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Consider the following sequence of coin tosses

H, T, T, T, H, H, T, T, H, H, T, H, H, H, H, T, H, H, H, T

(12 heads, 8 tails)

Is this an unbiased coin? 

What about the following one? 

H, T, H, H, H, T, H, H, T, H, H, H, H, H, T, T, H, T, T, H

(13 heads, 7 tails)
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Consider the following sequence of coin tosses

H, T, T, T, H, H, T, T, H, H, T, H, H, H, H, T, H, H, H, T

(12 heads, 8 tails)

Is this an unbiased coin? 

Frequentist answer: sample average is 0.6 instead of 0.5, which is just a little less that one standard 
deviation (≈ 0.11) away from the mean for an unbiased coin

What about the following one? 

H, T, H, H, H, T, H, H, T, H, H, H, H, H, T, T, H, T, T, H

(13 heads, 7 tails)

Frequentist answer: sample average is 0.65 instead of 0.5, which is just about 1.36 standard deviations 
away from the mean for an unbiased coin and is more likely to point to a biased coin
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Example of Bayesian inference: 
estimate of the (probability) parameter of the binomial distribution

P n |θ,N( ) = N
n

⎛
⎝⎜

⎞
⎠⎟
1−θ( )N −nθ n

uniform distribution: the 
least informative prior

the final result is a beta distribution

this is the parameter 
that we want to infer 
from data
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beta function

p θ | n,N( ) = Γ(N + 2)
Γ(n +1)Γ(N − n +1)

1−θ( )N −nθ n

=
(N +1)!
n!(N − n)!

1−θ( )N −nθ n
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∫
= Γ m + n( )B m,n( )

⇒ B m,n( ) = Γ m( )Γ n( )
Γ m + n( ) ⇒ B m +1,n +1( ) = m!n!

m + n +1( )!

Mathematical digression: the connection between gamma and beta function
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p θ | n,N( ) = (N +1)!
n!(N − n)!

1−θ( )N −nθ n

θ = p θ | n,N( )
0
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B n + 2,N − n +1( )

=
(N +1)!
n!(N − n)!

·(n +1)!(N − n)!
(N + 2)!

=
n +1
N + 2

→
n
N

From the knowledge of the posterior pdf we obtain all the momenta of the distribution

biased, asymptotically unbiased, 
estimator
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θ 2 = p θ | n,N( )
0
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n!(N − n)!

1−θ( )N−nθ n+2 dθ
0

1

∫

= (N +1)!
n!(N − n)!

B n + 3,N − n +1( )

= (N +1)!
n!(N − n)!

·(n + 2)!(N − n)!
(N + 3)!

=
n + 2( ) n +1( )
N + 3( ) N + 2( )

varθ = θ 2 − θ 2 =
n + 2( ) n +1( )
N + 3( ) N + 2( ) −

n +1
N + 2

⎛
⎝⎜

⎞
⎠⎟
2

=

=
N − n +1( ) n +1( )
N + 3( ) N + 2( )3

Edoardo Milotti - Bayesian Methods - Spring 2024



What happens if we try a different prior?

Let’s try with a linear prior

p θ( ) = 2θ
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Blue: start with uniform prior

Red: start with linear prior

Taking few coin throws, the posterior from the linear prior is considerably 
biased. The bias disappears when the number of coin throws is large.

✓
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Now we try with a very non-uniform prior

We take

θ

p θ( ) = k +1( )θ k ; k  1
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Blue: start with uniform prior

Red: start with power-law prior (k=10)

In this case, initial bias due to the prior is very large.

✓
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Note on posterior distributions: 

the relationship between binomial distribution and beta function is quite important and common, and 
corresponds to the formal definition of the Beta distribution:

There are other important dualities between distributions. 

We shall soon meet additional dualities for important distributions. 

B θ a,b( ) = Γ a + b( )
Γ a( )Γ b( )θ

a−1 1−θ( )b−1
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Lessons learned: 

1. The prior information is not neutral, a careful choice of the prior distribution is a necessity. 

Question: how do we choose a prior? 

2. If we want to keep all possibilities alive, we must heed the Cromwell’s rule: “Prior probabilities 0 and 1 
should be avoided” (Lindley, 1991)

The reference is to Oliver Cromwell’s phrase: 
I beseech you, in the bowels of Christ, think it possible that you may be mistaken. 

3. Convergence as the dataset size grows seems to be granted, however it may be very slow with a bad 
choice of prior distribution

Question: is convergence really granted???
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The Bernstein-Von Mises theorem

• The theorem that grants convergence under very weak hypotheses is the Bernstein-Von Mises theorem. 
The theorem states that a posterior distribution converges in the limit of infinite data to a multivariate 
normal distribution centered at the maximum likelihood estimator with covariance matrix given by the 
normalized Fisher matrix. 

• Convergence can only be defined with respect to a frequentist approach (this requires repeated, 
independent tests of the experimental procedure).   

• In the case of nonparametric statistics and for certain probability spaces, the Bernstein-von Mises theorem 
usually fails.
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Maximum a posteriori (MAP) estimate – MAP ≠ mean value! 

Consider the case with a uniform prior: from the posterior distribution

we easily find that the posterior pdf is maximized by the parameter value

which is the unbiased estimate of the parameter (unlike the mean value!)

p θ | n,N( ) = (N +1)!
n!(N − n)!

1−θ( )N −nθ n

✓ = n/N
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Cornfield, Jerome

Born: October 30, 1912, in New York City, New
York.

Died: September 17, 1979, in Herndon, Virginia.

Reproduced by permission of the Royal Statistical Society

Jerome Cornfield was arguably the most influential
statistician in the biomedical sciences in the US from
the 1950s until his death. He was the consummate
statistical scientist. His understanding of the nature
of the subject-matter of statistics and of its essential
role in the inductive process of integrating data into
a body of empirical knowledge, particularly in the
biomedical sciences, was outstanding. This thorough
view of statistics and scientific research enabled him
to identify essential statistical problems. He exercised
considerable influence as an advisor and consultant,
and for over two decades was a major advocate for
statistical reasoning in clinical research.

After attending elementary and high schools in the
Bronx, New York, he entered New York University,
graduating in 1933 with a major in history. Cornfield
did not receive any advanced degrees. He did, how-
ever, take some formal graduate courses in history at
Columbia University. After moving to Washington,
DC, in 1935, Cornfield took a number of courses in
statistics at the US Department of Agriculture Grad-
uate School during the period 1936–1938, including
courses with M.A. Girshick in general statistics and

multivariate analysis. He also had a course in sam-
pling which, together with what he learned on the
job from Duane Evans, enabled him to advance the
cause of getting probability sampling accepted by
several Federal Agencies. Although his formal train-
ing was minimal, most of what he had to learn about
statistical theory, reasoning, and methodology was
self-taught from a continually expanding literature.
This enabled him to be discriminatingly selective
both as to subject-matter and to the time at which
he felt it necessary to learn about a subject. In later
years, biomedical associates and statistical colleagues
were surprised to discover that he had no docto-
rate.

A brief review of the major positions he held
begins with the Bureau of Labor Statistics, where
he was a statistician from 1935 to 1947. In 1947
he joined Harold Dorn’s methods unit in the Pub-
lic Health Service. This unit was shortly transferred
to the National Cancer Institute on the campus of
the National Institutes of Health (NIH). Cornfield
remained in the Cancer Institute until 1955 or 1956
when both he and Dorn moved over to a new Division
of Research Services. Here, he consulted with inves-
tigators in various Institutes of the NIH. In 1958 he
was invited to succeed William Cochran as Chair-
man of the Department of Biostatistics in the School
of Hygiene and Public Health of the Johns Hop-
kins University. He was also appointed Professor
of Biomathematics in the School of Medicine. He
returned to the NIH in 1960 as Assistant Chief of the
Biometrics Research Branch of the National Heart
Institute, became Branch Chief in 1963, and served
in that position until his retirement from the NIH
in 1967. In 1968 he joined the Graduate School of
Public Health of the University of Pittsburgh as a
Research Professor of Biostatistics. At the same time
he founded a biostatistics research group with offices
in the Washington, DC, area. In 1972 he joined the
Department of Statistics at the George Washington
University as Professor of Statistics and brought his
research group into the Department as the Biostatis-
tics Center. He served as Chairman of the Department
from 1973 to 1976 and continued as Professor of
Statistics and Director of the Center until his terminal
illness.

Over a span of three decades, from 1947 to 1979,
Professor Cornfield was one of the leading statis-
ticians working in the biomedical area. He made

Encyclopedia of Biostatistics, Online © 2005 John Wiley & Sons, Ltd.
This article is © 2005 John Wiley & Sons, Ltd.
This article was published in the Encyclopedia of Biostatistics in 2005 by John Wiley & Sons, Ltd.
DOI: 10.1002/0470011815.b2a17032

Developments in Theory and Quantitative Methods 95 

A METHOD OF ESTIMATING COMPARA-
TIVE RATES FROM CLINICAL DATA. 
APPLICATIONS TO CANCER OF THE 
LUNG, BREAST, AND CERVIX 1 

JEROME CORNFIELD, Nationat Cancer Imtit"", National 
Imtitut.& of HeaUh, U. 8. Public HeaUh Smtia, B.a...da, 
Md. 

A frequent problem in epidemiological research is the attempt to deter-
mine whether the probability of having or incurring a stated disease, such 
as cancer of the lung, during a specified interval of time is related to the 
possession of a certain charscteristic, such as smoking. In principle, 
such a question offers no difficulty. One selects representative groups 
of persons having and not having the characteristic and determines the 
percentage in each group who have or develop the disease during this 
time period. This yields a true rate. The difference in the magnitudes 
of the rates for those possessing and lacking the characteristic indicates 
the strength of the association. If it were true, for example, that a very 
large percentage of cigarette smokers eventually contracted lung cancer, 
this would suggest the possibility that tobacco is a strong carcinogen. 

An investigation that involves selecting representative groups of those 
having and not having a characteristic is expensive and time consuming, 
however, and is rarely if ever used. Actual practice in the field is to take 
two groups presumed to be representative of persons who do and do not 
have the disease and determine the percentage in each group who have the 
characteristic. Thus rather than determine the percentage of smokers 
and nonsmokers who have cancer of the lung, one determines the per-
centage of persons with and without cancer of the lung who are smokers. 
This yields, not a true rate, but rather what is usually referred to as a 
relative frequency. Relative frequencies can be computed with compar-
ative ...Se from hospital or other clinical records, and in consequence most 
investigations based on clinical records yield nothing but relative frequen-
cies. The difference in the magnitudes of the relative frequencies does 
not indicate the strength of the association, however. Even if it were 
true that there were many more smokers among those with lung cancer 
than among those without it, this would not by itself suggest whether 
tobacco was a weak or a strong carcinogen. We are consequently inter-
ested in whether it is possible to deduce the rates from knowledge of the 
relative frequencies. 

1 Received for publication Febrw:irr 23, 1961. 
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Example: the statistical link between smoking and lung cancer
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Cornfield, Jerome

Born: October 30, 1912, in New York City, New
York.

Died: September 17, 1979, in Herndon, Virginia.

Reproduced by permission of the Royal Statistical Society

Jerome Cornfield was arguably the most influential
statistician in the biomedical sciences in the US from
the 1950s until his death. He was the consummate
statistical scientist. His understanding of the nature
of the subject-matter of statistics and of its essential
role in the inductive process of integrating data into
a body of empirical knowledge, particularly in the
biomedical sciences, was outstanding. This thorough
view of statistics and scientific research enabled him
to identify essential statistical problems. He exercised
considerable influence as an advisor and consultant,
and for over two decades was a major advocate for
statistical reasoning in clinical research.

After attending elementary and high schools in the
Bronx, New York, he entered New York University,
graduating in 1933 with a major in history. Cornfield
did not receive any advanced degrees. He did, how-
ever, take some formal graduate courses in history at
Columbia University. After moving to Washington,
DC, in 1935, Cornfield took a number of courses in
statistics at the US Department of Agriculture Grad-
uate School during the period 1936–1938, including
courses with M.A. Girshick in general statistics and

multivariate analysis. He also had a course in sam-
pling which, together with what he learned on the
job from Duane Evans, enabled him to advance the
cause of getting probability sampling accepted by
several Federal Agencies. Although his formal train-
ing was minimal, most of what he had to learn about
statistical theory, reasoning, and methodology was
self-taught from a continually expanding literature.
This enabled him to be discriminatingly selective
both as to subject-matter and to the time at which
he felt it necessary to learn about a subject. In later
years, biomedical associates and statistical colleagues
were surprised to discover that he had no docto-
rate.

A brief review of the major positions he held
begins with the Bureau of Labor Statistics, where
he was a statistician from 1935 to 1947. In 1947
he joined Harold Dorn’s methods unit in the Pub-
lic Health Service. This unit was shortly transferred
to the National Cancer Institute on the campus of
the National Institutes of Health (NIH). Cornfield
remained in the Cancer Institute until 1955 or 1956
when both he and Dorn moved over to a new Division
of Research Services. Here, he consulted with inves-
tigators in various Institutes of the NIH. In 1958 he
was invited to succeed William Cochran as Chair-
man of the Department of Biostatistics in the School
of Hygiene and Public Health of the Johns Hop-
kins University. He was also appointed Professor
of Biomathematics in the School of Medicine. He
returned to the NIH in 1960 as Assistant Chief of the
Biometrics Research Branch of the National Heart
Institute, became Branch Chief in 1963, and served
in that position until his retirement from the NIH
in 1967. In 1968 he joined the Graduate School of
Public Health of the University of Pittsburgh as a
Research Professor of Biostatistics. At the same time
he founded a biostatistics research group with offices
in the Washington, DC, area. In 1972 he joined the
Department of Statistics at the George Washington
University as Professor of Statistics and brought his
research group into the Department as the Biostatis-
tics Center. He served as Chairman of the Department
from 1973 to 1976 and continued as Professor of
Statistics and Director of the Center until his terminal
illness.

Over a span of three decades, from 1947 to 1979,
Professor Cornfield was one of the leading statis-
ticians working in the biomedical area. He made

Encyclopedia of Biostatistics, Online © 2005 John Wiley & Sons, Ltd.
This article is © 2005 John Wiley & Sons, Ltd.
This article was published in the Encyclopedia of Biostatistics in 2005 by John Wiley & Sons, Ltd.
DOI: 10.1002/0470011815.b2a17032

Jerome Cornfield was arguably the most influential statistician in the 
biomedical sciences in the US from the 1950s until his death. He was the 
consummate statistical scientist. His understanding of the nature of the 
subject-matter of statistics and of its essential role in the inductive 
process of integrating data into a body of empirical knowledge, 
particularly in the biomedical sciences, was outstanding. This thorough 
view of statistics and scientific research enabled him to identify essential 
statistical problems. He exercised considerable influence as an advisor 
and consultant, and for over two decades was a major advocate for 
statistical reasoning in clinical research. 

After attending elementary and high schools in the Bronx, New York, he 
entered New York University, graduating in 1933 with a major in history. 
Cornfield did not receive any advanced degrees. He did, however, take 
some formal graduate courses in history at Columbia University. After 
moving to Washington, DC, in 1935, Cornfield took a number of courses 
in statistics at the US Department of Agriculture Graduate School during 
the period 1936 – 1938, including courses with M.A. Girshick in general 
statistics and multivariate analysis. 

...
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Biometrics Research Branch of the National Heart
Institute, became Branch Chief in 1963, and served
in that position until his retirement from the NIH
in 1967. In 1968 he joined the Graduate School of
Public Health of the University of Pittsburgh as a
Research Professor of Biostatistics. At the same time
he founded a biostatistics research group with offices
in the Washington, DC, area. In 1972 he joined the
Department of Statistics at the George Washington
University as Professor of Statistics and brought his
research group into the Department as the Biostatis-
tics Center. He served as Chairman of the Department
from 1973 to 1976 and continued as Professor of
Statistics and Director of the Center until his terminal
illness.

Over a span of three decades, from 1947 to 1979,
Professor Cornfield was one of the leading statis-
ticians working in the biomedical area. He made

Encyclopedia of Biostatistics, Online © 2005 John Wiley & Sons, Ltd.
This article is © 2005 John Wiley & Sons, Ltd.
This article was published in the Encyclopedia of Biostatistics in 2005 by John Wiley & Sons, Ltd.
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...
Over a span of three decades, from 1947 to 1979, Professor Cornfield 
was one of the leading statisticians working in the biomedical area. He 
made many original contributions to biostatistics, epidemi- ology, 
clinical trials, and to quantitative methods in the design and analysis of 
experiments conducted in clinical and laboratory research. In addition, he 
wrote a number of papers on Bayesian inference and on the application 
of Bayesian methods in the biomedical sciences. 
...
From 1948 to his death 31 years later, Cornfield devoted the major 
portion of his career to the development and application of statistical 
theory and methods to the biomedical sciences. His contributions were 
diverse both in the nature of his statistical interests and in the areas of 
biostatistical applications. He was involved in and touched upon every 
major public health issue that arose in that period – the polio vaccines, 
smoking and lung cancer, risk factors for cardiovascular disease, and the 
difficult statistical issues of estimating the low-dose carcinogenic effects 
in humans of a food additive that becomes suspect because it produces 
cancer in animals at much higher doses. 
...

(excerpted from Encyclopedia of Biostatistics, Online © 2005 John Wiley & Sons, Ltd.
This article DOI: 10.1002/0470011815.b2a17032)
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418 Stolley

Pearson. He took notice of Fisher's work
and genius and, as editor of Biometrika,
arranged to publish some of Fisher's articles.
Pearson published Fisher's paper describing
the general sampling distribution of the cor-
relation coefficient. When Pearson pub-
lished another article by Fisher about maxi-
mum likelihood and editorially criticized it
without first informing Fisher he would do
this, Fisher developed a strong antipathy for
Pearson, the first of Fisher's several feuds.

In September 1917, Fisher started work as
a statistician at Rothamsted experimental
agricultural station which, under his leader-
ship, was to become a world center for the
theoretical development of experimental de-
sign. There he developed the analysis of
variance, the principle and contribution of
randomization, and the idea and importance
of replication. He made great contributions
to the understanding of confounding and
created designs to handle problems created
by confounding. In 1925 he published Sta-
tistical Methods for Research Workers (4),
and 10 years later The Design of Experi-
ments was published (5). In 1938 he and
Frank Yates brought out Statistical Tables
for Biological, Agricultural, and Medical Re-
search, still used today (6). (See figure 1.)

Following up his work on the distribution
of the correlation coefficient, Fisher derived
the sampling distributions of other statistics
in common use, including the F distribution
and the multiple correlation coefficient. He
developed the theory of estimation in 1922.
In later years he made many other contri-
butions to genetic and evolutionary theory
that are considered central to the under-
standing of the theory of natural selection
(7).

Fisher was offered the chair as the Galton
Professor of Eugenics at University College
in London. Actually, a new Department of
Eugenics was created in order to attract him
to the University. Fisher would never have
agreed to work in the statistics department
under Karl Pearson because of the antipathy
between them which had originated with
Pearson's critical editorial in Biometrika.
Consequently, two departments doing the
same kind of work coexisted at the Univer-

RGURE 1. Passport photograph of Ronald Aylmer
Fisher at age 34. Reprinted from Box JF. RA Fisher
the life of a scientist. New York: John Wiley & Sons,
Inc., 1978.

sity College—Statistics under E. G. Pearson,
who headed the department after his father,
and statistics (misnamed Eugenics) under
Fisher. An intense rivalry and bad feeling
existed between Pearson and Fisher which
was reflected in their departmental activities.

Jerzy Neyman joined Egon Pearson in
Statistics in 1934 and immediately chal-
lenged some of Fisher's ideas on hypothesis
testing, introducing the ideas of power and
decision theory which he developed further
in the United States with Abraham Wald.
Fisher was unaccustomed to being contra-
dicted and confronted Neyman as follows
(related to Constance Reid by Neyman when
he was an old man in working retirement at
the University of California, Berkeley):

And he said to me that he and I are at
the same building... he had published a
book and that's Statistical Methods for Re-

Fisher developed four lines of argument in questioning the 
causal relation of lung cancer to smoking. 

1) If A is associated with B, then not only is it possible that 
A causes B, but it is also possible that B is the cause of A. 
In other words, smoking may cause lung cancer, but it is 
a logical possibility that lung cancer causes smoking. 

2) There may be a genetic predisposition to smoke (and 
that genetic predisposition is presumably also linked to 
lung cancer).

3) Smoking is unlikely to cause lung cancer because secular 
trend and other ecologic data do not support this 
relation. 

4) Smoking does not cause lung cancer because inhalers 
are less likely to develop lung cancer than are 
noninhalers 
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Lung cancer and cigarette smoking

Consider the following data for fractions of the population (Cornfield, 1951)

what is the proportion having cancer of the lung in each population? 

Having cancer 
of the lung

Healthy Total

Smokers 0.119·10-3 0.579910 0.580025

Nonsmokers 0.036·10-3 0.419935 0.419971

Total 0.155·10-3 0.999845 1.000000



Edoardo Milotti - Bayesian Methods - Spring 2024

Consider the populations of smokers (S) and non–smokers (N), and the two conditions, healthy (H) or sick with cancer (C), 
then using Bayes' theorem we can write: 

Then: 

Smokers:   0.119·10-3/0.580025 = 2.05164·10-4

Nonsmokers:  0.036·10-3/0.419971 = 8.57202·10-5

Therefore, the prevalence of lung cancer in smokers with respect to nonsmokers is

   Smokers/Nonsmokers ≈ 2.4

<latexit sha1_base64="X+3TEWm0OEaKzFLBz9HTA8sShIg="></latexit>
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P (S)

P (C|N) =
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• In 1954 Richard Doll and Bradford Hill published evidence in the British Medical Journal showing a 
strong link between smoking and lung cancer. They published further evidence in 1956.

• Fisher was a paid tobacco industry consultant and a devoted pipe smoker. He did not think the 
statistical evidence for a link was convincing.

• Ronald Fisher died aged 72 on July 29, 1962, in Adelaide, Australia following an operation for colon 
cancer. 

• With bitter irony, we now know that the likelihood of getting this disease increases in smokers. 

Ronald Fisher was cremated, and his ashes interred in St. Peter’s Cathedral, Adelaide.

(from "Ronald Fisher." Famous Scientists. famousscientists.org. 17 Sep. 2015. Web. 5/30/2017 <www.famousscientists.org/ronald-
fisher/>.)
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Example: analysis of a decision problem (Skilling 1998)

Let T be the temperature of a liquid which can be either water or ethanol. We use the 
temperature data to discriminate between water and ethanol.

1. We suppose first that the liquid is water: then we take a uniform prior distribution for 
T, between 0 °C and 100 °C

2. The experimental apparatus and the measurement process is defined by the likelihood 
function:
P(D|T,water,I). 
We assume that measurements are uniformly distributed within a range ±5 °C. 
Therefore:
P(D|T,water,I) = 0.1 (°C)-1 in the interval [T-5°C, T+5°C], and zero elsewhere.

3. We take a single measurement D = -3°C.
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4. The evidence p(D) is*

5. Using Bayes’ theorem we find

* notice that in this case the likelihood is a pdf: the reason is that D is a continuous variable 

<latexit sha1_base64="Tf8+IVuvV9AV23zjnTsBqcdMD60="></latexit>

p(D|water, I) =
Z

T
p(D|T,water, I)p(T )dT

=

Z 2�C

0�C

(�C)�1
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(�C)�1

100
dT (�C) = 0.002(�C)�1
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Now suppose that the liquid is ethanol, so that the temperature range is -80°C<T<80°C

1. p(T) = (160°C)-1 in -80°C < T < 80°C.

2. p(D | T, ethanol, I) = 0.1 (°C)-1 in [T-5°C, T+5°C], and zero elsewhere.

3. We take a single measurement D = -3°C.

4. The evidence p(D | ethanol, I) is

5. Using Bayes’ theorem, we find

<latexit sha1_base64="fIFmwCzY06/PKZ+3h2a+gTt7X94="></latexit>

p(D|ethanol, I) =
Z

T
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• Here we only wish to discriminate between water and ethanol and we do not care 
much about temperature. 

• Temperature is a nuisance variable, one that can be dispensed with. 

• Usually, nuisance variable are eliminated by integration. In this specific case we have 
already carried out part of the work by calculating the evidences, which can be 
considered as marginalized likelihoods.



Assuming a uniform prior for the water-ethanol choice, we can discriminate between 
water and ethanol:

         Pwater = Pethanol = 0.5

With this prior assumption we find: 

and the ratio of the posteriors is given by the Bayes’ factor 

<latexit sha1_base64="lcgs3zrsw+TRy7wVR6I7bbgj9pU="></latexit>

P (water|D, I) =
p(D|water, I)

p(D|water, I)P (water|I) + p(D|ethanol, I)P (ethanol|I)P (water|I)
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p(D|water, I)

p(D|water, I) + p(D|ethanol, I)
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We found earlier that 

therefore, the Bayes factor is 

and we conclude that the observation favors the hypothesis of liquid ethanol. 

<latexit sha1_base64="Pha9rTsEeBhXEoiXtH98ggUhKB4="></latexit>

p(D|water, I) = 0.002(�C))�1
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B =
P (ethanol|D, I)

P (water|D, I)
=

p(D|ethanol, I)
p(D|water, I) = 3.125



Interpretation of the Bayes factor B as evidence support according to Jeffreys (1961), in half units on a scale of 
log10. 

In the case of the water-ethanol problem, and according to Jeffreys’ categories, the preference for ethanol is “not 
worth more than a bare mention”, although it happens to be in the upper part of the range.

In 1995, Kass and Raftery noted that  it can be useful to consider twice the natural logarithm of the Bayes factor, 
which is on the same scale as the familiar deviance and likelihood ratio test statistics and therefore proposed a 
different interpretation 

<latexit sha1_base64="lj7mypuRWPDBGLGcn3NhhnZTuIg="></latexit>

B10 =
P (D|H1)

P (D|H0)

Here 1 denotes the 
alternative hypothesis and 
0 the null hypothesis
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Example of Bayesian parameter estimation: analytical straight-line fit

yi = axi + b + ε i

yi
xi
a,b
εi

measured value

independent variable (“exactly” known)

fit parametes: eventually we expect to find pdf’s for these parameters

statistical uncertainty

the statistical measurement uncertainty 
has a Gaussian distribution
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h"ii = 0; h"2i i = �2



p y | a,b,x,σ( ) = 2πσ 2( )−N 2
exp − 1

2σ 2 yi − axi − b( )2
i=1

N

∑⎡
⎣⎢

⎤
⎦⎥

likelihood

prior angular distribution

uniform a   uniform angle
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Should we take a 
uniform a or 
a uniform angle?



The uniform distribution of a introduces an angular bias. The least informative choice 
corresponds to a uniform angular distribution

pϕ ϕ( ) = 1
π
; − π

2
≤ϕ < π

2

a = tanϕ

⇒ pϕ ϕ( )dϕ = pa a( )da = pa a( )d tanϕ( ) = pa a( )sec2ϕdϕ

⇒ pa a( ) = 1
π sec2ϕ

= 1
π 1+ tan2ϕ( ) =

1
π 1+ a2( )

and we obtain the distribution of a with the transformation method: 
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prior distribution of b: an improper uniform distribution, related to the distribution of a

p b | a = 0( ) = 1
2B
; p b | a( ) = 1

2 ′B
= cosϕ
2B

= 1
2B
· 1
1+ a2

′B = B
cosϕ

Edoardo Milotti - Bayesian Methods - Spring 2024



p a,b( ) = p b | a( )·p a( ) = 1
2B
· 1
1+ a2

⎛
⎝⎜

⎞
⎠⎟

1
π 1+ a2( )

⎛

⎝
⎜

⎞

⎠
⎟

∝ 1
1+ a2( )3 2

finally, we obtain the posterior from Bayes’ theorem

where the prior is
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p a,b( ) = p b | a( )·p a( ) = 1
2B
· 1
1+ a2

⎛
⎝⎜

⎞
⎠⎟

1
π 1+ a2( )

⎛

⎝
⎜

⎞

⎠
⎟

∝ 1
1+ a2( )3 2

finally, we obtain the posterior from Bayes’ theorem

where the prior is
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p(a, b)



therefore:

This expression has a partly Gaussian structure, and we rearrange the quadratic 
expression in the exponential. 
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⎣

⎤
⎦
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N

∑

= yi − axi( )2
i=1

N

∑ − 2b yi − axi( )
i=1

N

∑ + Nb2

= N b2 − 2b 1
N

yi − axi( )
i=1

N

∑ + 1
N

yi − axi( )
i=1

N

∑⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 1
N
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i=1

N
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N
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i=1

N

∑⎛
⎝⎜

⎞
⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪
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N

yi − axi( )
i=1

N

∑⎛
⎝⎜

⎞
⎠⎟
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N
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i=1

N
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N
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N
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⎞
⎠⎟
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⎨
⎪

⎩⎪

⎫
⎬
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⎞
⎠⎟

2
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N

yi
2
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N
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N

xiyi
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N
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N
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2
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⎝⎜

⎞
⎠⎟
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N
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N

∑ − a 1
N
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N

∑⎛
⎝⎜
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⎠⎟
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i=1
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⎞
⎠⎟

2

+ N var y − 2acov(x, y)+ a2 var x( )
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1+ a2( )3 2

exp − N
2σ 2 var y − 2acov(x, y)+ a

2 var x( )⎡
⎣⎢

⎤
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db exp − N
2σ 2 b − 1

N
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i=1

N

∑⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−∞

+∞

∫
−∞

+∞

∫

= 2πσ 2

N
da

1+ a2( )3 2
exp − N

2σ 2 var y − 2acov(x, y)+ a
2 var x( )⎡

⎣⎢
⎤
⎦⎥−∞

+∞

∫

therefore, the normalization integral becomes
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For the next step we use Laplace's method (this is the saddle-point method – also called the method of steepest 
descent in the real domain) for the evaluation of the integral of a unimodal function 

where

where x0 is the mode and

therefore  
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Approximate integration of the remaining integral with Laplace's method 

Taking the logarithm of the integrand, we find its maximum and we Taylor-expand about the 
maximum

Φ a( ) = − 3
2
ln 1+ a2( )− N

2σ 2 var y − 2acov(x, y)+ a
2 var x( )
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Φ a( ) = −
3
2
ln 1+ a2( ) − N

2σ 2 var y − 2acov(x, y) + a
2 var x( )

dΦ
da

= − 3a
1+ a2

+ N
σ 2 cov(x, y)− avar x( ) = 0

note that when N>>1 the peak is at position

We use the Newton-Raphson method for the solution of the cubic equation:

a0 ≈
cov(x, y)
var x

we find a from this 
cubic equation

f (a0 ) = − 3a0
1+ a0

2

f ′ (a0 ) = −3 1− a0
2

(1+ a0
2 )2

− N
σ 2 var x ≈ − N

σ 2 var x
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then 

Now, to complete the expansion, we must evaluate the 
second derivative at a1:

Φ a( ) ≈ Φ a1( ) + 1
2
d 2Φ
da2 a1

a − a1( )2 = Φ a1( )− a − a1( )2
2σ 1

2

(1)

(2)

we find this by using equations (1) and (2)

δa1 = − 3a0
1+ a0

2
σ 2

N var x
a1 = a0 −

3a0
1+ a0

2
σ 2

N var x

d2�

da2
= �3

1� a21
(1 + a21)

2
� N

�2
var x = � 1

�2
1

<latexit sha1_base64="g/MctWdfhgn0yOT+StSrYauW/so="></latexit><latexit sha1_base64="g/MctWdfhgn0yOT+StSrYauW/so=">AAAChnicbVFda9swFJXdds3Sbku3x72IhkHLSLCyjg5GIbQvexopLG0hTsO1LCeikmUkuSwI/8o97afsbbLjwfpxQXB0zv3i3KQQ3Ngo+h2EW9s7L3Y7L7t7+69ev+kdvL0yqtSUTakSSt8kYJjgOZtabgW7KTQDmQh2ndxd1Pr1PdOGq/yHXRdsLmGZ84xTsJ5a9GScaaAuvR3FkxWvXAq3owqf4cGnjUAGsCCeckfkY4OO/Wew0b5XLjZ8KZuSWIJdaenuQVfx159nbQ75l9N0WfT60TBqAj8FpAV91MZkcRAEcapoKVluqQBjZiQq7NyBtpwKVnXj0rAC6B0s2czDHCQzc9f4UuEPnklxprR/ucUN+3+FA2nMWiY+s97ePNZq8jltVtrsy9zxvCgty+lmUFYKbBWuTcYp14xasfYAqOZ+V0xX4P2w/hQPptS9rVLC+CaQpry+Cghc07jhu11vGnls0VNwNRoSjy9P+uPz1r4Oeo8O0REi6BSN0Tc0QVNE0S/0JwiDrbATDsPP4ekmNQzamnfoQYTjvxdIwr8=</latexit><latexit sha1_base64="g/MctWdfhgn0yOT+StSrYauW/so="></latexit><latexit sha1_base64="g/MctWdfhgn0yOT+StSrYauW/so="></latexit>
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Now we complete the evaluation of the integral

da
1+ a2( )3 2

exp − N
2σ 2 var y − 2acov(x, y)+ a

2 var x( )⎡
⎣⎢

⎤
⎦⎥−∞

+∞

∫

= exp Φ a( )⎡⎣ ⎤⎦
−∞

+∞

∫ da

≈ exp Φ a1( )− a − a1( )2
2σ 1

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−∞

+∞

∫ da = 2πσ 1
2 exp Φ a1( )⎡⎣ ⎤⎦

and finally, we find the posterior distribution: 
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p a,b | y,x,σ( )∝ 1
1+ a2( )3 2

exp − 1
2σ 2 yi − axi − b( )2

i=1

N

∑⎡
⎣⎢

⎤
⎦⎥

≈ exp −Φ a1( )− a − a1( )2
2σ 1

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
exp − N

2σ 2 b − 1
N

yi − a1xi( )
i=1

N

∑⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



From the posterior

we see that 

a = a1; vara =σ 1
2;

b = 1
N

yi − a1xi( )
i=1

N

∑ ; varb = σ 2

N

p a,b | y,x,σ( )∝ 1
1+ a2( )3 2

exp − 1
2σ 2 yi − axi − b( )2

i=1

N

∑⎡
⎣⎢

⎤
⎦⎥

≈ exp −Φ a1( )− a − a1( )2
2σ 1

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
exp − N

2σ 2 b − 1
N

yi − a1xi( )
i=1

N

∑⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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