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Edwin T. Jaynes (1922-1998), introduced the method of
maximum entropy in statistical mechanics: when we start
from the informational entropy (Shannon’s entropy) and we
use it to introduce Boltzmann’s entropy we obtain again the
whole of statistical mechanics by maximizing entropy.

In a sense, statistical mechanics also arises from a
comprehensive “principle of maximum entropy”.

http://bayes.wustl.edu/etj/etj.html
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Information theory provides a constructive criterion for setting
up probability distributions on the basis of partial knowledge,
and leads to a type of statistical inference which is called the
maximum-entropy estimate. It is the least biased estimate
possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information. If one considers
statistical mechanics as a form of statistical inference rather than
as a physical theory, it is found that the usual computational
rules, starting with the determination of the partition function,
are an immediate consequence of the maximum-entropy principle.
In the resulting “subjective statistical mechanics,” the usual rules
are thus justified independently of any physical argument, and
in particular independently of experimental verification; whether
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or not the results agree with experiment, they still represent the
best estimates that could have been made on the basis of the
information available.

It is concluded that statistical mechanics need not be regarded
as a physical theory dependent for its validity on the truth of
additional assumptions not contained in the laws of mechanics
(such as ergodicity, metric transitivity, equal a priori probabilities,
etc.). Furthermore, it is possible to maintain a sharp distinction
between its physical and statistical aspects. The former consists
only of the correct enumeration of the states of a system and
their properties; the latter is a straightforward example of
statistical inference.



2. MAXIMUM-ENTROPY ESTIMATES

The quantity x is capable of assuming the discrete
values x; (i=1,2 ---n). We are not given the corre-
sponding probabilities p;; all we know is the expectation
value of the function f(x):

(f(x))= Z1 pif (x2). (2-1)
On the basis of this information, what is the expectation
value of the function gix)? At first glance, the problem
seems insolublc because the given information is insuffi-
cient to determine the probabilities p,.° Equation (2-1)
and the normalization condition

2 pi=1 (2-2)

would have to be supplemented by (7—2) more condi-
tions before (g(x)) could be found.

This problem of specification of probabilities in cases
where little or no information is available, is as old as
the theory of probability. Laplace’s ‘“Principle of
Insufficient Reason” was an attempt to supply a
criterion of choice, in which one said that two events
are to be assigned equal probabilities if there is no
reason to think otherwise. However, except in cases
where there is an evident element of symmetry that
clearly renders the events “equally possible,” this
assumption may appear just as arbitrary as any other
that might be made. Furthermore, it has been very
fertile in generating paradoxes in the case of continu-
ously variable random quantities,® since intuitive
notions of “equally possible” are altered by a change of
variables.” Since the time of Laplace, this way of
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8 Yet this is precisely the problem confronting us in statistical
mechanics; on the basis of information which is grossly inadequate
to determine any assignment of probabilities to individual
quantum states, we are asked to estimate the pressure, specific
heat, intensity of magnetization, chemical potentials, etc., of a
macroscopic system. Furthermore, statistical mechanics is amaz-
ingly successful in providing accurate estimates of these quantities.
Evidently there must be other reasons for this success, that go
beyond a mere correct statistical treatment of the problem as
stated above,



Here we apply the maximum entropy principle (MaxEnt) to solve problems and find prior
distributions ...

The kangaroo problem (Jaynes)
* Basic information: one third of all kangaroos has blue eyes, and one third is left-handed.
e Question: which fraction of kangaroos has both blue eyes and is left-handed?

 Constraints: the normalization condition must be fulfilled matrixwise + the constraints
expressed by the basic information, row by row and column by column.

left | ~left left | ~left left | ~left
blue 1/9 2/9 blue 0 1/3 blue 1/3 0
~blue | 2/9 4/9 ~blue | 1/3 1/3 ~blue 0 2/3

statistical independence

maximum negative correlation

maximum positive correlation
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probabilities Py Ps Py Piy

entropy (proportional to Shannon’s entropy)

1 1 1 |
S=p,In—+p In—+p In—+p_In—

P Py Pyr Psr

constraints (3 constraints, 4 unknowns)
Pyt P5tp;+P;=1
Py TPy = 1/3
Py T Py = 1/3
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entropy maximization with constraints

1 1 1 1
Sy = [pbl In—+p, In—+p - In—+p_ ln—]
Py Py Pyr DPyr

+;Ll(pbl TPy T Py T Pr — 1)+ A, (pbl TPy — 1/3)+;L3(pbl TPy~ 1/3)

Dy = exp(—1+ﬂ,1 +A, +/13)
Py = exp(—1+7t1 +7L3)
p,r =exp(—1+4, +lz)
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Py = Py :1/3_pbl
Pyr :1/3+pbl
2
(1/3_17191) :pbl/3+plfl

| 1/9=2p, /34 pyy =py/3+p;

this solution coincides with the
4 least informative distribution

> Pt — < given the constraints (statistically
9 independent variables)




What do we learn about Statistical Mechanics using the MaxEnt method?
H=-K)» pilnp;, with » p;=1 and (f(z))=> f(z:)p;

Q=H+K(-A+1)> pi—Kp)  fl:)p

Q)
op;

— —(lnp; + 1)+ (<A +1) — pf(a) = 0

pi = exp(=A — pf(zi))

Zpi — e Z e H/ (@) =1 then, letting Z(u) = Z e @) X =1InZ(p)

0

(f(z)) = “on In Z(p)
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The principle of maximum entropy may be regarded
as an extension of the principle of insufficient reason
(to which it reduces in case no information is given
except enumeration of the possibilities x;), with the
following essential difference. The maximum-entropy
distribution may be asserted for the positive reason
that it is uniquely determined as the one which is
maximally noncommittal with regard to missing infor-
mation, instead of the negative one that there was no
reason to think otherwise. Thus the concept of entropy
supplies the missing criterion of choice which Laplace
needed to remove the apparent arbitrariness of the
principle of insufficient reason, and in addition it shows
precisely how this principle is to be modified in case
there are reasons for “thinking otherwise.”
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Solution of underdetermined systems of equations

In this problem there are fewer equations than unknowns; the system of equations is
underdetermined, and in general there is no unique solution.

The maximum entropy method helps us find a reasonable solution, the least informative
one (least correlation between variables)

Example:

3x+35y+1.1z=10

9 9 O
D1x+44y—10z=1 (x.y,2>0)



3x+5y+1.1z=10
—2.1x+44y—-10z=1

this ratio can be taken to be a
“probability”

X X y y Z Z
S:—( In + In + In j
X+y+2 Xt+y+Z Xty+Z Xt+y+Z X+y+zZ X+y+Z

(x,y,z > O)

—_ I [xlnx+ylny+zlnz—(x+)’+Z)ln(x+y+z):|
X+ y+z

Q0=S+A(3x+5y+1.1z—10)+ u(-2.1x+4.4y—10z—1)

a_Q__lnX—hl(X+y+Z)+xlnx+ylny+zlnz—(x+y+z)ln(x+y+z)

+31-2.1
dx xX+y+z (x+y+z)2 H

_ (y+Z)}I;i;ilz));+Zan+3l_2'1'u:0
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00 _ (y+z)lnx-|—yln);+zlnz+3;L_2.1‘u20
dx (x+y+2z)
E)Q:xlnx+(x+z)ln)22+zlnz+5&+4.4‘u20
dy (x+y+2)

Inx+vylny+(x+vy)l
00 _ xInx+ylny “'yymﬂ4ix;mu=o

07 (x+y+z)2
10=3x+35y+1.1z
1=-2.1x+44y-10z

)

x =0.606275; y=1.53742; z = 0.449148;
A =0.0218739; u=-0.017793
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this is an example of an “ill-posed” problem

the Maximum Entropy Method is a kind of regularization of the ill-

posed problem



Finding priors with the maximum entropy method

1
S=) p,In—
k P

— _2 D, In D, Shannon's entropy
k

entropy maximization when all information is missing,
and normalization is the only constraint:

0

op, |

ST ) B
k k

p,=e*"; Epk:ZeHzNele = p,=1/N
k k
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entropy maximization when the mean is known p

0T
~ _Zpk Inp,+ 4, (Zpk — lj + 4 (Z'xkpk — .uj
k k k

apk_
=—(Inp, +1)+ A, + 4x, =0

incomplete

/ solution...

_ ;Lo+llxk—1.
pk =€ ’

We must satisfy two constraints now ...
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p — eﬁﬂ +A«1Xk—1
k

Zpk 26/10+/11xk—1 Ao—lzeﬂ.lxk —1
k

Exkpk Exk Ro+ Mg =1 _ 10—12)6]{6/11;% _y
k

| Exke’%xk

Ao =1 _ : k _

€ N Mxg Ay X, N ’u
Ye zk:e
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Example : the biased die

(E. T. Jaynes: Where do we stand on Maximum Entropy? In The Maximum Entropy Formalism;
Levine, R. D. and Tribus, M., Eds.; MIT Press, Cambridge, MA, 1978)

mean value of throws for an unbiased die

%(1+2+3+4+5+6):%:3.5

mean value for a biased die

35(1+¢)

Problem: for a given mean value of the biased die, what is the probability distribution of
each value?

The mean value is insufficient information, and we use the maximum entropy method to
find the most likely distribution (the least informative one).
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entropy maximization with the biased die:

6 6 6
7
CY _zpklnpk-l_ﬂ’o(zpk_lj—l_ﬂ‘l(zkpk__(l_l_g
k=l k=1 k=1 2

0
Jap,
=—(Inp, +1)+ A, +kA, =0
pk:e;xo+,11k—1

2 D, = ¢! 2 Mt =1

k=1,6

k=1,6

kak—el‘) IZke% =

k=1,6

k=1,6

1 2 kpk

q . k=16
S S

k=1,6 k=1,6

1+e

1+g)

we still have to satisfy the
constraints ...

Edoardo Milotti -

Bayesian Methods - Spring 2023

ﬂ

19



k=1,6 a 1 k=0,5
k=1,6
d
= a—)tl[ll + ln(l — % ) — ln(l — M )}
6¢0™ A 7
=1- 1—66611 T 1ie)L1 :5(1+8)

The Lagrange multipliers are obtained from nonlinear equations, and we must use
numerical methods
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numerical solution

media

P1”

pP2-

pP3-

Pa"

Ps”

Pé6”

3.0=

0.246782 4

0.20724 =

0.174034 4

0.146148

0.122731 4

0.103065 =

3.1=

0.22929 =

0.199582:

0.173723:

0.151214+

0.131622:

0.114568 =

3.2=

0.212566 1

0.191659:

0.172808 1

0.155811 1

0.140487 1

0.126669 =

3.3=

0.196574 4

0.183509

0.171313 4

0.159928 4

0.149299 4

0.139377 =

3.4n

0.181282:

0.175168

0.16926 =

0.163551 4

0.158035+

0.152704 =

3.5=

0.166667 -

0.166667 1

0.166667 -

0.166667:

0.166666 *

0.166666 =

3.6=

0.152704 4

0.158035

0.163551 4

0.16926 =

0.175168 4

0.181282 =

3.7=

0.1393774

0.149299

0.159928 4

0.171313 4

0.183509 4

0.196574 =

3.8=

0.126669:

0.140487:

0.155811:

0.172808 1

0.191659:

0.212566 =

3.9=

0.114568 4

0.131622:

0.151214 4

0.173723 4

0.199582 1

0.22929 =

4.0=

0.103065

0.122731}

0.146148 1

0.174034 4

0.20724 =

0.246782 1

with a biased die we obtain skewed distributions.

These are examples of UNINFORMATIVE PRIORS
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Example: mean =4

0.30,
0.25}
0.20}
0.15}
0.10}
0.05}
0.00k

Edoardo Milotti - Bayesian Methods - Spring 2023

| 1/6

22



Entropy with continuous probability distributions
(we use the relative entropy, i.e., the Kullback-Leibler divergence instead of entropy)

Entropy maximization with additional conditions (partial knowledge of moments of the prior distribution)

b

<xk> = Jxkp(x)dx

a

function (functional) that must be maximized

0| p|= —}p(x)ln 51(();)) dx+§lk ;Txkp(x)dx— Mkk
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variation

b ("

5Q=—J5p< In

a Q

(x)  _
- IDZ(X)+1—zkllkx =0

- p(x)= m(x)exp(;lkxk - 1)

m\Xx

p(x)+ — xkl X =
() 1T A =0

J
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p(x)=mx)exp| T -1

p(x) is determined by the choice of m(x) and by the constraints

The constraints can be the moments themselves:

=<
|l
Q C—
o
b
S

(x)exp(zn:/lnx” - ljdx
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1. no moment is known, normalization is the only constraint, and p(x) is defined in the

interval (a,b)
b

M, = Jm(x)exp(/lo —1)dx=1

a

we take a reference distribution which is uniform on (a,b), i.e.,

1
Mozb_

b
J.exp(/lo —1)dx=exp(A,—1)=1
a

1

0
= A= p(x)zm(x)exp(z&lx”—lj:
n=0 b_a

Edoardo Milotti - Bayesian Methods - Spring 2023
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2. only the first moment — the mean — is known, and p(x) is defined on (a,b)

b
Jexp (A, + A x—1)dx=1
b

b a

xexp (A, + A,x—1)dx

MO:1:

exp(/l0 -1) ¢ _exp(A,— 1).exp(/llb)— exp(L,a)
L 'J:exp(llx)dx —— )

2 PE

exp )LO ! jxf:xp Ax)d exp(%a_1){i(bexp(/11b)—aexl’(’ll ))_i(eXp(’lb) exp(2,a))

in general, these equations can only be solved numerically...

Edoardo Milotti - Bayesian Methods - Spring 2023

27



special case:

exp(A, — 1)_exp(/11L/2) —exp(—-4,L/2) .

L A, B

exp(io —1) { ;t (%exp(ﬂqlx/z) + %exp(—ﬂqL/z)

exp(A, — 1).exp(llL/2) —exp(-A,L/2)
L A,

L

1

) ) %(exp(%L/ 2)-exp(-4L/2))

1

~(exp(AL/2) +exp(=AL/2)) = o-(exp(AL/2) - exp(-AL/2)) =0

Edoardo Milotti - Bayesian Methods - Spring 2023

|0

28



exp(2, —1) Sm}/ll(i“l/Lz/ 2)_,
1

Lcosh(A,L/2)- %sinh(/llL/2) =0

1

= (AL/2)=tanh(AL/2) = A,=0; A, =1

p(x)= m(X)eXp(kflaAkxk _ 1) _

4
L



exp (4, — 1)_exp(ﬂ,1L/2) —exp(—-A,L/2)

L L

a—>——; b—>—; M, =
2

2

L
exp(4, —1)

AL

|

L

2

A
1

exp(ﬂ.o — 1)
(AL/2)
L 1 |

2

tanh(A,L/2) A,

Edoardo Milotti - Bayesian Methods - Spring 2023

-sinh(A4,L/2) =1

e

nonzero mean

(exp(/"tlL/Z) + exp(—/"tlL/Z)) — %(exp(llL/Z) — exp(—?tlL/2))} =€

30



tanh(/llL/Z)z[ : 28]1 tanh(z)z(1+§j1

+
AL/2 L

we find an approximate solution
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another specialcase a=0; b—

M, = myexp(A, —1)
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then

myexp(A, —1)=-1, = —
and we obtain the exponential distribution
p(x)= m(x)exp(Z?Lnx” — 1)

ol ea(i) - e 5



3. both mean and variance are known, and the interval is the whole real axis

=
I
=

=
I
=

||
at—,w Q"_ow Qt—-,w

exp( A, + Ax+A,x" —1)=exp

=exp

Edoardo Milotti -

A
A 2—x+—
| ( ; %H%]
( 12]
A, —1—— |exp
\ Ay
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xexp(l +Ax+ Ax" — l)d

AZ

p(lo + A x+Ax" - l)dx =1

exp(l + A x+ Ax* - l)d

+(/lo— —;L—
2

34



22\ 1 Y
0 mo exp 0 lz -[oéXp[ 2(_1/222)£)C }{2] :l X mo exp( 0

2\ +e
M, =myexp| A, — A J.xexp{—ﬁ(x+%
2

2 ) oo 2
M, =m,exp| A, — A J‘xzexp{—z(%[x+%j ]dxzmoexp[lo— -1

A )Y 1/22,) ,
A’ T

M,=m exp()t — ——lj ——=1

0 0 0 Az 242

A

M =1 _

| % U
M, = —L+)“—12 =0+ U’

? 20, A K
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p(x)=m, exp()LO +Ax+A,x° — 1)

= m, exp /’Lo—l—/l—12 exp| — : X+—
2 i 2(_1/22'2)
1 | 2
) ZGZneXP[ZGZ(X_H)}

... in this case where mean and variance are known, the entropic prior is Gaussian
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An alternative form of entropy that incorporates the normalization constraint from the start

p(x)
m(x)

p(x)
m(x)

50 = J5pdx£—ln p(( ))—1+/1)=0

p(x)=m(x)exp(A—1)
de p(x)= de m(x) exp(l—l):exp(/l—l)de m(x)=exp(A-1)=1

Ol p;m] jdx p(x)In +ﬂ,(jdxp(x) J.dxm(x)]

= de[—p(x)ln +Ap(x)— lm(x))

= A=1

p(x)
m(x)

O[psm]= fdx[—p(X)ln + p(x) - m(X)]
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Until now we have emphasized the role of the momenta of the distribution, however other information can be
incorporated in the same way in the entropic prior.

A “crystallographic” example (Jaynes, 1968)

Consider a simple version of a crystallographic problem, where a 1-D crystal has atoms at the positions

and such that these positions may be occupied by impurities.

Edoardo Milotti - Bayesian Methods - Spring 2023
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From X-ray experiments it has been determined that impurity atoms prefer sites where

cos(kxj)>0

furthermore, we take, as an example,

which means that we have the constraint

<cos(kxj)> = jzn}pj cos(kxj) =0.3

where p; is the probability that an impurity atom is at site j.



Then the constrained entropy that must be maximized is

n n n
O :—ijlnpj + A, zpj -1 [+ 4, ijcos(kxj)—0.3
j=1 j=1 j=1
from which we find the maximization condition

aa—sz—(lnpj+1)+ito +/llcos(kxj)=0

p;= exp[l—/lo - A cos(kxj)}

The rest of the solution proceeds either by approximation or by numerical calculation.



Example of MaxEnt in action:
unconstrained problem in image restoration

J. Skilling, Nature 309 (1984) 748
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Car movement introduces linear correlations among pixels. The model of linear corrections does not allow direct inversion to find the
corrected image because the number of variables is larger than the number of equations. The MaxEnt methods regularizes the problem and
finds a reasonable solution.

J. Skilling, Nature 309 (1984) 748
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Reconstruction of missing data
(from http://www.maxent.co.uk )

9)

-

|

50%

95%

99%
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http://www.maxent.co.uk/

low resolution (MEM enhanced)

low resolution

\ high resolution
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NMH Maximum Entropy Data Consultants Ltd.

John Skilling: Biographical information

John is Scientific Director of MEDC. He did his Ph.D. (on cosmic rays) in

About MEDC the Department of Physics at Cambridge University, and went on to
become a Lecturer in the Department of Applied Mathematics and

Applications Theoretical Physics, and a Fellow of St Johns College.

Examples In the late 1870s, another radio astronomer, Steve Gull, introduced him to

Products the power of the Maximum Entropy Method. John wrote what was to

become the first MemSys kernel system, and helped lay the Bayesian
foundations for MEM. In 1881 he and Steve founded MEDC to exploit
opportunities to apply MEM in other fields.

Prices

Documents John resigned his Lectureship in 1990 in order to go fullime with MSL and

MEDC. Thanks to the wonders of modern technology John is able to
telecommute from his new home in the West of Ireland, and he makes
Search MEDC regular visits to clients both in the UK and further afield.

g
.

Quick Search: Home | Applications | Products | Prices | Documents | About MEDC |

Contact Us | Full search

@MEDC Ltd. Last revised Wed Sep 19 22:19:39 2007

http://www.maxent.co.uk/
(the company no longer exists, and the website has disappeared from the web)
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SoftwareX 10 (2019) 100353

Flasidi o 0 1 0009300

Contents lists available at ScienceDirect

( |
10000011 0 /11 L 0101

SoftwareX kg

journal homepage: www.elsevier.com/locate/softx

Original software publication
pyMaxEnt: A Python software for maximum entropy moment b
reconstruction i

* . .
Tony Saad ' *, Giovanna Ruai
Department of Chemical Engineering, University of Utah Salt Lake City, UT 84102, United States of America

ARTICLE INFO ABSTRACT
Article history: PyMaxEnt is a software that implements the principle of maximum entropy to reconstruct functional
Received 16 July 2019 distributions given a finite number of known moments. The software supports both continuous and

Received in revised form 21 October 2019

discrete reconstructions, and is very easy to use through a single function call. In this article, we set out
Accepted 21 October 2019

to verify and validate the software against several tests ranging from the reconstruction of discrete

Keywords: probability distributions for biased dice all the way to multimodal Gaussian and beta distributions.
Maximum entropy reconstruction Written in Python, pyMaxEnt provides a robust and easy-to-use implementation for the community.

Inverse moment problem © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
Particle size distribution (http://creativecommons.org/licenses/by/4.0/).
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Example of Bayesian estimate using objective priors: uncalibrated Gaussian measurement uncertainties

Here, we consider the case where we must find the mean value with given measurement uncertainties that are
systematically multiplied by an unknown scale factor, under the assumption of Gaussianity.
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The likelihood has a Gaussian structure

Edoardo Milotti - Bayesian Methods - Spring 2023
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we must rearrange the exponent as usual ...

k=1 0'13 k=1 (713 k=1 (713 k=1 G;f 61%4 6134 612\4
N
=—2(D—2/,LM+/,L2)
M
1 11 Nd/Nl Ndz/Nl
dove = ; M = k. — D = "k _
o T Waor ML) 2o PR/ 2

therefore, the likelihood is

platno )= o (T o] -2 (o2 )

(27)"" o™ \ izt o, 20°03;,

Edoardo Milotti - Bayesian Methods - Spring 2023
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Now we estimate the scale factor from Bayes’ theorem

o p(d‘aa 0-)
plajd, o) = [, p(d]e, 0)p(a’)da’p(a)

however, we need first to marginalize the likelihood with respect to the mean,
which in this case is a nuisance parameter

we take a uniform prior for the mean (a Jeffrey's prior)

P(dlo.a)=[P(dlu.c.0)P(ulo.a)du

Edoardo Milotti - Bayesian Methods - Spring 2023
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as usual ...

D-2uM+u =y’ -2uM +M*+D—-M"
=(u-M) +D-M*

... therefore the marginalized likelihood is:

1 1

v
W (27)"" o Eo_k J&
lﬁ[i exp[_N(D—Mz)]\/zmza;

20°0;, N

P(dlo,x)= Texp{— al [(M—M)2+D—M2}}du

2 2
20000,




P(a)e<

Lo (_N(D — M2)>

N—1 2 2
Qo 20 oaf

: Jo Oﬂi_l exp <—N(D n ]2\42)> p(a’)da

o

/2
20 Oy

for the standard deviation we
take again a Jeffreys' prior
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1 ( N(D—MQ)) 1
N—1eXp B 222 - ND_MQ
plald, o) = —° Con Jo e MDA
1 N(D—M) 1 , 205,
fa o/ N—1 CXp | — 2&/2012\4 o do

o P\ o2

- p(oz‘d,d) ? 5
- 1 AN
Jo owexp (-5 | da
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Plald, o) = ¢

AP(«a)

0.4}

0.3f

0.2}

0.1}

0.0}

2AN=1 /aN) exp(—A2/a?)

LNV =1)/2)]

N =2 |

ol
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we take the MAP estimate of the scale parameter from the pdf

2AN—1 A2
QN exXp <—§>

p(a‘d,d) —

dOC aN+1 2

d N A®) 247 A’
—P(o1d,0) o< — exp(——j+ exp(——jzo
o
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