Introduction to Bayesian Methods- 2

Edoardo Miloftti
Universita di Trieste and INFN-Sezione di Trieste



Likelihood

Posterior distri ution\‘ / /
P(D|H)
v\Evidence
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P(Hg|D) = P(H
D) = 5= i, Py
P(DI|0, 1)
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Consider the following sequence of coin tosses

H, T, T, T, 4, 4, T, T, H, H, T, H, H, H, H, T, H, H, H, T
(12 heads, 8 tails)

Is this an unbiased coin?

What about the following one?
H, T, H, H, H, T, H, H, T, H, H, H, H,6 H, T, T, H, T, T, H

(13 heads, 7 tails)



Consider the following sequence of coin tosses

H, T, T, T, H, H, T, T, H, H, T, H, H, H, H, T, H, H, H, T
(12 heads, 8 tails)

Is this an unbiased coin?

Frequentist answer: sample average is 0.6 instead of 0.5, which is just a little less that one standard
deviation (= 0.11) away from the mean for an unbiased coin

What about the following one?
H, T, H, H, H, T, H, H, T, H, H, H, H, H, T, T, H, T, T, H
(13 heads, 7 tails)

Frequentist answer: sample average is 0.65 instead of 0.5, which is just about 1.36 standard deviations
away from the mean for an unbiased coin and is more likely to point to a biased coin



Example of Bayesian inference:
estimate of the (probability) parameter of the binomial distribution

P(n16,N)= []Zju ~6)"" ef\

this is the parameter
that we want to infer

P(n[@, N) from data

On,N) = — v
PO ) = e vptenyae

uniform distribution: the
least informative prior

(M) 1 — g)N-rgr / (1- e)N—nen

p— n 9
Jo () (1= 0yN=nom p(6)do " / Jo (1= 0)yN=ngm dp’
the final result is a beta distribution
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Mathematical digression: the connection between gamma and beta function
C(m)T(n)= Jsm_le_s dsjt”_le_t dt
0 0
2
X r=y, =

T'(m)[(n)= 4szm_1e_"2 a,’xJ.yz”_le_y2 dy
0 0

X =rcoso; y=rsin0; =
oo /2
T'(m)[(n)= 4jr2’"+2”_1e_’"2 dr J cos”" ' @sin*""' 0d6
0 0
/2
=T (m+ n)[Z J. cos”" ™ @sin*"™ GdG} (t=cos’6; dt =-2cosOsin6db)
0

m!n!
(m+n+1)!

= B(m,n)= = B(m+1,n+1)=



p(6|n,N)

Figure 1. Posterior probability density function of the binomial parameter &, having observed n
successes in N trials.

Edoardo Milotti - Bayesian Methods - Spring 2024



From the knowledge of the posterior pdf we obtain all the momenta of the distribution

(N +1)!

— . N-n nn
p(@ln,N)—n!(N_n)!(l )"0
1 N+1D! Nem oo
<9>=£p(9|n,N)9d9:n(!(Nti)!!(l—e) 0" do

(VD!

_n!(N—n)!

_(N+D! (n+ DN - n)!

al(N-n)!  (N+2)!
n+1 n

— N biased, asymptotically unbiased,

B N+2 N estimator

B(n+2,N—-n+1)
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(6°)=[p(01n.N)6’d0 =
(N +1)! B
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(N+D! (n+2)[(N—n)!
n(N—=n)  (N+3)
(n+2)(n+1)

(N+3)(N+2)

1
[(1-6)"" 6 a0

0

(N +1)!
n!(N —n)!

(n+3,N—n+1)

Var9:<92>—<9>2: (n+2)(n+1) _( n+1 T:

(N+3)(N+2) (N+2
_(N=-n+1)(n+1)

(N+3)(N+2)°




What happens if we try a different prior?

p(6)
Let’s try with a linear prior 2O :
p(@) Y. 1.5;-
1.0}
0.5|
O'O(;'o' 02 04 06 08 10
p(Bn, N) = L ON) ) :
Jy P(nl6, N)p(6")do
B (V) (1 —o)N-rgn 0p — (L= O)N ot
fol (17:7) (1 _ 9)/N—n9/n 20/ 16’ fol(l _ 9)/N—n6)/n—|—1 Ao’
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(N +2)!

p(01n,N)= (1-6)" "6

(n+1)((N —n)!

D

N CINEDL e e
(0)=[p(61n.N)6d0 = (n+1)!(N—n)!'[(1_9) 0" do

0 0

N +2)!
- (n—:I)!(N)—n)!B(n+ 3,N-n+1)
(N+2)!  (n+2)/(N —n)!
(n+1)(N-n)!  (N+3)
n+2 n

N\
/7

" N+3 N
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10.- Blue: start with uniform prior |
8: Red: start with linear prior |
6F |
4t ]
2t |
of /\ :

00 0.2 04 0.6 0.8 10

0

Taking few coin throws, the posterior from the linear prior is considerably
biased. The bias disappears when the number of coin throws is large.
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Now we try with a very non-uniform prior

We take

p(0)=(k+1)0";  k>1

P(nl0,N)

[ P(n]6, N)p(6")d’

p(fn, N) = p(9)

()1 — N —ror

p(6)
10} k=10
3
6
4
2
o—
0.0 0.2 04 0.6 0.8 1.0
6
1 — 9 N—n@n—l—k
(k+1)0" = 1=9)

0
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(N+k+1)!

p(01n,N)= (1-6)" "o

(n+ k)N —n)!

.

|  (N+k+D! New
(0)=[p(61n.N)6d0 = (n+k)!(N_n)!j(1—9) 6" d6

0 0

(N+k+1)!
(n+k)/(N —n)!
(N+k+1)!  (n+k+1DIN—n)!
T+ k)I(N=n)  (N+k+2)!
n+k+1 n

—_— N\

N+k+2 N
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10

Blue: start with uniform prior

Red: start with power-law prior (k=10) |

0.0 02 04 06 08

0

In this case, initial bias due to the prior is very large.
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Note on posterior distributions:

the relationship between binomial distribution and beta function is quite important and common, and
corresponds to the formal definition of the Beta distribution:

F(a+b)

F(a)r(b)

0 (1-6)""

B(6|a.b)=

There are other important dualities between distributions.

We shall soon meet additional dualities for important distributions.
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Lessons learned:

1. The prior information is not neutral, a careful choice of the prior distribution is a necessity.
Question: how do we choose a prior?

2. If we want to keep all possibilities alive, we must heed the Cromwell’s rule: “Prior probabilities 0 and 1
should be avoided” (Lindley, 1991)

The reference is to Oliver Cromwell’s phrase:
| beseech you, in the bowels of Christ, think it possible that you may be mistaken.

3. Convergence as the dataset size grows seems to be granted, however it may be very slow with a bad
choice of prior distribution

Question: is convergence really granted???



The Bernstein-Von Mises theorem

The theorem that grants convergence under very weak hypotheses is the Bernstein-Von Mises theorem.
The theorem states that a posterior distribution converges in the limit of infinite data to a multivariate

normal distribution centered at the maximum likelihood estimator with covariance matrix given by the
normalized Fisher matrix.

Convergence can only be defined with respect to a frequentist approach (this requires repeated,
independent tests of the experimental procedure).

In the case of nonparametric statistics and for certain probability spaces, the Bernstein-von Mises theorem
usually fails.



Maximum a posteriori (MAP) estimate — MAP # mean value!

Consider the case with a uniform prior: from the posterior distribution

(N +1)!
n!(N—n)!

p(01n,N)= (1-6)""6"

we easily find that the posterior pdf is maximized by the parameter value

0 =n/N

which is the unbiased estimate of the parameter (unlike the mean value!)
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Credible intervals (case of initial uniform prior), the Bayesian analog of confidence intervals.

Q. i
95% symmetric interval (same
probability content in tails, 2.5%)
6 i
4! i
2 i
07 | | | | | | | | | | | | | | | | | | | | | 1
0.0 0.2 04 0.6 0.8 1.0

0
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Example: the statistical link between smoking and lung cancer

Cornfield, Jerome

Born: October 30, 1912, in New York City, New
York.
Died: September 17, 1979, in Herndon, Virginia.

A METHOD OF ESTIMATING COMPARA-
TIVE RATES FROM CLINICAL DATA.
APPLICATIONS TO CANCER OF THE
LUNG, BREAST, AND CERVIX!

JeroME CosNFIELD, Nolionai Cancer Instilule, Nalional
i{u;tﬂu&a of Health, U. S. Public Health Service, Betheada,

1 Recslved for publication February 23, 1081,
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Cornfield, Jerome

Born:

Died:

October 30, 1912, in New York City, New
York.
September 17, 1979, in Herndon, Virginia.

Jerome Cornfield was arguably the most influential statistician in the
biomedical sciences in the US from the 1950s until his death. He was the
consummate statistical scientist. His understanding of the nature of the
subject-matter of statistics and of its essential role in the inductive
process of integrating data into a body of empirical knowledge,
particularly in the biomedical sciences, was outstanding. This thorough
view of statistics and scientific research enabled him to identify essential
statistical problems. He exercised considerable influence as an advisor
and consultant, and for over two decades was a major advocate for
statistical reasoning in clinical research.

After attending elementary and high schools in the Bronx, New York, he
entered New York University, graduating in 1933 with a major in history.
Cornfield did not receive any advanced degrees. He did, however, take
some formal graduate courses in history at Columbia University. After
moving to Washington, DC, in 1935, Cornfield took a number of courses
in statistics at the US Department of Agriculture Graduate School during
the period 1936 — 1938, including courses with M.A. Girshick in general
statistics and multivariate analysis.
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Cornfield, Jerome

Born:

Died:

October 30, 1912, in New York City, New
York.
September 17, 1979, in Herndon, Virginia.

Over a span of three decades, from 1947 to 1979, Professor Cornfield
was one of the leading statisticians working in the biomedical area. He
made many original contributions to biostatistics, epidemi- ology,
clinical trials, and to quantitative methods in the design and analysis of
experiments conducted in clinical and laboratory research. In addition, he
wrote a number of papers on Bayesian inference and on the application
of Bayesian methods in the biomedical sciences.

From 1948 to his death 31 years later, Cornfield devoted the major
portion of his career to the development and application of statistical
theory and methods to the biomedical sciences. His contributions were
diverse both in the nature of his statistical interests and in the areas of
biostatistical applications. He was involved in and touched upon every
major public health issue that arose in that period — the polio vaccines,
smoking and lung cancer, risk factors for cardiovascular disease, and the
difficult statistical issues of estimating the low-dose carcinogenic effects
in humans of a food additive that becomes suspect because it produces
cancer in animals at much higher doses.

(excerpted from Encyclopedia of Biostatistics, Online © 2005 John Wiley & Sons, Ltd.
This article DOI: 10.1002/0470011815.b2a17032)
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FIGURE 1.
Fisher at age 34. Reprinted from Box JF. RA Fisher:
the life of a scientist. New York: John Wiley & Sons,
Inc., 1978.

Fisher developed four lines of argument in questioning the
causal relation of lung cancer to smoking.

1) If Ais associated with B, then not only is it possible that

In other words, smoking may cause lung cancer, but it is
a logical possibility that lung cancer causes smoking.

2) There may be a genetic predisposition to smoke (and
that genetic predisposition is presumably also linked to
lung cancer).

3) Smoking is unlikely to cause lung cancer because secular

trend and other ecologic data do not support this
relation.

4) Smoking does not cause lung cancer because inhalers
are less likely to develop lung cancer than are
noninhalers

Passport photograph of Ronald Aylimer
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A causes B, but it is also possible that B is the cause of A.
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Lung cancer and cigarette smoking

Consider the following data for fractions of the population (Cornfield, 1951)

Having cancer | Healthy Total
of the lung

Smokers 0.119-103 0.579910 0.580025
Nonsmokers  0.036-10-3 0.419935 0.419971
Total 0.155-103 0.999845 1.000000

what is the proportion having cancer of the lung in each population?
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Consider the populations of smokers (S) and non—smokers (N), and the two conditions, healthy (H) or sick with cancer (C),
then using Bayes' theorem we can write:

P
P(C|S) — ﬂ
P(S) P(C|S)  P(SC)/P(S)
 P(NC) P(CIN) ~ P(NC)/P(N)
Then:
Smokers: 0.119-10-3/0.580025 = 2.05164-10*
Nonsmokers: 0.036-103/0.419971 = 8.57202-10°

Therefore, the prevalence of lung cancer in smokers with respect to nonsmokers is

Smokers/Nonsmokers = 2.4
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* |n 1954 Richard Doll and Bradford Hill published evidence in the British Medical Journal showing a
strong link between smoking and lung cancer. They published further evidence in 1956.

* Fisher was a paid tobacco industry consultant and a devoted pipe smoker. He did not think the
statistical evidence for a link was convincing.

* Ronald Fisher died aged 72 on July 29, 1962, in Adelaide, Australia following an operation for colon
cancer.

e With bitter irony, we now know that the likelihood of getting this disease increases in smokers.

Ronald Fisher was cremated, and his ashes interred in St. Peter’s Cathedral, Adelaide.

(from "Ronald Fisher." Famous Scientists. famousscientists.org. 17 Sep. 2015. Web. 5/30/2017 <www.famousscientists.org/ronald-
fisher/>.)
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Trends in Tobacco Use and Lung Cancer Death Rates in the U.S.

N
A

3K

2K

1K

Per capita cigarette consumption [Among those aged 18+]

0K
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. Per capita cigarette consumption

[l Male lung cancer death rate
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Year
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80

60

40

20

Sum of Male lung cancer death rate

Death rates source: US Mortality Data, 1960-2010, US Mortality Volumes, 1930-1959, National Center for Health Statistics, Centers

for Disease Control and Prevention.

Cigarette consumption source: US Department of Agriculture, 1900-2007.

Edoardo Milotti - Bayesian Methods - May 2023

29



Example: analysis of a decision problem (Skilling 1998)

Let T be the temperature of a liquid which can be either water or ethanol. We use the
temperature data to discriminate between water and ethanol.

1. We suppose first that the liquid is water: then we take a uniform prior distribution for
T, between 0 °C and 100 °C

2. The experimental apparatus and the measurement process is defined by the likelihood
function:
P(D|T,water,I).
We assume that measurements are uniformly distributed within a range 5 °C.
Therefore:
P(D|T,water,I) = 0.1 (°C)! in the interval [T-5°C, T+5°C], and zero elsewhere.

3. We take a single measurement D = -3°C.
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*

4. The evidence p(D) is

p(D\Water,I):/p(D\T,Water,I)p(T)dT
T

2°C jo\—1 [(on\—1
(°C)~ (°C) o o —1
/OC 10 100 FCC)=0002CC)

5. Using Bayes’ theorem we find

p(D|T, water, I)
p(D,water, I)
=0.5(°C)"t  (0°C < T <2°0)

0.1(°C)~!

p(T|D,water, I) = 0.002(°C) 1

0.01(°C)~ !

p(T'|water, I) =




Now suppose that the liquid is ethanol, so that the temperature range is -80°C<T<80°C

1. p(T)=(160°C)!in -80°C < T< 80°C.

2. p(D|T,ethanol, )= 0.1 (°C)! in [T-5°C, T+5°C], and zero elsewhere.
3. We take a single measurement D = -3°C.
4

The evidence p(D | ethanol, /) is

dT(°C) = 0.00625(°C)~*

2°C /o 1 /o 1
p(D|T, ethanol, I)p(T |ethanol, I)dT :/ (°C) (°C)

p(D]ethanol, I) z/
e 10160

T

5. Using Bayes’ theorem, we find

p(D|T, ethanol, I)
p(D, ethanol, I)
=0.1(°C)! (—=8°C < T < 2°C)

0.1(°C)~' 1

p(T|D; ethanol, I) = 0.00625(°C)—T 160

p(T'|ethanol, I) = °C)™t
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* Here we only wish to discriminate between water and ethanol and we do not care
much about temperature.

 Temperature is a nuisance variable, one that can be dispensed with.

* Usually, nuisance variable are eliminated by integration. In this specific case we have
already carried out part of the work by calculating the evidences, which can be
considered as marginalized likelihoods.



Assuming a uniform prior for the water-ethanol choice, we can discriminate between
water and ethanol:

Pyer =P = 0.5

ethanol ~—

With this prior assumption we find:

p(D|water, I)
p(D|water, I) P(water|I) + p(D|ethanol, I) P(ethanol|I)
B p(D|water, I)
~ p(D|water, I) + p(D]|ethanol, I)

P(water|D, ) = P(water|I)

and the ratio of the posteriors is given by the Bayes' factor

P(water|D,I)  p(D|water,I)

P(ethanol|D,I)  p(Dl|ethanol, I)




We found earlier that

p(D|water, I) = 0.002(°C))~*
p(D|ethanol, I) = 0.00625(°C))~*

therefore, the Bayes factor is

5 _ Plethanol|D, 1) _ p(Dlethanol, 1) _, .
- P(water|D,I)  p(D|water,I)

and we conclude that the observation favors the hypothesis of liquid ethanaol.
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log1o(B) B Evidence support

0tol/2 1to3.2  Not worth more than a bare mention
1/2to1 3.2to 10 Substantial

1to 2 10 to 100 Strong

> 2 > 100 Decisive

Interpretation of the Bayes factor B as evidence support according to Jeffreys (1961), in half units on a scale of
|Og10.

In the case of the water-ethanol problem, and according to Jeffreys’ categories, the preference for ethanol is “not
worth more than a bare mention”, although it happens to be in the upper part of the range.

In 1995, Kass and Raftery noted that it can be useful to consider twice the natural logarithm of the Bayes factor,
which is on the same scale as the familiar deviance and likelihood ratio test statistics and therefore proposed a
different interpretation

2 10g,(B0) (Bio) Evidence against H, P(D|H,y)
Big =
0to2 1to3 Not worth more than a bare P (D ‘ H 0)
mention
2t06 3to 20 Positive Here 1 denotes the
6 to 10 20 to 150 Strong alternative hypothesis and
>10 >150 Very strong 0 the null hypothesis
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Example of Bayesian parameter estimation: analytical straight-line fit

y,=ax,+b+¢€,

yi measured value
X;  independent variable (‘exactly” known)

a ,b fit parametes: eventually we expect to find pdf's for these parameters

E,  statistical uncertainty

the statistical measurement uncertainty N, 2\ 2
has a Gaussian distribution <€Z> . 07 <8 > — 0
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2

i=1

likelihood
B 5 \~N/2 __ [ o
p(yla,b,x,(f)—(Zﬂ:G ) exp_ Sy E (yl. ax, b)

prior angular distribution

U y
! Should we take a
\ uniform a or
! a uniform angle?
X X
uniform a uniform angle

Edoardo Milotti - Bayesian Methods - Spring 2024



The uniform distribution of a introduces an angular bias. The least informative choice
corresponds to a uniform angular distribution

and we obtain the distribution of a with the transformation method:

a = tan@

= P, (go)dgo =P, (a)da =P, (a)d(tan(p): D, (a)sec2 Qdo

IS N
Pa _ﬂseczgo_n(1+tan2q))_7r(1+a2)

Edoardo Milotti - Bayesian Methods - Spring 2024



prior distribution of b: an improper uniform distribution, related to the distribution of a

oyl

|
(@)
2 |
S
\<
|

Q
¥y X

e

1 1 cosp 1 1
bla=0)=—: p(bla)=—=SC_
pbla=0)=—0; plbla)=7m=""r 2B {1+ 22
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finally, we obtain the posterior from Bayes’ theorem

where the prior is

p<a,b>:p<b|a>-p<a>=(2;- ﬁjﬁﬂ(liaz)]

1
(1 +a’ )3/2

ccC




finally, we obtain the posterior from Bayes’ theorem

p(yla, bx, o)

p(a,bly,x, o) — +B/COSSO p(a,b)
f f db' p(yla’,b'x,0)p(a’,b’)

B/ cos ¢

where the prior is

p(a.b)=p(bla)p(a)= (213 mj£ﬂ(lia2)]

(1+a2)

ccC

3/2



therefore:

exp [—ﬁ Zﬁvzl(yz' —axr; — b)Q} |
pla,bly,x,0) = f+oo , f+B/cosso , | N . (+a?)Ee
» da | 5/ cos s db’ exp [_W iy —ad'z; =) } Tay7

N
T O | g T (s — ami — b))

+00 , +B/ cos ¢ N
f (HZ%)?,/Q i db’ exp [—# > (yi —ad'x; — b’)ﬂ

— 00 B/ cos ¢

This expression has a partly Gaussian structure, and we rearrange the quadratic
expression in the exponential.



N
=N b—iz(yl. —ax,) +N(Vau'y—2acov(x,y)+az2 Varx)

therefore, the normalization integral becomes

T da Xp[— N
2)3/2 25°

vary—2acov(x,y)+a’ varx +mdb exp| —
| [favese

—00

27‘[62 N
N 3/2 eXp| — 25"
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For the next step we use Laplace's method (this is the saddle-point method — also called the method of steepest
descent in the real domain) for the evaluation of the integral of a unimodal function

+0o0 +00
Z :/ p(x)dx :/ e® @) dy

— 0 — OO
where
1
®(z) = Inp(z) ~ Inp(zo) — Q—S(I — x0)°
where X, is the mode and
1 _02 Inp(x)
s Ox?

therefore
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Approximate integration of the remaining integral with Laplace's method

_j? T :iaz )3/2 exp [— ZZZZ (vary —2acov(x,y)+a’ var x)}

Taking the logarithm of the integrand, we find its maximum and we Taylor-expand about the
maximum

N

2

(I)(a):—gln(1+a2)— (Valry—2azcov(x,y)+a2 Varx)
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N

(I)(a) -

1
I
|
[G—
=
—
ok
+
Q
&}
~—
I

: (Vary —2acov(x,y)+a’ var x)

we find a from this

dd 3a N + cubic equation
— =———+—(cov(x,y)—avarx)=0
da l+a” o

cov(x,y)

note that when N>>1 the peak is at position a, =
var x

We use the Newton-Raphson method for the solution of the cubic equation:

3a,
a,)=—
Jia) 1+a§
, l-a. N N
f (a,)=-3 (1+a20)2 — Varxz—?varx
0

Edoardo Milotti - Bayesian Methods - Spring 2024



then

2 2

3 3
oa, =— aoz 2 a, =dy— aoz = (1)
l+a, Nvarx l+a, Nvarx
Now, to complete the expansion, we must evaluate the
second derivative at a;:
d*P 1 —af N 1
— = —3 21 — S varxr = —— (2)
da? (14+a7)? o2 o

(I)(a) = (D(%)"'E 1 (a—al)2 = (D(al)— (az_(;?)

we find this by using equations (1) and (2)
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Now we complete the evaluation of the integral

T da N

L(+a*)” e"p[‘ 20°
(I)(a)]da

(Vary —2acov(x,y)+a’ var x)}

= fexp

“+oo

zjexp a al }d =\2mo; exp[(l) al
1

207

—00

and finally, we find the posterior distribution:

1 1 &
p(a,bly,x,0)e< ( 2)3/2 exp{— - Z(yl. —ax, —b)z}




From the posterior

p(a,b I y,X,G) oc

=~ eX]P

we see that

1

(1+a2)

(a)=a,;; vara=07;

(b)=~

N

;(yi —a,Xx, ); varb = =

l

0]

1 N
3/2 eXp|:— 262 Z(yi —dax; _b)2:|






