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1. Bayesian classification

Data X, classes C this likelihood is defined by

training data

4

P(X|C)
P(X)

the prior is also defined by
training data

P(C|X)= P(C)

we canh use the prior learning to assign a class to new data

Pl X|C
Ckzarggnax I(D(‘X)k)P(Ck)zarggnaxP(X\Ck)P(Ck)
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Consider a vector of N attributes given as Boolean variables
X = {x;} and classify the data vectors with a single Boolean variable.

The learning procedure must yield:

it is easy to obtain it as an empirical distribution from

P ()’) a histogram of training class data: y is Boolean, the
histogram has just two bins, and a hundred examples
suffice to determine the empirical distribution to better
than 10%.

there is a bigger problem here: the arguments have 2N+!
different values, and we must estimate 2(2N-1)

P(X‘ y) parameters ... for instance, with N = 30 there are more
than 2 billion parameters!
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How can we reduce the huge complexity of learning?

we assume the conditional independence of the x,’s:
naive Bayesian learning

for instance, with just two attributes

P(xl’xz‘y):P(xl‘xz’y)P(xz‘y):P(XI‘Y)P(’%‘Y)

conditional independence assumption

with more than 2 attributes

P(X\y)zﬁp(xk\ﬁ
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Therefore:

y = arg max
Yk




More general discrete inputs

If any of the N x variables has J different values, e if there are K classes, then we must
estimate in all NK(J-1) free parameters with the Naive Bayes Classifier (this includes

normalization) (compare this with the K(J¥-1) parameters needed by a complete classifier)
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Short digression: neural networks and their activation functions

The Perceptron (McCulloch and Pitts, 1943)

Bulletin of Mathematical Biology Vol. 52, No. 1/2, pp. 99-115, 1990. 0092-8240/90$3.00+ 0.00

Printed in Great Britain. Pergamon Press plc
Society for Mathematical Biology

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

B WARREN S. MCcCULLOCH AND WALTER PITTS
University of Illinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute,
University of Chicago, Chicago, U.S.A.

Because of the “all-or-none” character of nervous activity, neural events and the relations among
them can be treated by means of propositional logic. It is found that the behavior of every net can
be described in these terms, with the addition of more complicated logical means for nets
containing circles; and that for any logical expression satisfying certain conditions, one can find a
net behaving in the fashion it describes. It is shown that many particular choices among possible
neurophysiological assumptions are equivalent, in the sense that for every net behaving under
one assumption, there exists another net which behaves under the other and gives the same
results, although perhaps not in the same time. Various applications of the calculus are
discussed.
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Short digression: neural networks and their activation functions

The Perceptron (McCulloch and Pitts, 1943)
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weighted sum
Wy + Wix1 + -+ + Wp—1Tp—1 T WnpTy

Constant

Weighted
Sum

size
size

Step Function ), JATN
’ ‘ domestication a domestication
The step function is a specific type
of activation function

inputs —

Koy

size

weighted sum = 0 is the equation of a (hyper)plane, and the activation
function defines a pair of classes on opposite sides of the (hyper)plane.

"Training" corresponds to selecting the parameters for a correct classification ° PR ° pR———
of the examples.

A diagram showing a perceptron updating the plane
After the training step, the network is fixed and can be used to classify position as more training examples are added

additional inputs.
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Perceptro

> W

Frank Rosenblatt
1928-1969

Rosenblatt’'s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
g Y 704 computer at Cornell in 1957,
AT LA but by the early 1960s he had built
special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt’'s work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

From C. M. Bishop, "Pattern Recognition and Machine Learning",
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.


https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Multilayer feedforward networks

layer 1 layer 2 layer 3

wj—k is the weight from the k** neuron

in the (I — 1)*" layer to the j*" neuron
in the I*" layer

layer 1 layer 2 layer 3

schematics from http://neuralnetworksanddeeplearning.com

activation of the j-th neuron in the I-th layer
includes the biases

o is the activation function
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| Neural Network Activation Functions: a small subset!

y

max(0, z)

7.—>u/

a(zexpr—1)ifxr <0

— lug_, 1 + exp(Bz))

HardSwish

0ifxr < -3
zifx >

(z+ l)/() otherwise

tanh(x)

Tanh Shy

x — tanh(x)

| Soft Shrink

7

x [2
} l‘(mh \.: (r-Lru)

1+exp—a exp —x

1
xtanh (_i log (1 + exp(; i:))

bifx <b

x otherwise

T—-Aifz > )\
.r+/\ if.r< '—/\

0 otherwise

Hard Sigmoid

' Hard Shrink

PRelU

max(0, x)

SELU

a(max(0, x)+
min(0, S(expx — 1)))

RRelU

zifz >0
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Oifx < =
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Neural Network Activation Functions
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Back to Naive Bayesian Learning: Continuous inputs and discrete classes — the Gaussian case

2
1 X, — M,
P(xn yk): 210 =P _( 262:)
nk | n _

here we must estimate 2NK parameters + the shape of the distribution P(y) (this adds up to

another K-1 parameters)



Gaussian special case with class-independent variance and Boolean classification (two classes
only):

P(x|y=0)P(y=0)
X|y = O)P(y = O)+ P(X|y = 1)P(y = 1)

P(YZO|X): P(

1 _ ('xn o aLLnO )2 _

P — O — —_
(xn ’ ) 210> exp_ 20, |
1 _ ('xn o lLtnl )2 -

P — 1 = -







logistic shape

N
W, + anxn)

ex
P(y=1x)=1-P(y=0Jx)= =
1+ exp(wo + anxnj
n=1
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Finally, an input vector belongs to classy =0 if

P(y=0|x)
P(y=1[x)

B

N
1+ exp(wo + anxnj

n=1

N
> e +
exp (WO + Z w X j » AP (WO nz:} Wy

> 1

P(y: O|X):

n=1

N
1+ exp(wo + anxn)

P(y: 1|X):

n=1

N
» wo+ Y wx <0
n=1
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Back again to neural networks: universality

Math. Control Signals Systems (1989) 2: 303-314 M athematiCS Of Control
y

Signals, and Systems
© 1989 Springer-Veriag New Yorkinc. -

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Qur
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.
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Neural Networks, Vol. 2, pp. 359-366, 1989 0893-6080/89 $3.00 + .00
Printed in the USA. All rights reserved. Copyright © 1989 Pergamon Press pic

ORIGINAL CONTRIBUTION

Multilayer Feedforward Networks are
Universal Approximators

KUR' HORNIK

Technische Universitit Wien

MAXWELL STINCHCOMBE AND HALBEK WHIIE
University of California, San Diego
(Received 16 September 1988; revised and accepted 9 March 1989)

Abstract—This paper rigorously establishes that standard multilayer feedforward networks with as few as one
hidden layer using arbitrary squashing functions are capable of approximating any Borel measurable function
from one finite dimensional space to another to any desired degree of accuracy, provided sufficiently many
hidden units are available. In this sense, multilayer feedforward networks are a class of universal approximators.



http://neuralnetworksanddeeplearning.com/chap4.html
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2. The Li&Ma method

THE ASTROPHYSICAL JOURNAL, 272:317-324, 1983 September 1
© 1983. The American Astronomical Society. All rights reserved. Printed in U.S.A.

ANALYSIS METHODS FOR RESULTS IN GAMMA-RAY ASTRONOMY

Ti-pEI L1 AND YU-QIAN MaA

High Energy Astrophysics Group, Institute of High Energy Physics,
Academia Sinica, Beijing, China

Received 1982 September 20; accepted 1983 February 7

ABSTRACT

The current procedures for analyzing results of y-ray astronomy experiments are examined
critically. We propose two formulae to estimate the significance of positive observations in
searching y-ray sources or lines. The correctness of the formulae are tested by Monte Carlo
simulations.

Subject headings: gamma-rays: general — numerical methods

I. INTRODUCTION

Evaluation of the statistical reliability of positive results in searching discrete y-ray sources or lines is an important
problem in y-ray astronomy. Since both the signal-to-background ratio and detector sensitivity are generally limited
in this energy range, one must carefully analyze the observed data to determine the confidence level of a candidate
source or line, that is, the probability that the count rate excess is due to a genuine source or line rather than to
a spurious background fluctuation, even though all systematic effects are believed to have been removed.



The Fermi Gamma-ray Space Telescope

The Universe is home to numerous exotic and beautiful phenomena,
some of which can generate almost inconceivable amounts of energy.
Supermassive black holes, merging neutron stars, streams of hot gas
moving close to the speed of light ... these are but a few of the marvels
that generate gamma-ray radiation, the most energetic form of
radiation, billions of times more energetic than the type of light visible
to our eyes. What is happening to produce this much energy? What
happens to the surrounding environment near these phenomena? How
will studying these energetic objects add to our understanding of the
very nature of the Universe and how it behaves?

The Fermi Gamma-ray Space Telescope, formerly GLAST, is opening this
high-energy world to exploration and helping us answer these
questions. With Fermi, astronomers have a superior tool to study how
black holes, notorious for pulling matter in, can accelerate jets of gas
outward at fantastic speeds. Physicists are able to study subatomic
particles at energies far greater than those seen in ground-based
particle accelerators. And cosmologists are gaining valuable information
about the birth and early evolution of the Universe.

(adapted from https://fermi.gsfc.nasa.gov)
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https://imagine.gsfc.nasa.gov/observatories/learning/fermi/mission/lat.html
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The Fermi LAT 60-month image, constructed from front-

converting gamma rays with energies greater than 1 GeV.

The most prominent feature is the bright band of diffuse
glow along the map's center, which marks the central
plane of our Milky Way galaxy.

(Credit: NASA/DOE/Fermi LAT Collaboration)

~% 3 -
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Figure 1 shows a typical observation in y-ray astronomy. A photon detector points in the direction of a suspected
source for a certain time t,, and counts N,, photons, and then it turns for background measurement for a time
interval ¢, and counts N photons. The quantity « is the ratio of the on-source time to the off-source time,
o = too/toss (in some cases of searching for lines, N, is the number of counts under a peak in an energy spectrum,

and the peak is taken to be ng channels wide; N is the number of counts in n, channels adjacent to the peak;
then o = ng/n,).

Counting Rale

N\
| N%c
N AN

Fi1G. 1.—A typical observation in y-ray astronomy



Simple estimate of signal strength and its statistical significance.

* estimate of background photons N
i - = .V,
included in on-source counts B off

Counti ng Ra.te

* estimate of observed signal Ng = N, Np
on

ton=0lgp——o |—TLops —

. . 2 2 2/ N
* standard deviation of Slgnal o (NS) T (Non) +0 (NB) F1G. 1.—A typical observation in y-ray astronomy

* standard deviation estimate
assuming Poisson distr. bkg.

* statistical significance S =



Estimate of result reliability and new estimated significance

Here we calculate the standard deviation under the assumption that there are |
only background photons.

Non + N, Non
e estimate of photon arrival on T Noff AN
rate ton + toff / / woff
RN N

Counting Rale

* estimate of background Ny — Non + Nost o N N tn=0ly—— —Ttoyy —
) hot B — on — ( on T off)
on-source photons ton + toff o+ 1 F1G. 1.—A typical observation in y-ray astronomy
« estimate of background Nop + Nofft 1 N N — NB
off-source photons too 4 tog offt = 11 (Non + Nogt) = o
« estimate of on-source (;2(]\75) = 0%(Non) + 0?0*(Nog) = Np + QQ(NB/&)

standard deviation

= (1+ a)NB = a(Non + Nogr)

A

NS . Non _OéNoff
0s (\/O‘(Non + Nofr)

« new estimated significance S =




Short recap of the Likelihood Ratio Method (Wilks' theorem) — 1

* Taylor expansion about the MaxL estimator

OlnL(D|f)  9*InL(D|h)
o0 ~ 002

. 9% n L(D|6)
(9—9)N—E[ o

0=0

* Integration
82 1n L(D|6)
062

L(D|6) o exp {%E [

ezé} (é - 0)2}

* Extension to more than one parameters (split into two subsets, recall also the definition of Fisher's information matrix)

L(D|0) = L(D0,,6.) x exp [—%(é _ o) 1(6 — 9)]

where Fisher's information matrix is split into submatrices I =



Short recap of the Likelihood Ratio Method (Wilks' theorem) — 2

S

Then, 0 = (gr> and therefore

1 . . . .
L(D|6,.,0,) x exp [—5(& -0.)'1,.0,-6,)—0,—-0,.)"1,,0,—0,) -

A A

(95 T 95>TISS(05 T 98)

N | —

We know that asymptotically, the estimator @ has a Gaussian distribution with covariance matrix I_l, therefore,
asymptotically, the likelihood approaches the pdf of the estimator.

* When we maximize the likelihood with respect to the whole parameter vector, we find that the estimators for the
subvectors are

/ n . ! 1
9 =0, 60 =86,
and the corresponding maximum likelihood has a fixed value that depends only on data.

, 7 A
« When we maximize the likelihood with respect to the s parameters only, we find ‘95 = 93 and

1 . .
L(D|8,,80") x exp —5(97, -0,)'1,..(6, —8,)



Short recap of the Likelihood Ratio Method (Wilks' theorem) — 3

L(D|6,,6;)
L(D|6..,6;)

* This means that when we define the likelihood ratio A = , and recall that the estimators are

asymptotically Gaussian, we find that

AN

—2InA= (0, —0,)71,.(0,—0,)

has a chi-square distribution with r degrees of freedom (Wilks' theorem).



Application of the Likelihood Ratio Method to estimating N and Ng

The problem at hand is defined by

data: (Nona Noff)

unknown parameters: 0 = (<NB>, <Ns>)

(Ns) =0
alternative hypothesis: <N5> 7§ 0

5

null hypothesis:

maximum of a Poisson likelihood with just one measurement (N)

oN oL N

L(N0) = e = ILIN§)~Nlhb—-0 = —=——1=0 = H=N

(the actual measurement is the MaxL estimate).
This means that the previous estimates ARE MaxL estimates, and we can use them to calculate the likelihood ratio.
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Application of the Likelihood Ratio Method to estimating Nc and Ny (ctd.)

e MaxL estimates

alternative hypothesis: <NB> — OCNoH‘, <NS> — Non — OéNoﬁ‘

A a ~
null hypothesis: (Np) = = (Non + Nogr), (Ns) =0
* Likelihoods
NNon NNoff
alternative hypothesis: L(D|H1)|max = On' o~ Non Z‘off _,—Not

N
1 on
null hypothesis:  L(D|Hg)|max = A ( - (Non + Noff)) exp (— j_ (Non + Noff>>




Application of the Likelihood Ratio Method to estimating Nc and Ny (ctd.)

e MaxL ratio

\ L L(D|HO)’max L 84 Non + Noff Non 1 Non + Noff Nots
B L(DIHY) lmax - \a+1 Ny, a+1 N,g

therefore the significance can be obtained from —21In A,.x because —2In A has a chi-square distribution with 1
degree of freedom (only one parameter — the background rate — matters in the case of null hypothesis, while the
alternative hypothesis has two parameters — background rate and source rate) .

« if 2%~ x*(1) then |z| ~ x(1), and we estimate the significance as

\/ n \/_{ n[ - <N0n+Noff)]+ ffn[(oH— )<Non+Noff>]}

(a perfect match with exp. data gives a vanishing chi, the actual value of chi is an estimate of the size of the fluctuation in
terms of standard deviations).

 to be continued ...





