t 2022)

P(positive|infected) « P(infected)

P(infected|positive) =

P(positive|infected) x P(infected) + P(positive|not infected) x P(not infected)

-

1
Pria1v (infected 1t] = 0.003 =~ 16.7
ttaly (infected|positive) = 3=—3-0ra—— 07" 997 ¥ %
. .. 1
Psouth Africa(infected|positive) = x 0.173 ~ 93.3%

1 x0.173 +0.015 x 0.827

The large number of false positives and the small probability of finding a sick person
mean that the probability of being infected if positive is not actually very high.
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Repeating measurements changes the reference population.

We incorporate a new positive result in a repeated measurement by using the
previous posterior as the new prior:

1
Pitaly (infected|positive, positive) = 150167 - 0.01E <0833 x 0.167 ~ 93.0%

1
Psouth Africa (infected|positive, positive) = 1% 0.933 7 0.015 X 0.067 x 0.933 ~ 99.9%

The first test changes the reference population, and the second test, if positive,
gives a significant result.
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Prosecutor’ s fallacy & Defendant’ s fallacy

Two common mistakes, associated with the wrong reference population

Consider a case where the probability of finding a given DNA subsequence —
detected on a crime scene — is 0.00014 in the whole population: what is the
probability that an individual who is found to have this rare subsequence in his/her
DNA is guilty ?77?

A common answer is 1- 0.00014 = 0.99986 ... but this is WRONG !

this is what we

P(innocent | DNA compatible) actually want!
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DNA classification - 1: alleles

allele: one of two or more alternative forms of the same gene, at the same position in
a chromosome.

Unaffected Unaffected
"Carrier" "Carrier"
Father

Mother example: sickle
cell anemia

Unaffected Unaffected "Carrier" Affected
1ind chance 2in 4 chance 1in 4 chance
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) Normal red blood cells

Normal
red blood

RBCs flow freely
within blood vessel

Abnormal, sickled, red blood cells

(sickle cells)
Sickle celis
blocking

Sticky sickle cells
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HbS allele frequency (%)
£ 0-0.51

£ 052-2.02

00 2.03-4.04

m 4.05-6.06

mm 6.07 -8.08

mm 8.09 -9.60

- 9611111

- 11.12-1263

. 12.64 - 14.65
" 14.66 - 18.18

Malaria endemicity
Malaria free
Epidemic

I Hypoendemic

B Mesoendemic

- Hyperendemic

- Holoendemic
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Allele frequency net database (AFND) 2020 update:
gold-standard data classification, open access
genotype data and new query tools

Faviel F. Gonzalez-Galarza'-"~f, Antony McCabe?', Eduardo J. Melo dos Santos?,
James Jones?, Louise Takeshita?, Nestor D. Ortega-Rivera', Glenda M. Del Cid-Pavon’,
Kerry Ramsbottom?, Gurpreet Ghattaoraya®, Ana Alfirevic 5, Derek Middleton*" and
Andrew R. Jones “4"

Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico,
2Computational Biology Facility, University of Liverpool, Biosciences building, Crown Street, Liverpool, L69 7ZB, UK,
SHuman and Medical Genetics, Institute of Biological Sciences, Federal University of Para, Brazil, *Institute of
Integrative Biology, University of Liverpool, Biosciences building, Crown Street, Liverpool, L69 7ZB, UK and
SDepartment of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool,
Liverpool, UK

Received September 16, 2019; Revised October 19, 2019; Editorial Decision October 21, 2019; Accepted November 07, 2019

ABSTRACT

The Allele Frequency Net Database (AFND, www.
allelefrequencies.net) provides the scientific commu-
nity with a freely available repository for the stor-
age of frequency data (alleles, genes, haplotypes
and genotypes) related to human leukocyte anti-
gens (HLA), killer-cell immunoglobulin-like receptors
(KIR), major histocompatibility complex Class | chain
related genes (MIC) and a nhumber of cytokine gene
polymorphisms in worldwide populations. In the last
five years, AFND has become more popular in terms
of clinical and scientific usage, with a recent in-
crease in genotyping data as a necessary compo-
nent of Short Population Report article submissions
to another scientific journal. In addition, we have de-
veloped a user-friendly desktop application for HLA
and KIR genotype/population data submissions. We
have also focused on classification of existing and
new data into ‘gold-silver—bronze’ criteria, allowing
users to filter and query depending on their needs.
Moreover, we have also continued to expand other
features, for example focussed on HLA associations
with adverse drug reactions. At present, AFND con-
tains >1600 populations from >10 million healthy in-
dividuals, making AFND a valuable resource for the
analysis of some of the most polymorphic regions in
the human genome.
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 Allele Frequency Net Database

About us Links Publications Automated Access FAQs

Populations HLA KIR Other polymorphisms HLA-ADR KDDB

News
www.hlacovid19.org website

Our friends (who are always very supportive of the AFND website, Jill A. Hollenbach @UCSF,
Steven J. Mack @UCSF and Martin Maiers @NMDP) have formed the COVID-19 HLA &
Immunogenetics Consortium to unite the global community of HLA and immunogenetics experts
and leaders in support of these efforts. They invite you to share your expertise as they launch this
endeavour by joining the consortium. A project for the next international Histocompatibility
Workshop is also planned.

Introduction

The Allele Frequency Net Database (AFND) provides the scientific community with a freely
available repository for the storage of immune gene frequencies in different worldwide
populations. Users can contribute the results of their work into one common database and can
perform database searches on information already available. We have currently collected data in
allele, haplotype and genotype format. However, the success of this website will depend on you to
contribute your data.

Does any of this interest you?

¢ Would you like to publish your population frequency data on HLA and KIR? (In collaboration
with Human immunology) See more information in Hum Immunol, 76, 393-394

¢ New search available for low resolution data when you cannot find the high resolution allele
data you want

Login

You are logged as: guest
Click here to use your account

SUBMIT YOUR DATA

Add HLA genotype raw data for SPR
Add HLA frequency data
- Add non-HLA frequency data

Sponsors

BAG Health Care F:,]
Fujirebio Europe {

CareDx ¢
Omixon b 14
- One Lambda 4
—
Immucor IMMI
GenDx GENDX
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| Allele*Frequencies

in Worldwide Populations

HLA > Allele Frequency Search > Classical

Please specify your search by selecting options from boxes. Then, click "Search" to find HLA allele frequencies that match your criteria. Remember at least one option must be selected.

Locus: Starting Allele: | | Ending Allele: | | > (Type your allele e.g. A*01:01, etc. or leave both empty to include all alleles)
Select specific alleles (If you want to pick specific alleles, make sure your alleles are within the Start-End range above)
2l Clear
Select specific populations
z| Clear
Population: ( Italy North (n=277) 4) Country: (italy 4] Source of dataset: ( All Sources 0,
Region: ( All regions 4 ) Ethnic Origin: ( 4) Type of Study: ( All Studies 4 ) Sort by: ( Allele, Highest to Lowest Frequency o |
Sample Size: (= #]J( Al 4] SampleYear: (= 4])( Allyears %) Level of resolution: (= 4] All 4 ) (Click here for further details)
Population standard: Gold only Gold and Silver @ All Show frequencies: Q All Only positives Only negatives Search

Displaying 1 to 20 (from 20) records Pages: 1 of1 RESET L',.'l =2

HLA = Human Leucocite Antigen. Human leukocyte antigens (HLA) are genes in major histocompatibility complexes (MHC) that help code for proteins that
differentiate between self and non-self. They play a significant role in disease and immune defense.
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Allele

% of individuals Sample IMGT/HLA? Haplotype3

tine Alicte Fopuiation that have the allele .Frequ.ency Size Database DigtHRution s Association Notes®
(in_decimals)
1 cx01:02 ] | ttaly North 0.0200 277 See v El
2 cx02:02 J] || rtaly North 0.0270 277 See > E
3 cx03:02 ] | taly North 0.0070 277 See v El
4 cx03:03 ] | taly North 0.0230 277 See v El
5 cx03:04 ] | 1taly North 0.0110 277 See [ El
6 cx04:01 ] | rtaly North 0.1480 ' 277 See ) E
7 cxo05:01 [] ] 1taly North 0.0450 277 See > E
8 cx06:02 ] | 1aly North 0.0920 277 See v El
9 cx07:01 ] | 1aly North 0.1440 277 See v El
10 cx07:02 ] | 1aly north 0.0600 277 See Y El
11 cx07:04 [] ] 1aly nortn 0.0130 277 See t E
12 cx08:02 [] ] 1aly north 0.0220 277 See > B
13 cx12:02 ] | 1aly north 0.0470 377 See t El
14 c*x12:03 ] | raly North 0.1500 " 20 See v El
15 cx14:02 [] ] 1aly north 0.0490 277 See v El
16 cx15:02 ] ] ttaly North 0.0690 277 See v E
17 c*16:01 [] ] 1aly north 0.0430 277 See v El
18 cx16:02 ] ] rtaly North 0.0230 277 See t El
19 c*16:04 ] ] rtaly North 0.0020 277 See v El
20  c*x17:01 ] | raly North 0.0050 277 See v E

Edoardo Milotti - Bayesian Methods - Spring 2024



P(DNA compatible | innocent,I)
P(DNA compatible,I)

P(innocent | DNA compatible,l ) = P(innocent 1 I)

P(given allele sequence|innocent, I)

P(innocent|given allele sequence, I') = P(innocent|T)

P(given allele sequence, I)

where

P(given allele sequence, I) = P(given allele sequence|innocent, I)P(innocent|[I)

+ P(given allele sequence|guilty, I') P(guilty|I)
Since the test has a very low error probability, i.e.,
P(given allele sequence|guilty, I) ~ 1
we find

P(given allele sequence, I) = 0.00014 x P(innocent|l) 4+ 1 x P(guilty|l)



Once again, just like in the previous example, we see that it is all-important to determine
the prior probabilities P(innocent|l) and P(guilty|l). For instance, if we pick a suspect
at random in a large population, e.g., in a city with 1 million inhabitants, then

P(innocent|I) = 1 — 107°% = 0.999999;  P(guilty|I) = 10~° = 0.000001

P(given allele sequence, I) = 0.00014 x (1 —107%) +1 x 107°% ~ 0.000141
and finally

0.00014
0.000141

P(innocent|given allele sequence, I) = (1 —107%) ~ 0.992907



This last result shows that the DNA test is quite inconclusive in this case, because it
decreases the probability that the suspect is innocent from 0.999999 to 0.992907, only.
How can it be? The reason is that in this case the number of random matches is not
small, indeed in this city there are on average 1000000/7000 ~ 143 people that randomly
match the given allele sequence.

The argument can be turned upside down by a cunning lawyer, who might claim that
since there are so many random matches, the DNA test is not relevant. However it is not
so, and this claim is the “defendant’s fallacy”. Indeed, the problem that we met above
was that the starting population was far too large. Other evidence might considerably
reduce the number of possible suspects, for instance a surveillance camera might help
identify all the people who entered a building and who had a chance to commit the
crime, and thus reduce the starting population to, say, 100 people. When we repeat the
relevant calculations, we find

P(innocent|l) =1 —1/100 = 0.99; P(guilty|l) = 1/100 = 0.01

P(given allele sequence, I') = 0.00014 x 0.99 + 1 x 0.01 ~ 0.01014
and finally

0.00014
P(innocent|given allele sequence, I') = 5 01014(1 —107%) ~ 0.0137

We see that the new situation is drastically different, the reason being that on average
only 100/7000 = 0.0143 people can randomly match the given allele sequence.
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An extremely short history of early Bayesianism

* Rev. Thomas Bayes discovered an early form of Bayes’ theorem (second half of 18t century)
e Price discovered the theorem inside Bayes’ unpublished notes (end 18" century)

* Laplace reinvented a version of the theorem and later expanded it after studying the Bayes’ notes
(around 1800)

* Laplace successfully applied the theorem to many experimental data analysis problems (until about
1820)

* Laplace was sometimes ridiculed by people who did not understand some of his approaches

e Laplace discovered the basic version of the Central Limit Theorem and in his later life he abandoned the
Bayes theorem in favor of frequency-based methods (until about 1830)

e After the death of Laplace, Bayes’ theorem was nearly forgotten and cornered to the darkest parts of
statistics (crossing the desert ...)
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Bayesian inference

P(BIA )P(Ak)

P(A,1B)=

i BIA,)P(A,)
_ P(BIA) P(4,)
iP BIA,)P(A,)
P(H,|D,I)=— P(DIH,.1) -P(H, 1)

Y P(DIH,,I)P(H,I)



P(DIH,,I)

Y P(DIH,,I)P(H,II)
k=1

P(H,|D,I)=

2
il

H, |I)

(Posterior probability that k-th hypothesis is true, when we observe data D, with
prior information 1)

(Probability of observing data D, given the k-th hypothesis) / Normalization

(Prior probability that k-th hypothesis is true)



P(DIH,,I)

P(H,|D,I)= PO -P(H, 1)
= — P(DIH,.1) -P(H, |
Y P(DIH,,I)P(H, 1)
k=1
prior distribution P(H o )
posterior distribution P (H D, )
likelihood or sampling P( DIH . I )
distribution N
fnvcl)crlrigcliezing factor) P(D | I) ZP(D H, I) P(Hk | I)

k=1



Testing hypotheses

P(H,|D,I)= P;lzllﬁ;’)]) -P(H, 1)
Odds ratio
P(H,|D,I) _’[P(D | Hk,l)] .(P(Hk |1)j
P(H,\D,I) \P(DIH,I))\P(H,II

\ J
|

Bayes’ factor
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When prior probabilities are the same (equally probable hypotheses), the posterior
probability ratio depends only on the Bayes’ factor:

(Hy,

P
P

(Hn

Odds ratio

A

(D|Hy, I)

J

|

Bayes’ factor

P
P(H,|I) + P(D|H,,I)

Bayes’ factor

Uniform priors
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From discrete sets of hypothesis to the continuum.
The Bayes’ theorem in the context of parameter estimation.

P(DIH,,I) P(DIH,,I)
PUHLID.I)= P(DI1I) .P(Hk”):iP(DIHk,I).P(HkII).P(HkII)
P (D6, 1)
p(0|D, ) = < p(0]1)

o P (D|6",I)p (6'T)d0
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What if we “measure” a mathematical constant instead of a physical
parameter?

Example:

area of Bernoulli’'s lemniscate
obtained with a Monte Carlo
simulation.



Parametric equation of Bernoulli’'s lemniscate

r = aVv cos 20

What is its area?

Edoardo Milotti - Bayesian Methods - Spring 2024
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Empirical Monte Carlo distribution of the area estimate

area estimate




Empirical Monte Carlo distribution of the area estimate

el

a probability distribution of
a mathematical constant???

area estimate




Question:
Are we asking a real scientific question?
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