# Introduction to Bayesian Methods - 5 

Edoardo Milotti<br>Università di Trieste and INFN-Sezione di Trieste

## 1. Bayesian classification

Data X, classes C
this likelihood is defined by training data

$$
P(C \mid X)=\frac{P(X \mid C)}{P(X)} P(C)
$$

we can use the prior learning to assign a class to new data

$$
C_{k}=\underset{C_{k}}{\arg \max } \frac{P\left(X \mid C_{k}\right)}{P(X)} P\left(C_{k}\right)=\underset{C_{k}}{\arg \max } P\left(X \mid C_{k}\right) P\left(C_{k}\right)
$$

Consider a vector of $N$ attributes given as Boolean variables $\mathbf{x}=\left\{x_{i}\right\}$ and classify the data vectors with a single Boolean variable.

The learning procedure must yield:
it is easy to obtain it as an empirical distribution from

$P(y) \quad$| a histogram of training class data: y is Boolean, the |
| :--- |
| histogram has just two bins, and a hundred example | suffice to determine the empirical distribution to better than 10\%.

there is a bigger problem here: the arguments have $2^{\mathrm{N}+1}$
$P(\mathbf{X} \mid y) \quad \begin{aligned} & \text { different values, and we must estimate } 2\left(2^{\mathrm{N}}-1\right) \\ & \text { parameters ... for instance, with } \mathrm{N}=30 \text { there are more }\end{aligned}$ than 2 billion parameters!

How can we reduce the huge complexity of learning?
we assume the conditional independence of the $x_{n}$ 's:
naive Bayesian learning
for instance, with just two attributes

$$
P\left(x_{1}, x_{2} \mid y\right)=P\left(x_{1} \mid x_{2}, y\right) P\left(x_{2} \mid y\right)=P\left(x_{1} \mid y\right) P\left(x_{2} \mid y\right)
$$

with more than 2 attributes

$$
P(\mathbf{x} \mid y) \approx \prod_{k=1}^{N} P\left(x_{k} \mid y\right)
$$

Therefore:

$$
\begin{aligned}
P\left(y_{k} \mid \mathbf{x}\right) & =\frac{P\left(\mathbf{x} \mid y_{k}\right)}{P(\mathbf{x})} P\left(y_{k}\right)=\frac{P\left(\mathbf{x} \mid y_{k}\right)}{\sum_{j} P\left(\mathbf{x} \mid y_{j}\right) P\left(y_{j}\right)} P\left(y_{k}\right) \\
& \approx \frac{\prod_{n=1}^{N} P\left(x_{n} \mid y_{k}\right)}{\sum_{j} P\left(y_{j}\right) \prod_{n=1}^{N} P\left(x_{n} \mid y_{j}\right)} P\left(y_{k}\right)
\end{aligned}
$$

and we assign the class according to the rule (MAP)

$$
y=\arg \max \frac{\prod_{y_{k}}^{N} P\left(x_{n} \mid y_{k}\right)}{\sum_{j}^{N} P\left(y_{j}\right) \prod_{n=1}^{N} P\left(x_{n} \mid y_{j}\right)} P\left(y_{k}\right)
$$

More general discrete inputs

If any of the $N x$ variables has $J$ different values, e if there are $K$ classes, then we must estimate in all $N K(J-1)$ free parameters with the Naive Bayes Classifier (this includes normalization) (compare this with the $K\left(J^{N}-1\right)$ parameters needed by a complete classifier)

Short digression: neural networks and their activation functions

The Perceptron (McCulloch and Pitts, 1943)

Bulletin of Mathematical Biology Vol. 52, No. 1/2, pp. 99-115, 1990. Printed in Great Britain.
$0092-8240 / 90 \$ 3.00+0.00$
Pergamon Press plc Society for Mathematical Biology

## A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY*

- Warren S. McCulloch and Walter Pitts

University of Illinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute, University of Chicago, Chicago, U.S.A.

Because of the "all-or-none" character of nervous activity, neural events and the relations among them can be treated by means of propositional logic. It is found that the behavior of every net can be described in these terms, with the addition of more complicated logical means for nets containing circles; and that for any logical expression satisfying certain conditions, one can find a net behaving in the fashion it describes. It is shown that many particular choices among possible neurophysiological assumptions are equivalent, in the sense that for every net behaving under one assumption, there exists another net which behaves under the other and gives the same results, although perhaps not in the same time. Various applications of the calculus are discussed.

## Short digression: neural networks and their activation functions

The Perceptron (McCulloch and Pitts, 1943)

 of the examples.

After the training step, the network is fixed and can be used to classify additional inputs.


## Multilayer feedforward networks


$w_{j k}^{l}$ is the weight from the $k^{\text {th }}$ neuron in the $(l-1)^{\text {th }}$ layer to the $j^{\text {th }}$ neuron in the $l^{\text {th }}$ layer
layer 1
layer 2
layer 3


$$
a_{j}^{l}=\sigma\left(\sum_{k} w_{j k}^{l} a_{k}^{l-1}+b_{j}^{l}\right)
$$

activation of the j-th neuron in the l-th layer includes the biases
$\sigma$ is the activation function

Neural Network Activation Functions: a small subset!


## Neural Network Activation Functions



Back to Naive Bayesian Learning: Continuous inputs and discrete classes - the Gaussian case

$$
P\left(x_{n} \mid y_{k}\right)=\frac{1}{\sqrt{2 \pi \sigma_{n k}^{2}}} \exp \left[-\frac{\left(x_{n}-\mu_{n k}\right)^{2}}{2 \sigma_{n k}^{2}}\right]
$$

here we must estimate $2 N K$ parameters + the shape of the distribution $P(y)$ (this adds up to another $K-1$ parameters)

Gaussian special case with class-independent variance and Boolean classification (two classes only):

$$
P(y=0 \mid \mathbf{x})=\frac{P(\mathbf{x} \mid y=0) P(y=0)}{P(\mathbf{x} \mid y=0) P(y=0)+P(\mathbf{x} \mid y=1) P(y=1)}
$$

$$
\begin{aligned}
& P\left(x_{n} \mid y=0\right)=\frac{1}{\sqrt{2 \pi \sigma_{n}^{2}}} \exp \left[-\frac{\left(x_{n}-\mu_{n 0}\right)^{2}}{2 \sigma_{n}^{2}}\right] \\
& P\left(x_{n} \mid y=1\right)=\frac{1}{\sqrt{2 \pi \sigma_{n}^{2}}} \exp \left[-\frac{\left(x_{n}-\mu_{n 1}\right)^{2}}{2 \sigma_{n}^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
P(y=0 \mid \mathbf{x}) & =\frac{P(\mathbf{x} \mid y=0) P(y=0)}{P(\mathbf{x} \mid y=0) P(y=0)+P(\mathbf{x} \mid y=1) P(y=1)} \\
& =\frac{1}{1+\frac{P(\mathbf{x} \mid y=1) P(y=1)}{P(\mathbf{x} \mid y=0) P(y=0)}} \\
& =\frac{1}{1+\frac{P(y=1)}{P(y=0)} \prod_{n=1}^{N} \exp \left[-\frac{\left(x_{n}-\mu_{n 1}\right)^{2}}{2 \sigma_{n}^{2}}+\frac{\left(x_{n}-\mu_{n 0}\right)^{2}}{2 \sigma_{n}^{2}}\right]} \\
& =\frac{1}{1+\exp \left\{\ln \left(\frac{P(y=1)}{P(y=0)}\right)+\sum_{n=1}^{N}\left[\frac{\left(\mu_{n 1}-\mu_{n 0}\right) x_{n}}{\sigma_{n}^{2}}+\frac{\mu_{n 0}^{2}-\mu_{n 1}^{2}}{2 \sigma_{n}^{2}}\right]\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& w_{0}=\ln \left(\frac{P(y=1)}{P(y=0)}\right)+\sum_{n=1}^{N}\left[\frac{\mu_{n 0}^{2}-\mu_{n 1}^{2}}{2 \sigma_{n}^{2}}\right] \\
& w_{n}=\frac{\left(\mu_{n 1}-\mu_{n 0}\right)}{\sigma_{n}^{2}}
\end{aligned}
$$

$$
P(y=0 \mid \mathbf{x})=\frac{1}{1+\exp \left(w_{0}+\sum_{n=1}^{N} w_{n} x_{n}\right)}
$$

Finally, an input vector belongs to class $y=0$ if

$$
\begin{gathered}
\frac{P(y=0 \mid \mathbf{x})}{P(y=1 \mid \mathbf{x})}>1 \\
\end{gathered}
$$

$$
\begin{aligned}
& P(y=0 \mid \mathbf{x})=\frac{1}{1+\exp \left(w_{0}+\sum_{n=1}^{N} w_{n} x_{n}\right)} \\
& P(y=1 \mid \mathbf{x})=\frac{\exp \left(w_{0}+\sum_{n=1}^{N} w_{n} x_{n}\right)}{1+\exp \left(w_{0}+\sum_{n=1}^{N} w_{n} x_{n}\right)}
\end{aligned}
$$

$$
w_{0}+\sum_{n=1}^{N} w_{n} x_{n}<0
$$

# Approximation by Superpositions of a Sigmoidal Function* 

## G. Cybenko $\dagger$


#### Abstract

In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function of $n$ real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of single hidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The paper discusses approximation properties of other possible types of nonlinearities that might be implemented by artificial neural networks.


## ORIGINAL CONTRIBUTION

# Multilayer Feedforward Networks are Universal Approximators 

Kur Hornik<br>Technische Universität Wien<br>Maxwell Stinchcombe and Halbek White<br>University of California, San Diego<br>(Received 16 September 1988; revised and accepted 9 March 1989)


#### Abstract

This paper rigorously establishes that standard multilayer feedforward networks with as few as one hidden layer using arbitrary squashing functions are capable of approximating any Borel measurable function from one finite dimensional space to another to any desired degree of accuracy, provided sufficiently many hidden units are available. In this sense, multilayer feedforward networks are a class of universal approximators.


http://neuralnetworksanddeeplearning.com/chap4.html

## 2. The Li\&Ma method

The Astrophysical Journal, 272:317-324, 1983 September 1
(C) 1983. The American Astronomical Society. All rights reserved. Printed in U.S.A.

## ANALYSIS METHODS FOR RESULTS IN GAMMA-RAY ASTRONOMY

Ti-pei Li and Yu-qian Ma
High Energy Astrophysics Group, Institute of High Energy Physics,
Academia Sinica, Beijing, China
Received 1982 September 20; accepted 1983 February 7


#### Abstract

The current procedures for analyzing results of $\gamma$-ray astronomy experiments are examined critically. We propose two formulae to estimate the significance of positive observations in searching $\gamma$-ray sources or lines. The correctness of the formulae are tested by Monte Carlo simulations. Subject headings: gamma-rays: general - numerical methods


## I. INTRODUCTION

Evaluation of the statistical reliability of positive results in searching discrete $\gamma$-ray sources or lines is an important problem in $\gamma$-ray astronomy. Since both the signal-to-background ratio and detector sensitivity are generally limited in this energy range, one must carefully analyze the observed data to determine the confidence level of a candidate source or line, that is, the probability that the count rate excess is due to a genuine source or line rather than to a spurious background fluctuation, even though all systematic effects are believed to have been removed.

## The Fermi Gamma-ray Space Telescope

The Universe is home to numerous exotic and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. Supermassive black holes, merging neutron stars, streams of hot gas moving close to the speed of light ... these are but a few of the marvels that generate gamma-ray radiation, the most energetic form of radiation, billions of times more energetic than the type of light visible to our eyes. What is happening to produce this much energy? What happens to the surrounding environment near these phenomena? How will studying these energetic objects add to our understanding of the very nature of the Universe and how it behaves?

The Fermi Gamma-ray Space Telescope, formerly GLAST, is opening this high-energy world to exploration and helping us answer these questions. With Fermi, astronomers have a superior tool to study how black holes, notorious for pulling matter in, can accelerate jets of gas outward at fantastic speeds. Physicists are able to study subatomic particles at energies far greater than those seen in ground-based particle accelerators. And cosmologists are gaining valuable information about the birth and early evolution of the Universe.
(adapted from https://fermi.gsfc.nasa.gov)



Edoárdo Milotti - Bayesian Methods - Spring 2024

The Fermi LAT 60-month image, constructed from frontconverting gamma rays with energies greater than 1 GeV . The most prominent feature is the bright band of diffuse glow along the map's center, which marks the central plane of our Milky Way galaxy. (Credit: NASA/DOE/Fermi LAT Collaboration)

Gamma-ray (blue) and radio (red) light curves of three millisecond pulsars discovered by radio follow-up in Fermi unidentified sources.
(from
https://fermi.gsfc.nasa.gov/science/eteu/pulsars/)


Figure 1 shows a typical observation in $\gamma$-ray astronomy. A photon detector points in the direction of a suspected source for a certain time $t_{\text {on }}$ and counts $N_{\text {on }}$ photons, and then it turns for background measurement for a time interval $t_{\text {off }}$ and counts $N_{\text {off }}$ photons. The quantity $\alpha$ is the ratio of the on-source time to the off-source time, $\alpha=t_{\mathrm{on}} / t_{\text {off }}$ (in some cases of searching for lines, $N_{\text {on }}$ is the number of counts under a peak in an energy spectrum, and the peak is taken to be $n_{S}$ channels wide; $N_{\text {off }}$ is the number of counts in $n_{b}$ channels adjacent to the peak; then $\alpha=n_{S} / n_{b}$ ).


Fig. 1.-A typical observation in $\gamma$-ray astronomy

## Simple estimate of signal strength and its statistical significance.

- estimate of background photons included in on-source counts
- estimate of observed signal
- standard deviation of signal
- standard deviation estimate assuming Poisson distr. bkg.
- statistical significance

$$
\begin{aligned}
\sigma^{2}\left(\hat{N}_{S}\right) & =\sigma^{2}\left(N_{\text {on }}\right)+\sigma^{2}\left(\hat{N}_{B}\right) \\
& =\sigma^{2}\left(N_{\text {on }}\right)+\sigma^{2}\left(\alpha N_{\text {off }}\right) \\
& =\sigma^{2}\left(N_{\text {on }}\right)+\alpha^{2} \sigma^{2}\left(N_{\text {off }}\right)
\end{aligned}
$$



Fig. 1.-A typical observation in $\gamma$-ray astronomy

$$
\hat{\sigma}_{S}=\sqrt{N_{\mathrm{on}}+\alpha^{2} N_{\mathrm{off}}}
$$

$$
S=\frac{\hat{N}_{S}}{\hat{\sigma}_{S}}=\frac{N_{\mathrm{on}}-\alpha N \mathrm{off}}{\sqrt{N_{\mathrm{on}}+\alpha^{2} N_{\mathrm{off}}}}
$$

## Estimate of result reliability and new estimated significance

Here we calculate the standard deviation under the assumption that there are only background photons.

- estimate of photon arrival rate

$$
\frac{N_{\mathrm{on}}+N_{\mathrm{off}}}{t_{\mathrm{on}}+t_{\mathrm{off}}}
$$



Fig. 1.-A typical observation in $\gamma$-ray astronomy

- estimate of background off-source photons

$$
\hat{N}_{B}=\frac{N_{\text {on }}+N_{\text {off }}}{t_{\text {on }}+t_{\text {off }}} t_{\text {on }}=\frac{\alpha}{\alpha+1}\left(N_{\text {on }}+N_{\text {off }}\right)
$$

$$
\frac{N_{\text {on }}+N_{\text {off }}}{t_{\text {on }}+t_{\text {off }}} t_{\text {off }}=\frac{1}{\alpha+1}\left(N_{\text {on }}+N_{\text {off }}\right)=\frac{\hat{N}_{B}}{\alpha}
$$

- estimate of on-source standard deviation

$$
\begin{aligned}
\sigma^{2}\left(\hat{N}_{S}\right) & =\sigma^{2}\left(N_{\text {on }}\right)+\alpha^{2} \sigma^{2}\left(N_{\text {off }}\right) \approx \hat{N}_{B}+\alpha^{2}\left(\hat{N}_{B} / \alpha\right) \\
& =(1+\alpha) \hat{N}_{B}=\alpha\left(N_{\text {on }}+N_{\text {off }}\right)
\end{aligned}
$$

$$
S=\frac{\hat{N}_{S}}{\hat{\sigma}_{S}}=\frac{N_{\mathrm{on}}-\alpha N_{\mathrm{off}}}{\left(\sqrt{\alpha\left(N_{\mathrm{on}}+N_{\mathrm{off}}\right)}\right.}
$$

## Short recap of the Likelihood Ratio Method (Wilks' theorem) - 1

- Taylor expansion about the MaxL estimator

$$
\frac{\partial \ln L(D \mid \theta)}{\partial \theta} \approx-\left.\frac{\partial^{2} \ln L(D \mid \theta)}{\partial \theta^{2}}\right|_{\theta=\hat{\theta}}(\hat{\theta}-\theta) \approx-E\left[\left.\frac{\partial^{2} \ln L(D \mid \theta)}{\partial \theta^{2}}\right|_{\theta=\hat{\theta}}\right](\hat{\theta}-\theta)
$$

- Integration

$$
L(D \mid \theta) \propto \exp \left\{\frac{1}{2} E\left[\left.\frac{\partial^{2} \ln L(D \mid \theta)}{\partial \theta^{2}}\right|_{\theta=\hat{\theta}}\right](\hat{\theta}-\theta)^{2}\right\}
$$

- Extension to more than one parameters (split into two subsets, recall also the definition of Fisher's information matrix)

$$
L(D \mid \boldsymbol{\theta})=L\left(D \mid \boldsymbol{\theta}_{r}, \boldsymbol{\theta}_{s}\right) \propto \exp \left[-\frac{1}{2}(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta})^{T} I(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta})\right]
$$

where Fisher's information matrix is split into submatrices $\quad I=\left(\begin{array}{lll}I_{r r} & \vdots & I_{r s} \\ \cdots & & \cdots \\ I_{s r} & \vdots & I_{s s}\end{array}\right)$

## Short recap of the Likelihood Ratio Method (Wilks' theorem) - 2

- Then, $\boldsymbol{\theta}=\binom{\boldsymbol{\theta}_{r}}{\boldsymbol{\theta}_{s}}$ and therefore

$$
L\left(D \mid \boldsymbol{\theta}_{r}, \boldsymbol{\theta}_{s}\right) \propto \exp \left[-\frac{1}{2}\left(\hat{\boldsymbol{\theta}}_{r}-\boldsymbol{\theta}_{r}\right)^{T} I_{r r}\left(\hat{\boldsymbol{\theta}}_{r}-\boldsymbol{\theta}_{r}\right)-\left(\hat{\boldsymbol{\theta}}_{r}-\boldsymbol{\theta}_{r}\right)^{T} I_{r s}\left(\hat{\boldsymbol{\theta}}_{s}-\boldsymbol{\theta}_{s}\right)-\frac{1}{2}\left(\hat{\boldsymbol{\theta}}_{s}-\boldsymbol{\theta}_{s}\right)^{T} I_{s s}\left(\hat{\boldsymbol{\theta}}_{s}-\boldsymbol{\theta}_{s}\right)\right]
$$

- We know that asymptotically, the estimator $\hat{\boldsymbol{\theta}}$ has a Gaussian distribution with covariance matrix $I^{-1}$, therefore, asymptotically, the likelihood approaches the pdf of the estimator.
- When we maximize the likelihood with respect to the whole parameter vector, we find that the estimators for the subvectors are

$$
\theta_{r}^{\prime}=\hat{\boldsymbol{\theta}}_{r} ; \quad \theta_{s}^{\prime}=\hat{\boldsymbol{\theta}}_{s}
$$

and the corresponding maximum likelihood has a fixed value that depends only on data.

- When we maximize the likelihood with respect to the $s$ parameters only, we find $\theta_{s}^{\prime \prime}=\hat{\boldsymbol{\theta}}_{s}$ and

$$
L\left(D \mid \boldsymbol{\theta}_{r}, \boldsymbol{\theta}_{s}^{\prime \prime}\right) \propto \exp \left[-\frac{1}{2}\left(\hat{\boldsymbol{\theta}}_{r}-\boldsymbol{\theta}_{r}\right)^{T} I_{r r}\left(\hat{\boldsymbol{\theta}}_{r}-\boldsymbol{\theta}_{r}\right)\right]
$$

## Short recap of the Likelihood Ratio Method (Wilks' theorem) - 3

- This means that when we define the likelihood ratio $\lambda=\frac{L\left(D \mid \boldsymbol{\theta}_{r}, \boldsymbol{\theta}_{s}^{\prime \prime}\right)}{L\left(D \mid \boldsymbol{\theta}_{r}^{\prime}, \boldsymbol{\theta}_{s}^{\prime}\right)}$, and recall that the estimators are
asymptotically Gaussian, we find that

$$
-2 \ln \lambda=\left(\hat{\boldsymbol{\theta}}_{r}-\boldsymbol{\theta}_{r}\right)^{T} I_{r r}\left(\hat{\boldsymbol{\theta}}_{r}-\boldsymbol{\theta}_{r}\right)
$$

has a chi-square distribution with $r$ degrees of freedom (Wilks' theorem).

## Application of the Likelihood Ratio Method to estimating $N_{S}$ and $N_{B}$

- The problem at hand is defined by
data: $\left(N_{\text {on }}, N_{\text {off }}\right)$
unknown parameters:

$$
\boldsymbol{\theta}=\left(\left\langle N_{B}\right\rangle,\left\langle N_{S}\right\rangle\right)
$$

null hypothesis:

$$
\left\langle N_{S}\right\rangle=0
$$

alternative hypothesis: $\quad\left\langle N_{S}\right\rangle \neq 0$

- maximum of a Poisson likelihood with just one measurement ( $N$ )

$$
L(N \mid \theta)=\frac{\theta^{N}}{N!} e^{-\theta} \quad \Rightarrow \quad \ln L(N \mid \theta) \sim N \ln \theta-\theta \quad \Rightarrow \quad \frac{\partial L}{\partial \theta}=\frac{N}{\theta}-1=0 \quad \Rightarrow \quad \hat{\theta}=N
$$

(the actual measurement is the MaxL estimate).
This means that the previous estimates ARE MaxL estimates, and we can use them to calculate the likelihood ratio.

## Application of the Likelihood Ratio Method to estimating $N_{S}$ and $N_{B}$ (ctd.)

- MaxL estimates
alternative hypothesis: $\quad\left\langle\hat{N}_{B}\right\rangle=\alpha N_{\text {off }}, \quad\left\langle\hat{N}_{S}\right\rangle=N_{\text {on }}-\alpha N_{\text {off }}$
null hypothesis:

$$
\left\langle\hat{N}_{B}\right\rangle=\frac{\alpha}{\alpha+1}\left(N_{\text {on }}+N_{\text {off }}\right), \quad\left\langle\hat{N}_{S}\right\rangle=0
$$

- Likelihoods
alternative hypothesis:

$$
\left.L\left(D \mid H_{1}\right)\right|_{\max }=\frac{N_{\mathrm{on}}^{N_{\mathrm{on}}}}{N_{\mathrm{on}}!} e^{-N_{\mathrm{on}}} \frac{N_{\mathrm{off}}^{N_{\mathrm{off}}}}{N_{\mathrm{off}}!} e^{-N_{\mathrm{off}}}
$$

null hypothesis: $\left.\quad L\left(D \mid H_{0}\right)\right|_{\max }=\frac{1}{N_{\text {on }}!}\left(\frac{\alpha}{\alpha+1}\left(N_{\text {on }}+N_{\text {off }}\right)\right)^{N_{\text {on }}} \exp \left(-\frac{\alpha}{\alpha+1}\left(N_{\text {on }}+N_{\text {off }}\right)\right)$

$$
\times \frac{1}{N_{\mathrm{off}}!}\left(\frac{1}{\alpha+1}\left(N_{\mathrm{on}}+N_{\mathrm{off}}\right)\right)^{N_{\mathrm{off}}} \exp \left(-\frac{1}{\alpha+1}\left(N_{\mathrm{on}}+N_{\mathrm{off}}\right)\right)
$$

## Application of the Likelihood Ratio Method to estimating $N_{S}$ and $N_{B}$ (ctd.)

- MaxL ratio

$$
\lambda_{\max }=\frac{\left.L\left(D \mid H_{0}\right)\right|_{\max }}{\left.L\left(D \mid H_{1}\right)\right|_{\max }}=\left(\frac{\alpha}{\alpha+1} \frac{N_{\mathrm{on}}+N_{\mathrm{off}}}{N_{\mathrm{on}}}\right)^{N_{\mathrm{on}}}\left(\frac{1}{\alpha+1} \frac{N_{\mathrm{on}}+N_{\mathrm{off}}}{N_{\mathrm{off}}}\right)^{N_{\mathrm{off}}}
$$

therefore the significance can be obtained from $-2 \ln \lambda_{\max }$ because $-2 \ln \lambda$ has a chi-square distribution with 1 degree of freedom (only one parameter - the background rate - matters in the case of null hypothesis, while the alternative hypothesis has two parameters - background rate and source rate).

- if $x^{2} \sim \chi^{2}(1)$ then $|x| \sim \chi(1)$, and we estimate the significance as

$$
S \approx \sqrt{-2 \ln \lambda_{\max }}=\sqrt{2}\left\{N_{\mathrm{on}} \ln \left[\frac{\alpha+1}{\alpha}\left(\frac{N_{\mathrm{on}}}{N_{\mathrm{on}}+N_{\mathrm{off}}}\right)\right]+N_{\mathrm{off}} \ln \left[(\alpha+1)\left(\frac{N_{\mathrm{off}}}{N_{\mathrm{on}}+N_{\mathrm{off}}}\right)\right]\right\}
$$

(a perfect match with exp. data gives a vanishing chi, the actual value of chi is an estimate of the size of the fluctuation in terms of standard deviations).

- to be continued ...

