
Introduction to Bayesian Methods - 5

Edoardo Milotti
Università di Trieste and INFN-Sezione di Trieste

P C X() = P X C()
P X() P C()

1. Bayesian classification
Data X, classes C

we can use the prior learning to assign a class to new data

this likelihood is defined by
training data

Ck = argmax
Ck

P X Ck()
P X() P Ck() = argmax

Ck
P X Ck()P Ck()

the prior is also defined by
training data

Edoardo Milotti - Bayesian Methods - Spring 2024 2

Consider a vector of N attributes given as Boolean variables
x = {xi} and classify the data vectors with a single Boolean variable.

The learning procedure must yield:

 it is easy to obtain it as an empirical distribution from
 a histogram of training class data: y is Boolean, the
 histogram has just two bins, and a hundred examples

 suffice to determine the empirical distribution to better
 than 10%.

 there is a bigger problem here: the arguments have 2N+1
 different values, and we must estimate 2(2N-1)
 parameters ... for instance, with N = 30 there are more
 than 2 billion parameters!

P y()

P x y()

Edoardo Milotti - Bayesian Methods - Spring 2024 3

How can we reduce the huge complexity of learning?

 we assume the conditional independence of the xn’s:
 naive Bayesian learning

for instance, with just two attributes

with more than 2 attributes

P x1, x2 y() = P x1 x2 , y()P x2 y() = P x1 y()P x2 y()
conditional independence assumption

P x y() ≈ P xk y()
k=1

N

∏
Edoardo Milotti - Bayesian Methods - Spring 2024 4

P yk x() = P x yk()
P x() P yk() = P x yk()

P x yj()P yj()
j
!

P yk()

"
P xn yk()

n=1

N

#

P yj() P xn yj()
n=1

N

#
j
!

P yk()

?/*1*731*A

"-5$,*$"))24-$#/*$'("))$"''3152-4$#3$#/*$1.(*$GHIJK

y = argmax
yk

P xn yk()
n=1

N

!

P yj() P xn yj()
n=1

N

!
j
"

P yk()

!"#$%"#&'()#**(&+ ,$-./($0&'.*1#"/&+ 23%(04&5657 9

More general discrete inputs

If any of the N x variables has J different values, e if there are K classes, then we must

estimate in all NK(J-1) free parameters with the Naive Bayes Classifier (this includes

normalization) (compare this with the K(JN-1) parameters needed by a complete classifier)

Edoardo Milotti - Bayesian Methods - Spring 2024 6

Edoardo Milotti - Bayesian Methods - Spring 2024 7

Short digression: neural networks and their activation functions

The Perceptron (McCulloch and Pitts, 1943)

Bulletin of Mothemnticnl Biology Vol. 52, No. l/2. pp. 99-115. 1990.
Printed in Great Britain.

oo92-824OjW$3.OO+O.MI
Pergamon Press plc

Society for Mathematical Biology

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

n WARREN S. MCCULLOCH AND WALTER PITTS
University of Illinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute,
University of Chicago, Chicago, U.S.A.

Because of the “all-or-none” character of nervous activity, neural events and the relations among
them can be treated by means of propositional logic. It is found that the behavior of every net can
be described in these terms, with the addition of more complicated logical means for nets
containing circles; and that for any logical expression satisfying certain conditions, one can find a
net behaving in the fashion it describes. It is shown that many particular choices among possible
neurophysiological assumptions are equivalent, in the sense that for every net behaving under
one assumption, there exists another net which behaves under the other and gives the same
results, although perhaps not in the same time. Various applications of the calculus are
discussed.

1. Introduction. Theoretical neurophysiology rests on certain cardinal
assumptions. The nervous system is a net of neurons, each having a soma and
an axon. Their adjunctions, or synapses, are always between the axon of one
neuron and the soma of another. At any instant a neuron has some threshold,
which excitation must exceed to initiate an impulse. This, except for the fact
and the time of its occurence, is determined by the neuron, not by the
excitation. From the point of excitation the impulse is propagated to all parts of
the neuron. The velocity along the axon varies directly with its diameter, from
< 1 ms-’ in thin axons, which are usually short, to > 150 ms- ’ in thick axons,
which are usually long. The time for axonal conduction is consequently of little
importance in determining the time of arrival of impulses at points unequally
remote from the same source. Excitation across synapses occurs predominant-
ly from axonal terminations to somata. It is still a moot point whether this
depends upon irreciprocity of individual synapses or merely upon prevalent
anatomical configurations. To suppose the latter requires no hypothesis ad hoc
and explains known exceptions, but any assumption as to cause is compatible
with the calculus to come. No case is known in which excitation through a
single synapse has elicited a nervous impulse in any neuron, whereas any
neuron may be excited by impulses arriving at a sufficient number of
neighboring synapses within the period of latent addition, which lasts
~0.25 ms. Observed temporal summation of impulses at greater intervals

* Reprinted from the Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-133 (1943).

99

!"#$%"#&'()#**(&+ ,$-./($0&'.*1#"/&+ 23%(04&5657 <

Q/31#$5241*))23-A$-*.1"($-*#,31R)$"-5$#/*21$"'#26"#23-$7.-'#23-)

6"(%7(/3(2!/),%893:4&&)3"%0,*%7#!!$;%<=>?@

!"#$%"#&'()#**(&+ ,$-./($0&'.*1#"/&+ 23%(04&5657 =

!"#$%&#'$()*+&,-*$,%$.$%'#+,(,+$&/'#$
-($$%&!'$&!(")*+"%&!("

!"#$%&'%(")*+,$-&"%"./'0/.1'+-"2.#%1$-&"1*/".3%-/"
.+)1+-"%)"(+'/"1'%$-$-&"/4%(.3/)"%'/"%##/#

w0 + w1x1 + · · ·+ wn�1xn�1 + wnxn

0#,1"$%)3

!"#$%&"'()*+(,(- $)"1*/"/52%1$+-"+6"%"7*8./'9.3%-/:"%-#"1*/"%01$;%1$+-"
62-01$+-"#/6$-/)"%".%$'"+6"03%))/)"+-"+..+)$1/")$#/)"+6"1*/"7*8./'9.3%-/<"

=>'%$-$-&="0+''/).+-#)"1+")/3/01$-&"1*/".%'%(/1/')"6+'"%"0+''/01"03%))$6$0%1$+-"
+6"1*/"/4%(.3/)<

!61/'"1*/"1'%$-$-&")1/.:"1*/"-/1,+'?"$)"6$4/#"%-#"0%-"@/"2)/#"1+"03%))$68"
%##1+-%3"$-.21)<

Edoardo Milotti - Bayesian Methods - Spring 2024 10

4.1. Discriminant Functions 193

where the nonlinear activation function f(·) is given by a step function of the form

f(a) =
{

+1, a ! 0
−1, a < 0. (4.53)

The vector φ(x) will typically include a bias component φ0(x) = 1. In earlier
discussions of two-class classification problems, we have focussed on a target coding
scheme in which t ∈ {0, 1}, which is appropriate in the context of probabilistic
models. For the perceptron, however, it is more convenient to use target values
t = +1 for class C1 and t = −1 for class C2, which matches the choice of activation
function.

The algorithm used to determine the parameters w of the perceptron can most
easily be motivated by error function minimization. A natural choice of error func-
tion would be the total number of misclassified patterns. However, this does not lead
to a simple learning algorithm because the error is a piecewise constant function
of w, with discontinuities wherever a change in w causes the decision boundary to
move across one of the data points. Methods based on changing w using the gradi-
ent of the error function cannot then be applied, because the gradient is zero almost
everywhere.

We therefore consider an alternative error function known as the perceptron cri-
terion. To derive this, we note that we are seeking a weight vector w such that
patterns xn in class C1 will have wTφ(xn) > 0, whereas patterns xn in class C2

have wTφ(xn) < 0. Using the t ∈ {−1, +1} target coding scheme it follows that
we would like all patterns to satisfy wTφ(xn)tn > 0. The perceptron criterion
associates zero error with any pattern that is correctly classified, whereas for a mis-
classified pattern xn it tries to minimize the quantity −wTφ(xn)tn. The perceptron
criterion is therefore given by

EP(w) = −
∑

n∈M

wTφntn (4.54)

Frank Rosenblatt
1928–1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
but by the early 1960s he had built

special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt’s work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

From C. M. Bishop, "Pattern Recognition and Machine Learning",
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

!"#$%"#&'()#**(&+ ,$-./($0&'.*1#"/&+ 23%(04&5657 >>

In the last chapter we saw how neural networks can learn their
weights and biases using the gradient descent algorithm. There was,
however, a gap in our explanation: we didn't discuss how to
compute the gradient of the cost function. That's quite a gap! In this
chapter I'll explain a fast algorithm for computing such gradients,
an algorithm known as backpropagation.

The backpropagation algorithm was originally introduced in the
1970s, but its importance wasn't fully appreciated until a famous
1986 paper by David Rumelhart, Geoffrey Hinton, and Ronald
Williams. That paper describes several neural networks where
backpropagation works far faster than earlier approaches to
learning, making it possible to use neural nets to solve problems
which had previously been insoluble. Today, the backpropagation
algorithm is the workhorse of learning in neural networks.

This chapter is more mathematically involved than the rest of the
book. If you're not crazy about mathematics you may be tempted to
skip the chapter, and to treat backpropagation as a black box whose
details you're willing to ignore. Why take the time to study those
details?

The reason, of course, is understanding. At the heart of
backpropagation is an expression for the partial derivative of
the cost function with respect to any weight (or bias) in the
network. The expression tells us how quickly the cost changes when
we change the weights and biases. And while the expression is
somewhat complex, it also has a beauty to it, with each element
having a natural, intuitive interpretation. And so backpropagation
isn't just a fast algorithm for learning. It actually gives us detailed
insights into how changing the weights and biases changes the
overall behaviour of the network. That's well worth studying in
detail.

With that said, if you want to skim the chapter, or jump straight to
the next chapter, that's fine. I've written the rest of the book to be
accessible even if you treat backpropagation as a black box. There
are, of course, points later in the book where I refer back to results
from this chapter. But at those points you should still be able to
understand the main conclusions, even if you don't follow all the
reasoning.

Warm up: a fast matrix-based approach
to computing the output from a neural
network
Before discussing backpropagation, let's warm up with a fast
matrix-based algorithm to compute the output from a neural
network. We actually already briefly saw this algorithm near the
end of the last chapter, but I described it quickly, so it's worth
revisiting in detail. In particular, this is a good way of getting
comfortable with the notation used in backpropagation, in a
familiar context.

Let's begin with a notation which lets us refer to weights in the
network in an unambiguous way. We'll use to denote the weight
for the connection from the neuron in the layer to the
neuron in the layer. So, for example, the diagram below shows
the weight on a connection from the fourth neuron in the second
layer to the second neuron in the third layer of a network:

This notation is cumbersome at first, and it does take some work to
master. But with a little effort you'll find the notation becomes easy
and natural. One quirk of the notation is the ordering of the and
indices. You might think that it makes more sense to use to refer to
the input neuron, and to the output neuron, not vice versa, as is
actually done. I'll explain the reason for this quirk below.

We use a similar notation for the network's biases and activations.
Explicitly, we use for the bias of the neuron in the layer.
And we use for the activation of the neuron in the layer.
The following diagram shows examples of these notations in use:

With these notations, the activation of the neuron in the
layer is related to the activations in the layer by the
equation (compare Equation (4) and surrounding discussion in the
last chapter)

where the sum is over all neurons in the layer. To rewrite
this expression in a matrix form we define a weight matrix for
each layer, . The entries of the weight matrix are just the weights
connecting to the layer of neurons, that is, the entry in the row
and column is . Similarly, for each layer we define a bias
vector, . You can probably guess how this works - the components
of the bias vector are just the values , one component for each
neuron in the layer. And finally, we define an activation vector
whose components are the activations .

The last ingredient we need to rewrite (23) in a matrix form is the
idea of vectorizing a function such as . We met vectorization
briefly in the last chapter, but to recap, the idea is that we want to
apply a function such as to every element in a vector . We use the
obvious notation to denote this kind of elementwise application
of a function. That is, the components of are just .
As an example, if we have the function then the vectorized
form of has the effect

that is, the vectorized just squares every element of the vector.

With these notations in mind, Equation (23) can be rewritten in the
beautiful and compact vectorized form

This expression gives us a much more global way of thinking about
how the activations in one layer relate to activations in the previous
layer: we just apply the weight matrix to the activations, then add
the bias vector, and finally apply the function*. That global view is
often easier and more succinct (and involves fewer indices!) than
the neuron-by-neuron view we've taken to now. Think of it as a way
of escaping index hell, while remaining precise about what's going
on. The expression is also useful in practice, because most matrix
libraries provide fast ways of implementing matrix multiplication,
vector addition, and vectorization. Indeed, the code in the last
chapter made implicit use of this expression to compute the
behaviour of the network.

When using Equation (25) to compute , we compute the
intermediate quantity along the way. This quantity
turns out to be useful enough to be worth naming: we call the
weighted input to the neurons in layer . We'll make considerable
use of the weighted input later in the chapter. Equation (25) is
sometimes written in terms of the weighted input, as . It's
also worth noting that has components , that
is, is just the weighted input to the activation function for neuron
 in layer .

The two assumptions we need about
the cost function
The goal of backpropagation is to compute the partial derivatives

 and of the cost function with respect to any weight
or bias in the network. For backpropagation to work we need to
make two main assumptions about the form of the cost function.
Before stating those assumptions, though, it's useful to have an
example cost function in mind. We'll use the quadratic cost function
from last chapter (c.f. Equation (6)). In the notation of the last
section, the quadratic cost has the form

where: is the total number of training examples; the sum is over
individual training examples, ; is the corresponding
desired output; denotes the number of layers in the network; and

 is the vector of activations output from the network when
 is input.

Okay, so what assumptions do we need to make about our cost
function, , in order that backpropagation can be applied? The first
assumption we need is that the cost function can be written as an
average over cost functions for individual training
examples, . This is the case for the quadratic cost function, where
the cost for a single training example is . This
assumption will also hold true for all the other cost functions we'll
meet in this book.

The reason we need this assumption is because what
backpropagation actually lets us do is compute the partial
derivatives and for a single training example. We
then recover and by averaging over training examples.
In fact, with this assumption in mind, we'll suppose the training
example has been fixed, and drop the subscript, writing the cost

 as . We'll eventually put the back in, but for now it's a
notational nuisance that is better left implicit.

The second assumption we make about the cost is that it can be
written as a function of the outputs from the neural network:

For example, the quadratic cost function satisfies this requirement,
since the quadratic cost for a single training example may be
written as

and thus is a function of the output activations. Of course, this cost
function also depends on the desired output , and you may wonder
why we're not regarding the cost also as a function of . Remember,
though, that the input training example is fixed, and so the output

 is also a fixed parameter. In particular, it's not something we can
modify by changing the weights and biases in any way, i.e., it's not
something which the neural network learns. And so it makes sense
to regard as a function of the output activations alone, with
merely a parameter that helps define that function.

The Hadamard product,
The backpropagation algorithm is based on common linear
algebraic operations - things like vector addition, multiplying a
vector by a matrix, and so on. But one of the operations is a little
less commonly used. In particular, suppose and are two vectors
of the same dimension. Then we use to denote the
elementwise product of the two vectors. Thus the components of

 are just . As an example,

This kind of elementwise multiplication is sometimes called the
Hadamard product or Schur product. We'll refer to it as the
Hadamard product. Good matrix libraries usually provide fast
implementations of the Hadamard product, and that comes in
handy when implementing backpropagation.

The four fundamental equations
behind backpropagation
Backpropagation is about understanding how changing the weights
and biases in a network changes the cost function. Ultimately, this
means computing the partial derivatives and . But to
compute those, we first introduce an intermediate quantity, ,
which we call the error in the neuron in the layer.
Backpropagation will give us a procedure to compute the error ,
and then will relate to and .

To understand how the error is defined, imagine there is a demon
in our neural network:

The demon sits at the neuron in layer . As the input to the
neuron comes in, the demon messes with the neuron's operation. It
adds a little change to the neuron's weighted input, so that
instead of outputting , the neuron instead outputs .
This change propagates through later layers in the network, finally
causing the overall cost to change by an amount .

Now, this demon is a good demon, and is trying to help you
improve the cost, i.e., they're trying to find a which makes the
cost smaller. Suppose has a large value (either positive or

negative). Then the demon can lower the cost quite a bit by
choosing to have the opposite sign to . By contrast, if is

close to zero, then the demon can't improve the cost much at all by
perturbing the weighted input . So far as the demon can tell, the
neuron is already pretty near optimal*. And so there's a heuristic
sense in which is a measure of the error in the neuron.

Motivated by this story, we define the error of neuron in layer
by

As per our usual conventions, we use to denote the vector of
errors associated with layer . Backpropagation will give us a way of
computing for every layer, and then relating those errors to the
quantities of real interest, and .

You might wonder why the demon is changing the weighted input
. Surely it'd be more natural to imagine the demon changing the
output activation , with the result that we'd be using as our

measure of error. In fact, if you do this things work out quite
similarly to the discussion below. But it turns out to make the
presentation of backpropagation a little more algebraically
complicated. So we'll stick with as our measure of error*.

Plan of attack: Backpropagation is based around four
fundamental equations. Together, those equations give us a way of
computing both the error and the gradient of the cost function. I
state the four equations below. Be warned, though: you shouldn't
expect to instantaneously assimilate the equations. Such an
expectation will lead to disappointment. In fact, the
backpropagation equations are so rich that understanding them
well requires considerable time and patience as you gradually delve
deeper into the equations. The good news is that such patience is
repaid many times over. And so the discussion in this section is
merely a beginning, helping you on the way to a thorough
understanding of the equations.

Here's a preview of the ways we'll delve more deeply into the
equations later in the chapter: I'll give a short proof of the
equations, which helps explain why they are true; we'll restate the
equations in algorithmic form as pseudocode, and see how the
pseudocode can be implemented as real, running Python code; and,
in the final section of the chapter, we'll develop an intuitive picture
of what the backpropagation equations mean, and how someone
might discover them from scratch. Along the way we'll return
repeatedly to the four fundamental equations, and as you deepen
your understanding those equations will come to seem comfortable
and, perhaps, even beautiful and natural.

An equation for the error in the output layer, : The
components of are given by

This is a very natural expression. The first term on the right, ,
just measures how fast the cost is changing as a function of the
output activation. If, for example, doesn't depend much on a
particular output neuron, , then will be small, which is what
we'd expect. The second term on the right, , measures how
fast the activation function is changing at .

Notice that everything in (BP1) is easily computed. In particular, we
compute while computing the behaviour of the network, and it's
only a small additional overhead to compute . The exact form
of will, of course, depend on the form of the cost function.
However, provided the cost function is known there should be little
trouble computing . For example, if we're using the quadratic
cost function then , and so ,
which obviously is easily computable.

Equation (BP1) is a componentwise expression for . It's a
perfectly good expression, but not the matrix-based form we want
for backpropagation. However, it's easy to rewrite the equation in a
matrix-based form, as

Here, is defined to be a vector whose components are the
partial derivatives . You can think of as expressing the
rate of change of with respect to the output activations. It's easy
to see that Equations (BP1a) and (BP1) are equivalent, and for that
reason from now on we'll use (BP1) interchangeably to refer to both
equations. As an example, in the case of the quadratic cost we have

, and so the fully matrix-based form of (BP1)
becomes

As you can see, everything in this expression has a nice vector form,
and is easily computed using a library such as Numpy.

An equation for the error in terms of the error in the
next layer, : In particular

where is the transpose of the weight matrix for the
 layer. This equation appears complicated, but each element

has a nice interpretation. Suppose we know the error at the
 layer. When we apply the transpose weight matrix, ,

we can think intuitively of this as moving the error backward
through the network, giving us some sort of measure of the error at
the output of the layer. We then take the Hadamard product

. This moves the error backward through the activation
function in layer , giving us the error in the weighted input to
layer .

By combining (BP2) with (BP1) we can compute the error for any
layer in the network. We start by using (BP1) to compute , then
apply Equation (BP2) to compute , then Equation (BP2) again
to compute , and so on, all the way back through the network.

An equation for the rate of change of the cost with respect
to any bias in the network: In particular:

That is, the error is exactly equal to the rate of change .
This is great news, since (BP1) and (BP2) have already told us how
to compute . We can rewrite (BP3) in shorthand as

where it is understood that is being evaluated at the same neuron
as the bias .

An equation for the rate of change of the cost with respect
to any weight in the network: In particular:

This tells us how to compute the partial derivatives in terms
of the quantities and , which we already know how to
compute. The equation can be rewritten in a less index-heavy
notation as

where it's understood that is the activation of the neuron input
to the weight , and is the error of the neuron output from the
weight . Zooming in to look at just the weight , and the two
neurons connected by that weight, we can depict this as:

A nice consequence of Equation (32) is that when the activation
is small, , the gradient term will also tend to be small.
In this case, we'll say the weight learns slowly, meaning that it's not
changing much during gradient descent. In other words, one
consequence of (BP4) is that weights output from low-activation
neurons learn slowly.

There are other insights along these lines which can be obtained
from (BP1)-(BP4). Let's start by looking at the output layer.
Consider the term in (BP1). Recall from the graph of the
sigmoid function in the last chapter that the function becomes
very flat when is approximately or . When this occurs we
will have . And so the lesson is that a weight in the final
layer will learn slowly if the output neuron is either low activation
() or high activation (). In this case it's common to say the
output neuron has saturated and, as a result, the weight has
stopped learning (or is learning slowly). Similar remarks hold also
for the biases of output neuron.

We can obtain similar insights for earlier layers. In particular, note
the term in (BP2). This means that is likely to get small if
the neuron is near saturation. And this, in turn, means that any
weights input to a saturated neuron will learn slowly*.

Summing up, we've learnt that a weight will learn slowly if either
the input neuron is low-activation, or if the output neuron has
saturated, i.e., is either high- or low-activation.

None of these observations is too greatly surprising. Still, they help
improve our mental model of what's going on as a neural network
learns. Furthermore, we can turn this type of reasoning around. The
four fundamental equations turn out to hold for any activation
function, not just the standard sigmoid function (that's because, as
we'll see in a moment, the proofs don't use any special properties of

CHAPTER 2

How the backpropagation algorithm works

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $5,
but you can choose the amount.

Alternately, you can make a
donation by sending me Bitcoin, at
address
1Kd6tXH5SDAmiFb49J9hknG5pqj7KStSAx

Sponsors

Deep Learning Workstations,
Servers, and Laptops

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources
Michael Nielsen on Twitter

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, book by Ian
Goodfellow, Yoshua Bengio, and
Aaron Courville

cognitivemedium.com

By Michael Nielsen / Dec 2019

*By the way, it's this expression that motivates
the quirk in the notation mentioned earlier.

If we used to index the input neuron, and to
index the output neuron, then we'd need to
replace the weight matrix in Equation (25) by the
transpose of the weight matrix. That's a small
change, but annoying, and we'd lose the easy
simplicity of saying (and thinking) "apply the
weight matrix to the activations".

*This is only the case for small changes , of
course. We'll assume that the demon is
constrained to make such small changes.

*In classification problems like MNIST the term
"error" is sometimes used to mean the
classification failure rate. E.g., if the neural net
correctly classifies 96.0 percent of the digits,
then the error is 4.0 percent. Obviously, this has
quite a different meaning from our vectors. In
practice, you shouldn't have trouble telling
which meaning is intended in any given usage.

*This reasoning won't hold if has large
enough entries to compensate for the smallness
of . But I'm speaking of the general
tendency.

94&!#&0.(/%+((*+)/A0/*%,(!A)/'$

In the last chapter we saw how neural networks can learn their
weights and biases using the gradient descent algorithm. There was,
however, a gap in our explanation: we didn't discuss how to
compute the gradient of the cost function. That's quite a gap! In this
chapter I'll explain a fast algorithm for computing such gradients,
an algorithm known as backpropagation.

The backpropagation algorithm was originally introduced in the
1970s, but its importance wasn't fully appreciated until a famous
1986 paper by David Rumelhart, Geoffrey Hinton, and Ronald
Williams. That paper describes several neural networks where
backpropagation works far faster than earlier approaches to
learning, making it possible to use neural nets to solve problems
which had previously been insoluble. Today, the backpropagation
algorithm is the workhorse of learning in neural networks.

This chapter is more mathematically involved than the rest of the
book. If you're not crazy about mathematics you may be tempted to
skip the chapter, and to treat backpropagation as a black box whose
details you're willing to ignore. Why take the time to study those
details?

The reason, of course, is understanding. At the heart of
backpropagation is an expression for the partial derivative of
the cost function with respect to any weight (or bias) in the
network. The expression tells us how quickly the cost changes when
we change the weights and biases. And while the expression is
somewhat complex, it also has a beauty to it, with each element
having a natural, intuitive interpretation. And so backpropagation
isn't just a fast algorithm for learning. It actually gives us detailed
insights into how changing the weights and biases changes the
overall behaviour of the network. That's well worth studying in
detail.

With that said, if you want to skim the chapter, or jump straight to
the next chapter, that's fine. I've written the rest of the book to be
accessible even if you treat backpropagation as a black box. There
are, of course, points later in the book where I refer back to results
from this chapter. But at those points you should still be able to
understand the main conclusions, even if you don't follow all the
reasoning.

Warm up: a fast matrix-based approach
to computing the output from a neural
network
Before discussing backpropagation, let's warm up with a fast
matrix-based algorithm to compute the output from a neural
network. We actually already briefly saw this algorithm near the
end of the last chapter, but I described it quickly, so it's worth
revisiting in detail. In particular, this is a good way of getting
comfortable with the notation used in backpropagation, in a
familiar context.

Let's begin with a notation which lets us refer to weights in the
network in an unambiguous way. We'll use to denote the weight
for the connection from the neuron in the layer to the
neuron in the layer. So, for example, the diagram below shows
the weight on a connection from the fourth neuron in the second
layer to the second neuron in the third layer of a network:

This notation is cumbersome at first, and it does take some work to
master. But with a little effort you'll find the notation becomes easy
and natural. One quirk of the notation is the ordering of the and
indices. You might think that it makes more sense to use to refer to
the input neuron, and to the output neuron, not vice versa, as is
actually done. I'll explain the reason for this quirk below.

We use a similar notation for the network's biases and activations.
Explicitly, we use for the bias of the neuron in the layer.
And we use for the activation of the neuron in the layer.
The following diagram shows examples of these notations in use:

With these notations, the activation of the neuron in the
layer is related to the activations in the layer by the
equation (compare Equation (4) and surrounding discussion in the
last chapter)

where the sum is over all neurons in the layer. To rewrite
this expression in a matrix form we define a weight matrix for
each layer, . The entries of the weight matrix are just the weights
connecting to the layer of neurons, that is, the entry in the row
and column is . Similarly, for each layer we define a bias
vector, . You can probably guess how this works - the components
of the bias vector are just the values , one component for each
neuron in the layer. And finally, we define an activation vector
whose components are the activations .

The last ingredient we need to rewrite (23) in a matrix form is the
idea of vectorizing a function such as . We met vectorization
briefly in the last chapter, but to recap, the idea is that we want to
apply a function such as to every element in a vector . We use the
obvious notation to denote this kind of elementwise application
of a function. That is, the components of are just .
As an example, if we have the function then the vectorized
form of has the effect

that is, the vectorized just squares every element of the vector.

With these notations in mind, Equation (23) can be rewritten in the
beautiful and compact vectorized form

This expression gives us a much more global way of thinking about
how the activations in one layer relate to activations in the previous
layer: we just apply the weight matrix to the activations, then add
the bias vector, and finally apply the function*. That global view is
often easier and more succinct (and involves fewer indices!) than
the neuron-by-neuron view we've taken to now. Think of it as a way
of escaping index hell, while remaining precise about what's going
on. The expression is also useful in practice, because most matrix
libraries provide fast ways of implementing matrix multiplication,
vector addition, and vectorization. Indeed, the code in the last
chapter made implicit use of this expression to compute the
behaviour of the network.

When using Equation (25) to compute , we compute the
intermediate quantity along the way. This quantity
turns out to be useful enough to be worth naming: we call the
weighted input to the neurons in layer . We'll make considerable
use of the weighted input later in the chapter. Equation (25) is
sometimes written in terms of the weighted input, as . It's
also worth noting that has components , that
is, is just the weighted input to the activation function for neuron
 in layer .

The two assumptions we need about
the cost function
The goal of backpropagation is to compute the partial derivatives

 and of the cost function with respect to any weight
or bias in the network. For backpropagation to work we need to
make two main assumptions about the form of the cost function.
Before stating those assumptions, though, it's useful to have an
example cost function in mind. We'll use the quadratic cost function
from last chapter (c.f. Equation (6)). In the notation of the last
section, the quadratic cost has the form

where: is the total number of training examples; the sum is over
individual training examples, ; is the corresponding
desired output; denotes the number of layers in the network; and

 is the vector of activations output from the network when
 is input.

Okay, so what assumptions do we need to make about our cost
function, , in order that backpropagation can be applied? The first
assumption we need is that the cost function can be written as an
average over cost functions for individual training
examples, . This is the case for the quadratic cost function, where
the cost for a single training example is . This
assumption will also hold true for all the other cost functions we'll
meet in this book.

The reason we need this assumption is because what
backpropagation actually lets us do is compute the partial
derivatives and for a single training example. We
then recover and by averaging over training examples.
In fact, with this assumption in mind, we'll suppose the training
example has been fixed, and drop the subscript, writing the cost

 as . We'll eventually put the back in, but for now it's a
notational nuisance that is better left implicit.

The second assumption we make about the cost is that it can be
written as a function of the outputs from the neural network:

For example, the quadratic cost function satisfies this requirement,
since the quadratic cost for a single training example may be
written as

and thus is a function of the output activations. Of course, this cost
function also depends on the desired output , and you may wonder
why we're not regarding the cost also as a function of . Remember,
though, that the input training example is fixed, and so the output

 is also a fixed parameter. In particular, it's not something we can
modify by changing the weights and biases in any way, i.e., it's not
something which the neural network learns. And so it makes sense
to regard as a function of the output activations alone, with
merely a parameter that helps define that function.

The Hadamard product,
The backpropagation algorithm is based on common linear
algebraic operations - things like vector addition, multiplying a
vector by a matrix, and so on. But one of the operations is a little
less commonly used. In particular, suppose and are two vectors
of the same dimension. Then we use to denote the
elementwise product of the two vectors. Thus the components of

 are just . As an example,

This kind of elementwise multiplication is sometimes called the
Hadamard product or Schur product. We'll refer to it as the
Hadamard product. Good matrix libraries usually provide fast
implementations of the Hadamard product, and that comes in
handy when implementing backpropagation.

The four fundamental equations
behind backpropagation
Backpropagation is about understanding how changing the weights
and biases in a network changes the cost function. Ultimately, this
means computing the partial derivatives and . But to
compute those, we first introduce an intermediate quantity, ,
which we call the error in the neuron in the layer.
Backpropagation will give us a procedure to compute the error ,
and then will relate to and .

To understand how the error is defined, imagine there is a demon
in our neural network:

The demon sits at the neuron in layer . As the input to the
neuron comes in, the demon messes with the neuron's operation. It
adds a little change to the neuron's weighted input, so that
instead of outputting , the neuron instead outputs .
This change propagates through later layers in the network, finally
causing the overall cost to change by an amount .

Now, this demon is a good demon, and is trying to help you
improve the cost, i.e., they're trying to find a which makes the
cost smaller. Suppose has a large value (either positive or

negative). Then the demon can lower the cost quite a bit by
choosing to have the opposite sign to . By contrast, if is

close to zero, then the demon can't improve the cost much at all by
perturbing the weighted input . So far as the demon can tell, the
neuron is already pretty near optimal*. And so there's a heuristic
sense in which is a measure of the error in the neuron.

Motivated by this story, we define the error of neuron in layer
by

As per our usual conventions, we use to denote the vector of
errors associated with layer . Backpropagation will give us a way of
computing for every layer, and then relating those errors to the
quantities of real interest, and .

You might wonder why the demon is changing the weighted input
. Surely it'd be more natural to imagine the demon changing the
output activation , with the result that we'd be using as our

measure of error. In fact, if you do this things work out quite
similarly to the discussion below. But it turns out to make the
presentation of backpropagation a little more algebraically
complicated. So we'll stick with as our measure of error*.

Plan of attack: Backpropagation is based around four
fundamental equations. Together, those equations give us a way of
computing both the error and the gradient of the cost function. I
state the four equations below. Be warned, though: you shouldn't
expect to instantaneously assimilate the equations. Such an
expectation will lead to disappointment. In fact, the
backpropagation equations are so rich that understanding them
well requires considerable time and patience as you gradually delve
deeper into the equations. The good news is that such patience is
repaid many times over. And so the discussion in this section is
merely a beginning, helping you on the way to a thorough
understanding of the equations.

Here's a preview of the ways we'll delve more deeply into the
equations later in the chapter: I'll give a short proof of the
equations, which helps explain why they are true; we'll restate the
equations in algorithmic form as pseudocode, and see how the
pseudocode can be implemented as real, running Python code; and,
in the final section of the chapter, we'll develop an intuitive picture
of what the backpropagation equations mean, and how someone
might discover them from scratch. Along the way we'll return
repeatedly to the four fundamental equations, and as you deepen
your understanding those equations will come to seem comfortable
and, perhaps, even beautiful and natural.

An equation for the error in the output layer, : The
components of are given by

This is a very natural expression. The first term on the right, ,
just measures how fast the cost is changing as a function of the
output activation. If, for example, doesn't depend much on a
particular output neuron, , then will be small, which is what
we'd expect. The second term on the right, , measures how
fast the activation function is changing at .

Notice that everything in (BP1) is easily computed. In particular, we
compute while computing the behaviour of the network, and it's
only a small additional overhead to compute . The exact form
of will, of course, depend on the form of the cost function.
However, provided the cost function is known there should be little
trouble computing . For example, if we're using the quadratic
cost function then , and so ,
which obviously is easily computable.

Equation (BP1) is a componentwise expression for . It's a
perfectly good expression, but not the matrix-based form we want
for backpropagation. However, it's easy to rewrite the equation in a
matrix-based form, as

Here, is defined to be a vector whose components are the
partial derivatives . You can think of as expressing the
rate of change of with respect to the output activations. It's easy
to see that Equations (BP1a) and (BP1) are equivalent, and for that
reason from now on we'll use (BP1) interchangeably to refer to both
equations. As an example, in the case of the quadratic cost we have

, and so the fully matrix-based form of (BP1)
becomes

As you can see, everything in this expression has a nice vector form,
and is easily computed using a library such as Numpy.

An equation for the error in terms of the error in the
next layer, : In particular

where is the transpose of the weight matrix for the
 layer. This equation appears complicated, but each element

has a nice interpretation. Suppose we know the error at the
 layer. When we apply the transpose weight matrix, ,

we can think intuitively of this as moving the error backward
through the network, giving us some sort of measure of the error at
the output of the layer. We then take the Hadamard product

. This moves the error backward through the activation
function in layer , giving us the error in the weighted input to
layer .

By combining (BP2) with (BP1) we can compute the error for any
layer in the network. We start by using (BP1) to compute , then
apply Equation (BP2) to compute , then Equation (BP2) again
to compute , and so on, all the way back through the network.

An equation for the rate of change of the cost with respect
to any bias in the network: In particular:

That is, the error is exactly equal to the rate of change .
This is great news, since (BP1) and (BP2) have already told us how
to compute . We can rewrite (BP3) in shorthand as

where it is understood that is being evaluated at the same neuron
as the bias .

An equation for the rate of change of the cost with respect
to any weight in the network: In particular:

This tells us how to compute the partial derivatives in terms
of the quantities and , which we already know how to
compute. The equation can be rewritten in a less index-heavy
notation as

where it's understood that is the activation of the neuron input
to the weight , and is the error of the neuron output from the
weight . Zooming in to look at just the weight , and the two
neurons connected by that weight, we can depict this as:

A nice consequence of Equation (32) is that when the activation
is small, , the gradient term will also tend to be small.
In this case, we'll say the weight learns slowly, meaning that it's not
changing much during gradient descent. In other words, one
consequence of (BP4) is that weights output from low-activation
neurons learn slowly.

There are other insights along these lines which can be obtained
from (BP1)-(BP4). Let's start by looking at the output layer.
Consider the term in (BP1). Recall from the graph of the
sigmoid function in the last chapter that the function becomes
very flat when is approximately or . When this occurs we
will have . And so the lesson is that a weight in the final
layer will learn slowly if the output neuron is either low activation
() or high activation (). In this case it's common to say the
output neuron has saturated and, as a result, the weight has
stopped learning (or is learning slowly). Similar remarks hold also
for the biases of output neuron.

We can obtain similar insights for earlier layers. In particular, note
the term in (BP2). This means that is likely to get small if
the neuron is near saturation. And this, in turn, means that any
weights input to a saturated neuron will learn slowly*.

Summing up, we've learnt that a weight will learn slowly if either
the input neuron is low-activation, or if the output neuron has
saturated, i.e., is either high- or low-activation.

None of these observations is too greatly surprising. Still, they help
improve our mental model of what's going on as a neural network
learns. Furthermore, we can turn this type of reasoning around. The
four fundamental equations turn out to hold for any activation
function, not just the standard sigmoid function (that's because, as
we'll see in a moment, the proofs don't use any special properties of

CHAPTER 2

How the backpropagation algorithm works

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $5,
but you can choose the amount.

Alternately, you can make a
donation by sending me Bitcoin, at
address
1Kd6tXH5SDAmiFb49J9hknG5pqj7KStSAx

Sponsors

Deep Learning Workstations,
Servers, and Laptops

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources
Michael Nielsen on Twitter

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, book by Ian
Goodfellow, Yoshua Bengio, and
Aaron Courville

cognitivemedium.com

By Michael Nielsen / Dec 2019

*By the way, it's this expression that motivates
the quirk in the notation mentioned earlier.

If we used to index the input neuron, and to
index the output neuron, then we'd need to
replace the weight matrix in Equation (25) by the
transpose of the weight matrix. That's a small
change, but annoying, and we'd lose the easy
simplicity of saying (and thinking) "apply the
weight matrix to the activations".

*This is only the case for small changes , of
course. We'll assume that the demon is
constrained to make such small changes.

*In classification problems like MNIST the term
"error" is sometimes used to mean the
classification failure rate. E.g., if the neural net
correctly classifies 96.0 percent of the digits,
then the error is 4.0 percent. Obviously, this has
quite a different meaning from our vectors. In
practice, you shouldn't have trouble telling
which meaning is intended in any given usage.

*This reasoning won't hold if has large
enough entries to compensate for the smallness
of . But I'm speaking of the general
tendency.

In the last chapter we saw how neural networks can learn their
weights and biases using the gradient descent algorithm. There was,
however, a gap in our explanation: we didn't discuss how to
compute the gradient of the cost function. That's quite a gap! In this
chapter I'll explain a fast algorithm for computing such gradients,
an algorithm known as backpropagation.

The backpropagation algorithm was originally introduced in the
1970s, but its importance wasn't fully appreciated until a famous
1986 paper by David Rumelhart, Geoffrey Hinton, and Ronald
Williams. That paper describes several neural networks where
backpropagation works far faster than earlier approaches to
learning, making it possible to use neural nets to solve problems
which had previously been insoluble. Today, the backpropagation
algorithm is the workhorse of learning in neural networks.

This chapter is more mathematically involved than the rest of the
book. If you're not crazy about mathematics you may be tempted to
skip the chapter, and to treat backpropagation as a black box whose
details you're willing to ignore. Why take the time to study those
details?

The reason, of course, is understanding. At the heart of
backpropagation is an expression for the partial derivative of
the cost function with respect to any weight (or bias) in the
network. The expression tells us how quickly the cost changes when
we change the weights and biases. And while the expression is
somewhat complex, it also has a beauty to it, with each element
having a natural, intuitive interpretation. And so backpropagation
isn't just a fast algorithm for learning. It actually gives us detailed
insights into how changing the weights and biases changes the
overall behaviour of the network. That's well worth studying in
detail.

With that said, if you want to skim the chapter, or jump straight to
the next chapter, that's fine. I've written the rest of the book to be
accessible even if you treat backpropagation as a black box. There
are, of course, points later in the book where I refer back to results
from this chapter. But at those points you should still be able to
understand the main conclusions, even if you don't follow all the
reasoning.

Warm up: a fast matrix-based approach
to computing the output from a neural
network
Before discussing backpropagation, let's warm up with a fast
matrix-based algorithm to compute the output from a neural
network. We actually already briefly saw this algorithm near the
end of the last chapter, but I described it quickly, so it's worth
revisiting in detail. In particular, this is a good way of getting
comfortable with the notation used in backpropagation, in a
familiar context.

Let's begin with a notation which lets us refer to weights in the
network in an unambiguous way. We'll use to denote the weight
for the connection from the neuron in the layer to the
neuron in the layer. So, for example, the diagram below shows
the weight on a connection from the fourth neuron in the second
layer to the second neuron in the third layer of a network:

This notation is cumbersome at first, and it does take some work to
master. But with a little effort you'll find the notation becomes easy
and natural. One quirk of the notation is the ordering of the and
indices. You might think that it makes more sense to use to refer to
the input neuron, and to the output neuron, not vice versa, as is
actually done. I'll explain the reason for this quirk below.

We use a similar notation for the network's biases and activations.
Explicitly, we use for the bias of the neuron in the layer.
And we use for the activation of the neuron in the layer.
The following diagram shows examples of these notations in use:

With these notations, the activation of the neuron in the
layer is related to the activations in the layer by the
equation (compare Equation (4) and surrounding discussion in the
last chapter)

where the sum is over all neurons in the layer. To rewrite
this expression in a matrix form we define a weight matrix for
each layer, . The entries of the weight matrix are just the weights
connecting to the layer of neurons, that is, the entry in the row
and column is . Similarly, for each layer we define a bias
vector, . You can probably guess how this works - the components
of the bias vector are just the values , one component for each
neuron in the layer. And finally, we define an activation vector
whose components are the activations .

The last ingredient we need to rewrite (23) in a matrix form is the
idea of vectorizing a function such as . We met vectorization
briefly in the last chapter, but to recap, the idea is that we want to
apply a function such as to every element in a vector . We use the
obvious notation to denote this kind of elementwise application
of a function. That is, the components of are just .
As an example, if we have the function then the vectorized
form of has the effect

that is, the vectorized just squares every element of the vector.

With these notations in mind, Equation (23) can be rewritten in the
beautiful and compact vectorized form

This expression gives us a much more global way of thinking about
how the activations in one layer relate to activations in the previous
layer: we just apply the weight matrix to the activations, then add
the bias vector, and finally apply the function*. That global view is
often easier and more succinct (and involves fewer indices!) than
the neuron-by-neuron view we've taken to now. Think of it as a way
of escaping index hell, while remaining precise about what's going
on. The expression is also useful in practice, because most matrix
libraries provide fast ways of implementing matrix multiplication,
vector addition, and vectorization. Indeed, the code in the last
chapter made implicit use of this expression to compute the
behaviour of the network.

When using Equation (25) to compute , we compute the
intermediate quantity along the way. This quantity
turns out to be useful enough to be worth naming: we call the
weighted input to the neurons in layer . We'll make considerable
use of the weighted input later in the chapter. Equation (25) is
sometimes written in terms of the weighted input, as . It's
also worth noting that has components , that
is, is just the weighted input to the activation function for neuron
 in layer .

The two assumptions we need about
the cost function
The goal of backpropagation is to compute the partial derivatives

 and of the cost function with respect to any weight
or bias in the network. For backpropagation to work we need to
make two main assumptions about the form of the cost function.
Before stating those assumptions, though, it's useful to have an
example cost function in mind. We'll use the quadratic cost function
from last chapter (c.f. Equation (6)). In the notation of the last
section, the quadratic cost has the form

where: is the total number of training examples; the sum is over
individual training examples, ; is the corresponding
desired output; denotes the number of layers in the network; and

 is the vector of activations output from the network when
 is input.

Okay, so what assumptions do we need to make about our cost
function, , in order that backpropagation can be applied? The first
assumption we need is that the cost function can be written as an
average over cost functions for individual training
examples, . This is the case for the quadratic cost function, where
the cost for a single training example is . This
assumption will also hold true for all the other cost functions we'll
meet in this book.

The reason we need this assumption is because what
backpropagation actually lets us do is compute the partial
derivatives and for a single training example. We
then recover and by averaging over training examples.
In fact, with this assumption in mind, we'll suppose the training
example has been fixed, and drop the subscript, writing the cost

 as . We'll eventually put the back in, but for now it's a
notational nuisance that is better left implicit.

The second assumption we make about the cost is that it can be
written as a function of the outputs from the neural network:

For example, the quadratic cost function satisfies this requirement,
since the quadratic cost for a single training example may be
written as

and thus is a function of the output activations. Of course, this cost
function also depends on the desired output , and you may wonder
why we're not regarding the cost also as a function of . Remember,
though, that the input training example is fixed, and so the output

 is also a fixed parameter. In particular, it's not something we can
modify by changing the weights and biases in any way, i.e., it's not
something which the neural network learns. And so it makes sense
to regard as a function of the output activations alone, with
merely a parameter that helps define that function.

The Hadamard product,
The backpropagation algorithm is based on common linear
algebraic operations - things like vector addition, multiplying a
vector by a matrix, and so on. But one of the operations is a little
less commonly used. In particular, suppose and are two vectors
of the same dimension. Then we use to denote the
elementwise product of the two vectors. Thus the components of

 are just . As an example,

This kind of elementwise multiplication is sometimes called the
Hadamard product or Schur product. We'll refer to it as the
Hadamard product. Good matrix libraries usually provide fast
implementations of the Hadamard product, and that comes in
handy when implementing backpropagation.

The four fundamental equations
behind backpropagation
Backpropagation is about understanding how changing the weights
and biases in a network changes the cost function. Ultimately, this
means computing the partial derivatives and . But to
compute those, we first introduce an intermediate quantity, ,
which we call the error in the neuron in the layer.
Backpropagation will give us a procedure to compute the error ,
and then will relate to and .

To understand how the error is defined, imagine there is a demon
in our neural network:

The demon sits at the neuron in layer . As the input to the
neuron comes in, the demon messes with the neuron's operation. It
adds a little change to the neuron's weighted input, so that
instead of outputting , the neuron instead outputs .
This change propagates through later layers in the network, finally
causing the overall cost to change by an amount .

Now, this demon is a good demon, and is trying to help you
improve the cost, i.e., they're trying to find a which makes the
cost smaller. Suppose has a large value (either positive or

negative). Then the demon can lower the cost quite a bit by
choosing to have the opposite sign to . By contrast, if is

close to zero, then the demon can't improve the cost much at all by
perturbing the weighted input . So far as the demon can tell, the
neuron is already pretty near optimal*. And so there's a heuristic
sense in which is a measure of the error in the neuron.

Motivated by this story, we define the error of neuron in layer
by

As per our usual conventions, we use to denote the vector of
errors associated with layer . Backpropagation will give us a way of
computing for every layer, and then relating those errors to the
quantities of real interest, and .

You might wonder why the demon is changing the weighted input
. Surely it'd be more natural to imagine the demon changing the
output activation , with the result that we'd be using as our

measure of error. In fact, if you do this things work out quite
similarly to the discussion below. But it turns out to make the
presentation of backpropagation a little more algebraically
complicated. So we'll stick with as our measure of error*.

Plan of attack: Backpropagation is based around four
fundamental equations. Together, those equations give us a way of
computing both the error and the gradient of the cost function. I
state the four equations below. Be warned, though: you shouldn't
expect to instantaneously assimilate the equations. Such an
expectation will lead to disappointment. In fact, the
backpropagation equations are so rich that understanding them
well requires considerable time and patience as you gradually delve
deeper into the equations. The good news is that such patience is
repaid many times over. And so the discussion in this section is
merely a beginning, helping you on the way to a thorough
understanding of the equations.

Here's a preview of the ways we'll delve more deeply into the
equations later in the chapter: I'll give a short proof of the
equations, which helps explain why they are true; we'll restate the
equations in algorithmic form as pseudocode, and see how the
pseudocode can be implemented as real, running Python code; and,
in the final section of the chapter, we'll develop an intuitive picture
of what the backpropagation equations mean, and how someone
might discover them from scratch. Along the way we'll return
repeatedly to the four fundamental equations, and as you deepen
your understanding those equations will come to seem comfortable
and, perhaps, even beautiful and natural.

An equation for the error in the output layer, : The
components of are given by

This is a very natural expression. The first term on the right, ,
just measures how fast the cost is changing as a function of the
output activation. If, for example, doesn't depend much on a
particular output neuron, , then will be small, which is what
we'd expect. The second term on the right, , measures how
fast the activation function is changing at .

Notice that everything in (BP1) is easily computed. In particular, we
compute while computing the behaviour of the network, and it's
only a small additional overhead to compute . The exact form
of will, of course, depend on the form of the cost function.
However, provided the cost function is known there should be little
trouble computing . For example, if we're using the quadratic
cost function then , and so ,
which obviously is easily computable.

Equation (BP1) is a componentwise expression for . It's a
perfectly good expression, but not the matrix-based form we want
for backpropagation. However, it's easy to rewrite the equation in a
matrix-based form, as

Here, is defined to be a vector whose components are the
partial derivatives . You can think of as expressing the
rate of change of with respect to the output activations. It's easy
to see that Equations (BP1a) and (BP1) are equivalent, and for that
reason from now on we'll use (BP1) interchangeably to refer to both
equations. As an example, in the case of the quadratic cost we have

, and so the fully matrix-based form of (BP1)
becomes

As you can see, everything in this expression has a nice vector form,
and is easily computed using a library such as Numpy.

An equation for the error in terms of the error in the
next layer, : In particular

where is the transpose of the weight matrix for the
 layer. This equation appears complicated, but each element

has a nice interpretation. Suppose we know the error at the
 layer. When we apply the transpose weight matrix, ,

we can think intuitively of this as moving the error backward
through the network, giving us some sort of measure of the error at
the output of the layer. We then take the Hadamard product

. This moves the error backward through the activation
function in layer , giving us the error in the weighted input to
layer .

By combining (BP2) with (BP1) we can compute the error for any
layer in the network. We start by using (BP1) to compute , then
apply Equation (BP2) to compute , then Equation (BP2) again
to compute , and so on, all the way back through the network.

An equation for the rate of change of the cost with respect
to any bias in the network: In particular:

That is, the error is exactly equal to the rate of change .
This is great news, since (BP1) and (BP2) have already told us how
to compute . We can rewrite (BP3) in shorthand as

where it is understood that is being evaluated at the same neuron
as the bias .

An equation for the rate of change of the cost with respect
to any weight in the network: In particular:

This tells us how to compute the partial derivatives in terms
of the quantities and , which we already know how to
compute. The equation can be rewritten in a less index-heavy
notation as

where it's understood that is the activation of the neuron input
to the weight , and is the error of the neuron output from the
weight . Zooming in to look at just the weight , and the two
neurons connected by that weight, we can depict this as:

A nice consequence of Equation (32) is that when the activation
is small, , the gradient term will also tend to be small.
In this case, we'll say the weight learns slowly, meaning that it's not
changing much during gradient descent. In other words, one
consequence of (BP4) is that weights output from low-activation
neurons learn slowly.

There are other insights along these lines which can be obtained
from (BP1)-(BP4). Let's start by looking at the output layer.
Consider the term in (BP1). Recall from the graph of the
sigmoid function in the last chapter that the function becomes
very flat when is approximately or . When this occurs we
will have . And so the lesson is that a weight in the final
layer will learn slowly if the output neuron is either low activation
() or high activation (). In this case it's common to say the
output neuron has saturated and, as a result, the weight has
stopped learning (or is learning slowly). Similar remarks hold also
for the biases of output neuron.

We can obtain similar insights for earlier layers. In particular, note
the term in (BP2). This means that is likely to get small if
the neuron is near saturation. And this, in turn, means that any
weights input to a saturated neuron will learn slowly*.

Summing up, we've learnt that a weight will learn slowly if either
the input neuron is low-activation, or if the output neuron has
saturated, i.e., is either high- or low-activation.

None of these observations is too greatly surprising. Still, they help
improve our mental model of what's going on as a neural network
learns. Furthermore, we can turn this type of reasoning around. The
four fundamental equations turn out to hold for any activation
function, not just the standard sigmoid function (that's because, as
we'll see in a moment, the proofs don't use any special properties of

CHAPTER 2

How the backpropagation algorithm works

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $5,
but you can choose the amount.

Alternately, you can make a
donation by sending me Bitcoin, at
address
1Kd6tXH5SDAmiFb49J9hknG5pqj7KStSAx

Sponsors

Deep Learning Workstations,
Servers, and Laptops

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources
Michael Nielsen on Twitter

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, book by Ian
Goodfellow, Yoshua Bengio, and
Aaron Courville

cognitivemedium.com

By Michael Nielsen / Dec 2019

= σ (+) ,al
j ∑

k
wl

jkal−1
k bl

j (23)

*By the way, it's this expression that motivates
the quirk in the notation mentioned earlier.

If we used to index the input neuron, and to
index the output neuron, then we'd need to
replace the weight matrix in Equation (25) by the
transpose of the weight matrix. That's a small
change, but annoying, and we'd lose the easy
simplicity of saying (and thinking) "apply the
weight matrix to the activations".

*This is only the case for small changes , of
course. We'll assume that the demon is
constrained to make such small changes.

*In classification problems like MNIST the term
"error" is sometimes used to mean the
classification failure rate. E.g., if the neural net
correctly classifies 96.0 percent of the digits,
then the error is 4.0 percent. Obviously, this has
quite a different meaning from our vectors. In
practice, you shouldn't have trouble telling
which meaning is intended in any given usage.

*This reasoning won't hold if has large
enough entries to compensate for the smallness
of . But I'm speaking of the general
tendency.

!"#$%!#$&')+%!"(%BC!"%,(4/),%#,%!"(%&C!"%&0.(/%
#,3&4*($%!"(%($!)*)

! #$%!"(%!"#$%!#$&'+,-'"#$&'

)0*/(%1$0)"6'+("*11.ABB-/2'%3-/1,+'?)%-##//.3/%'-$-&<0+(

http://neuralnetworksanddeeplearning.com/

Edoardo Milotti - Bayesian Methods - Spring 2024 12

Back to Naive Bayesian Learning: Continuous inputs and discrete classes – the Gaussian case

here we must estimate 2NK parameters + the shape of the distribution P(y) (this adds up to

another K-1 parameters)

P xn yk() = 1
2πσ nk

2
exp −

xn − µnk()2
2σ nk

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Edoardo Milotti - Bayesian Methods - Spring 2024 13

Gaussian special case with class-independent variance and Boolean classification (two classes
only):

P y = 0 x() = P x y = 0()P y = 0()
P x y = 0()P y = 0() + P x y = 1()P y = 1()

P xn y = 0() = 1
2πσ n

2
exp −

xn − µn0()2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P xn y = 1() = 1
2πσ n

2
exp −

xn − µn1()2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Edoardo Milotti - Bayesian Methods - Spring 2024 14

P y = 0 x() = P x y = 0()P y = 0()
P x y = 0()P y = 0() + P x y = 1()P y = 1()

=
1

1+
P x y = 1()P y = 1()
P x y = 0()P y = 0()

=
1

1+ P y = 1()
P y = 0() exp −

xn − µn1()2
2σ n

2 +
xn − µn0()2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n=1

N

∏

=
1

1+ exp ln P y = 1()
P y = 0()

⎛
⎝⎜

⎞
⎠⎟
+

µn1 − µn0()xn
σ n
2 + µn0

2 − µn1
2

2σ n
2

⎡

⎣
⎢

⎤

⎦
⎥

n=1

N

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Edoardo Milotti - Bayesian Methods - Spring 2024 15

w0 = ln
P y = 1()
P y = 0()

⎛
⎝⎜

⎞
⎠⎟
+

µn0
2 − µn1

2

2σ n
2

⎡

⎣
⎢

⎤

⎦
⎥

n=1

N

∑

wn =
µn1 − µn0()

σ n
2

P y = 0 x() = 1

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

P y = 1 x() = 1− P y = 0 x() =
exp w0 + wnxn

n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

logistic shape

Edoardo Milotti - Bayesian Methods - Spring 2024 16

Finally, an input vector belongs to class y = 0 if

P y = 0 x()
P y = 1 x() > 1

exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟
< 1

P y = 0 x() = 1

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

P y = 1 x() =
exp w0 + wnxn

n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

w0 + wnxn
n=1

N

∑ < 0

Edoardo Milotti - Bayesian Methods - Spring 2024 17

Edoardo Milotti - Bayesian Methods - Spring 2024 18

Back again to neural networks: universality

Math. Control Signals Systems (1989) 2:303-314 Mathematics of Control,
Signals, and Systems
 9 1989 Springer-Verlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. C y b e n k o t

Abstr,,ct. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univariate function and a set ofaffine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single bidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

1. Introduction

A number of diverse app l i ca t i on areas are concerned with the represen ta t ion of
general funct ions of an n-d imens iona l real variable, x 9 R", by finite l inear combina -
t ions of the form

N
+ or), (1)

j=l

where yj 9 R" and ctj, 0 9 I~ are fixed. (yr is the t ranspose o f y so that yrx is the inner
p roduc t of y and x.) Here the univar ia te funct ion tr depends heavi ly on the contex t
of the appl ica t ion . O u r m a j o r concern is with so-called s igmoida l a ' s :

a(t)__,fl as t - - , + ~ ,
as t --* - ~ .

Such.funct ions arise na tu ra l ly in neural ne twork theory as the ac t iva t ion funct ion
of a neural node (or unit as is becoming the preferred term) I L l] , I R H M] . The ma in
result of this paper is a d e m o n s t r a t i o n of the fact that sums of the form (1) are dense
in the space of con t inuous funct ions on the unit cube iftr is any con t inuous s igmoida l

* Date received: October 21, 1988. Date revised: February 17, 1989. This research was supported
in part by NSF Grant DCR-8619103, ONR Contract N000-86-G-0202 and DOE Grant DE-FG02-
85ER25001.

t Center for Supercomputing Research and Development and Department of Electrical and Computer
Engineering, University of Illinois, Urbana, Illinois 61801, U.S.A.

303

Edoardo Milotti - Bayesian Methods - Spring 2024 19

Edoardo Milotti - Bayesian Methods - Spring 2024 20

http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

21

19
83
Ap
J.
..
27
2.
.3
17
L2. The Li&Ma method

Edoardo Milotti - Bayesian Methods - Spring 2024

22

The Fermi Gamma-ray Space Telescope

The Universe is home to numerous exotic and beautiful phenomena,
some of which can generate almost inconceivable amounts of energy.
Supermassive black holes, merging neutron stars, streams of hot gas
moving close to the speed of light ... these are but a few of the marvels
that generate gamma-ray radiation, the most energetic form of
radiation, billions of times more energetic than the type of light visible
to our eyes. What is happening to produce this much energy? What
happens to the surrounding environment near these phenomena? How
will studying these energetic objects add to our understanding of the
very nature of the Universe and how it behaves?

The Fermi Gamma-ray Space Telescope, formerly GLAST, is opening this
high-energy world to exploration and helping us answer these
questions. With Fermi, astronomers have a superior tool to study how
black holes, notorious for pulling matter in, can accelerate jets of gas
outward at fantastic speeds. Physicists are able to study subatomic
particles at energies far greater than those seen in ground-based
particle accelerators. And cosmologists are gaining valuable information
about the birth and early evolution of the Universe.

(adapted from https://fermi.gsfc.nasa.gov)

Edoardo Milotti - Bayesian Methods - Spring 2024

https://fermi.gsfc.nasa.gov/

23

https://imagine.gsfc.nasa.gov/observatories/learning/fermi/mission/lat.html

Edoardo Milotti - Bayesian Methods - Spring 2024

https://imagine.gsfc.nasa.gov/observatories/learning/fermi/mission/lat.html

24

The Fermi LAT 60-month image, constructed from front-
converting gamma rays with energies greater than 1 GeV.
The most prominent feature is the bright band of diffuse
glow along the map's center, which marks the central
plane of our Milky Way galaxy.
(Credit: NASA/DOE/Fermi LAT Collaboration)

Edoardo Milotti - Bayesian Methods - Spring 2024

25

Gamma-ray (blue) and radio (red) light curves of three
millisecond pulsars discovered by radio follow-up in
Fermi unidentified sources.

(from
https://fermi.gsfc.nasa.gov/science/eteu/pulsars/)

Edoardo Milotti - Bayesian Methods - Spring 2024

https://fermi.gsfc.nasa.gov/science/eteu/pulsars/

19
83
Ap
J.
..
27
2.
.3
17
L

19
83
Ap
J.
..
27
2.
.3
17
L

26Edoardo Milotti - Bayesian Methods - Spring 2024

27

Simple estimate of signal strength and its statistical significance.

• estimate of background photons
included in on-source counts

• estimate of observed signal

• standard deviation of signal

• standard deviation estimate
assuming Poisson distr. bkg.

• statistical significance

19
83
Ap
J.
..
27
2.
.3
17
L

<latexit sha1_base64="28ED/G8Gt4FdoyT1DnncUrKEgqw=">AAACH3icbVDLSgNBEJz1bXxFPXoZDYKnsCu+LoLoxZMomBjIhqV3MpsMzs4uM71CWPbsd/gBXvUTvIlXv8DfcPI4mMSChqKqm+6uMJXCoOt+OzOzc/MLi0vLpZXVtfWN8uZW3SSZZrzGEpnoRgiGS6F4DQVK3kg1hziU/CF8vOr7D09cG5Goe+ylvBVDR4lIMEArBeVdvwuY3xTBJT2nPsi0C/Qm8GPAro7zJIqKoFxxq+4AdJp4I1IhI9wG5R+/nbAs5gqZBGOanptiKweNgklelPzM8BTYI3R401IFMTetfPBKQfet0qZRom0ppAP170QOsTG9OLSd/RvNpNcX//OaGUZnrVyoNEOu2HBRlEmKCe3nQttCc4ayZwkwLeytlHVBA0Ob3tiWUHSEQlOUbDLeZA7TpH5Y9U6qx3dHlYvLUUZLZIfskQPikVNyQa7JLakRRp7JK3kj786L8+F8Ol/D1hlnNLNNxuB8/wJ306Mo</latexit>

N̂B = ↵No↵

<latexit sha1_base64="OKxWAfzjDMIWQQJ4zBNV5PqIZvs=">AAACTnicbVBNS8NAEN3Ur1q/qh69LBbFiyURvy6C6MWTVLQqNCVMtpt2cbMJuxOhhPwtf4dXwav6D7yJbmsFvx4MPN6bYWZemEph0HUfnNLY+MTkVHm6MjM7N79QXVy6NEmmGW+yRCb6OgTDpVC8iQIlv041hziU/Cq8OR74V7dcG5GoC+ynvB1DV4lIMEArBdWG3wPMT4vgnK4f0NPAjwF7Os4TVdDNL++I+n7lHxtk2oPvahQVQbXm1t0h6F/ijUiNjNAIqi9+J2FZzBUyCca0PDfFdg4aBZO8qPiZ4SmwG+jylqUKYm7a+fDzgq5ZpUOjRNtSSIfq94kcYmP6cWg7Bzea395A/M9rZRjtt3Oh0gy5Yp+LokxSTOggRtoRmjOUfUuAaWFvpawHGhjasH9sCUVXKDRFxSbj/c7hL7ncqnu79Z2z7drh0SijMlkhq2SDeGSPHJIT0iBNwsgdeSRP5Nm5d16dN+f9s7XkjGaWyQ+Uyh9Yc7SD</latexit>

N̂S = Non � N̂B

= Non � ↵No↵

<latexit sha1_base64="IuY+MkaoHEp/7m7cu4wLwE0A++U=">AAACw3icjVFdSxtBFJ3d1o+mVWN99GUwWAxC2A1+vRTEIvRJlBqVZuNydzKbDJmZXWbuFsKyP88f0V/Qv9HZGESND14YOJx7ztzLuUkuhcUg+Ov5Hz4uLa+sfmp8/rK2vtHc/Hpjs8Iw3mOZzMxdApZLoXkPBUp+lxsOKpH8Npn8qPu3f7ixItPXOM35QMFIi1QwQEfFzYfIipGC++5eNAYsL6r4V5t++06f6Is4UoBjo8pMV226TxcMZ20aRY13ekDmY6DPBGlavcM/s91331LUH8TNVtAJZkUXQTgHLTKvy7j5LxpmrFBcI5NgbT8MchyUYFAwyatGVFieA5vAiPcd1KC4HZSzuCu665ghTTPjnkY6Y587SlDWTlXilPWS9nWvJt/q9QtMTwal0HmBXLPHQWkhKWa0vh0dCsMZyqkDwIxwu1I2BgMM3YVfTEnESGi0VcMlE77OYRHcdDvhUefw6qB1ejbPaJVskx2yR0JyTE7JT3JJeoR5+96V99vr++f+xDc+Pkp9b+7ZIi/Kr/4DwQfYaQ==</latexit>

�2(N̂S) = �2(Non) + �2(N̂B)

= �2(Non) + �2(↵No↵)

= �2(Non) + ↵2�2(No↵)

<latexit sha1_base64="mJ4WDaJAsK/E8ZT84FpVkMuQtE8=">AAACPnicbVDLSgNBEJz1bXxFPXoZDIIghF3xdRGCXjyJolEhG5feyWwyZGZ2nekVwrK/43f4AV4V/AE9iVePbmIOvgoaiqpuurvCRAqLrvvsjIyOjU9MTk2XZmbn5hfKi0sXNk4N43UWy9hchWC5FJrXUaDkV4nhoELJL8PuYd+/vOXGilifYy/hTQVtLSLBAAspKNf8DmDmW9FWkAdndJ/69sZgdhz4CrBjVBbrnG5QH2TSgetN+s2IojwvBeWKW3UHoH+JNyQVMsRJUH71WzFLFdfIJFjb8NwEmxkYFEzyvOSnlifAutDmjYJqUNw2s8GnOV0rlBaNYlOURjpQv09koKztqbDo7F9pf3t98T+vkWK018yETlLkmn0tilJJMab92GhLGM5Q9goCzIjiVso6YIBhEe6PLaFoC412kIz3O4e/5GKz6u1Ut0+3KrWDYUZTZIWsknXikV1SI0fkhNQJI3fkgTySJ+feeXHenPev1hFnOLNMfsD5+AT9A7AY</latexit>

�̂S =
p
Non + ↵2No↵

<latexit sha1_base64="a631SJirvgY7H9csid8yZEpQOJE=">AAACf3icbVFdS+NAFJ1kddWqa11BH3wZLOLCsiUR3Y8HQfTFp+LiVoWmG26mk3ZwZpKduVkoIQ/+TH+Bf8NJW8SqFwbOPedc7uVMkkthMQgePP/DwuLHpeWVxura+qeN5ubna5sVhvEuy2RmbhOwXArNuyhQ8tvccFCJ5DfJ3Xmt3/znxopM/8FxzvsKhlqkggE6Km7eX9ETGqUGWBmNAMtOFV9VUxhZMVRQ98+WThwpwJFRZaarbxHIfAS088ylaeVm7T+D8076lU69fw/pC6G2V4242QrawaToWxDOQIvM6jJuPkaDjBWKa2QSrO2FQY79EgwKJnnViArLc2B3MOQ9BzUobvvlJKqK7jtmQNPMuKeRTtiXEyUoa8cqcc76TPtaq8n3tF6B6c9+KXReINdsuigtJMWM1rnTgTCcoRw7AMwIdytlI3ChovuduS2JGAqNdpJM+DqHt+D6sB1+bx//Pmqdns0yWia7ZI98ISH5QU7JBbkkXcLIo7fubXs7vucf+G0/mFp9bzazRebK//UE737EVw==</latexit>

S =
N̂S

�̂S
=

Non � ↵No↵p
Non + ↵2No↵

Edoardo Milotti - Bayesian Methods - Spring 2024

28

Estimate of result reliability and new estimated significance

Here we calculate the standard deviation under the assumption that there are
only background photons.

• estimate of photon arrival
rate

• estimate of background
on-source photons

• estimate of background
off-source photons

• estimate of on-source
standard deviation

• new estimated significance

19
83
Ap
J.
..
27
2.
.3
17
L

<latexit sha1_base64="dxGUFBMtThh6n2Gkep03AcrhtA0=">AAACmXicfVFdS+QwFE2rru6o66iPvgSHRUUYWvHrZUHdF/FBXHZHhelQbjPpTDBNS3K7MJT8kv1l+wv8G6ZjhRld9kLIyTn35l7OTQopDAbBX89fWFz6tLzyubW6tv5lo725dW/yUjPeY7nM9WMChkuheA8FSv5YaA5ZIvlD8vS91h9+c21Ern7hpOCDDEZKpIIBOipu/4nGgNWtja/oNxqlGlh1G0cZ4FhnVa7sIZ15pqm1Fc7K9JDivE7n9bdPI5DFGGxzu7LQ0v3/djpoxe1O0A2mQT+CsAEd0sRd3H6OhjkrM66QSTCmHwYFDirQKJjkthWVhhfAnmDE+w4qyLgZVFMTLf3qmCFNc+2OQjplZysqyIyZZInLrKc077Wa/JfWLzE9H1RCFSVyxV4bpaWkmNN6I3QoNGcoJw4A08LNStkYnGno9jbXJREjodDY2pnwvQ8fwf1RNzztnvw47lxcNR6tkB2yS/ZJSM7IBbkmd6RHmOd5e17ghf6Of+lf+zevqb7X1GyTufB/vgB3Ms1U</latexit>

N̂B =
Non +No↵

ton + to↵
ton =

↵

↵+ 1
(Non +No↵)

<latexit sha1_base64="/c4refYvRE7vAZOhHfvnioAu+1U=">AAACgnicbVFba9swFJa9bmuzm7s9tX0RC4Nso8He/WGD0r70qXR0aQtxMMeKnIhKsisdD4LR2/7kfsFgv2JyEkqT7oDg03fhiE95JYXFOP4dhPc27j94uLnVefT4ydNn0fbzc1vWhvEBK2VpLnOwXArNByhQ8svKcFC55Bf51VGrX/zkxopS/8BZxUcKJloUggF6Kot+ndFvNC0MsCadAjYnLjtzC5haMVHQ3m8sJ1mqAKdGNaV2+ynIagr0FlkUzjW91F4bH5+rvZUIfbvmfu1ch9Is6sb9eD70LkiWoEuWc5pFf9JxyWrFNTIJ1g6TuMJRAwYFk9x10tryCtgVTPjQQw2K21Ezb8vRV54Z06I0/mikc/Z2ogFl7Uzl3tm+1K5rLfk/bVhj8WXUCF3VyDVbLCpqSbGkbfV0LAxnKGceADPCv5WyKfhe0X/QypZcTIRG6zq+mWS9h7vg/F0/+dT/+P1D9+Bw2dEm2SMvSY8k5DM5IMfklAwII3+DKNgJdsON8E2YhO8X1jBYZl6QlQm//gOU/sTd</latexit>

S =
N̂S

�̂S
=

Non � ↵No↵

(
p
↵(Non +No↵)

<latexit sha1_base64="f346niWPKPBcn/gKxxpK2ENR0Es=">AAACQ3icbVDLSgMxFM34rPVVdekmWAShUGbE17IogiupYB/QlpJJM21oJjMkd4QyzBf5HX6AS/UDXLgTt4LpdBZ9eCBw7jn3cm+OGwquwbbfrKXlldW19dxGfnNre2e3sLdf10GkKKvRQASq6RLNBJesBhwEa4aKEd8VrOEOb8Z+44kpzQP5CKOQdXzSl9zjlICRuoXbtqcIje+7bZ/AQPlxIJMSnio9L0limLZxCcOsn+8WinbZToEXiZORIspQ7RY+272ARj6TQAXRuuXYIXRiooBTwZJ8O9IsJHRI+qxlqCQ+0504/W6Cj43Sw16gzJOAU3V6Iia+1iPfNZ3jK/W8Nxb/81oReFedmMswAibpZJEXCQwBHmeHe1wxCmJkCKGKm1sxHRCTH5iEZ7a4vM8l6DQZZz6HRVI/LTsX5fOHs2LlOssohw7RETpBDrpEFXSHqqiGKHpGr+gdfVgv1pf1bf1MWpesbOYAzcD6/QOrsLOY</latexit>

Non +No↵

ton + to↵

Edoardo Milotti - Bayesian Methods - Spring 2024

<latexit sha1_base64="IloBNCxOHX/si9yNYSVXAqCPCu0=">AAACsHicfVHbahsxENVu0jZ1b07yEuiLqCmkBMxuKEleEkL6kDyFBOrE4DXLrKz1qtFqF2k2YIR+qn/TL8hvVL602E7pgODMOZoZ6UxWS2Ewin4F4cbmi5evtl633rx99/5De3vnzlSNZrzHKlnpfgaGS6F4DwVK3q81hzKT/D57+DbV7x+5NqJS33FS82EJYyVywQA9lbZ/JrkGZq/TpAQsdGkr5Q7oUprnzllclukBxVV9LaendN41djYBWRfgS2KXSJ7jPv3vKJpoMS7wy98WSQFor1168aeVa6XtTtSNZkGfg3gBOmQRN2n7KRlVrCm5QibBmEEc1Ti0oFEwyV0raQyvgT3AmA88VFByM7Qzbx397JkRzSvtj0I6Y5crLJTGTMrM35z+w6xrU/Jf2qDB/GRohaob5IrNB+WNpFjR6aLoSGjOUE48AKaFfytlBXhP0K9zZUomxkKhmTkTr/vwHNwdduOj7tHt1875xcKjLfKRfCL7JCbH5JxckRvSIyzYC86Cy+AqPAz7YRrC/GoYLGp2yUqEP34DaHnXUw==</latexit>

Non +No↵

ton + to↵
to↵ =

1

↵+ 1
(Non +No↵) =

N̂B

↵
<latexit sha1_base64="ZLRGCKv2Tf6PWZd1Odt1pZu4duM=">AAACw3icbVHbattAEF2pt1S9ue1jXpaaFhuDK4WS9iUQXAJ9Cgmtk1DLFaP1yl68N3ZXpUbo8/oR/YL8Rta2ksZOBhYOZ+bsGc7kmjPr4vhfED54+Ojxk52n0bPnL16+ar1+c2ZVaQgdEsWVucjBUs4kHTrmOL3QhoLIOT3P51+X/fPf1Fim5A+30HQsYCpZwQg4T2Wtv6llUwG/9jrpDFx1XGffu/jDAb6hj7NUgJsZUSlZd3EPp8D1zHfumygKPxKloLVRf/D1j4NbKnzjM/i45roYp2nkLTtJ75r5rzxolJt79LY8s1Y77serwndB0oA2auoka12mE0VKQaUjHKwdJbF24wqMY4TTOkpLSzWQOUzpyEMJgtpxtYq7xu89M8GFMv5Jh1fsbUUFwtqFyP3kckm73VuS9/VGpSu+jCsmdemoJGujouTYKby8HZ4wQ4njCw+AGOZ3xWQGBojzF95wydmUSWfryCeTbOdwF5zt9ZP9/v7pp/bhoMloB+2id6iDEvQZHaJv6AQNEQl6wWnwMxiFR+E8NKFbj4ZBo3mLNiqsrwDN3NhX</latexit>

�2(N̂S) = �2(Non) + ↵2�2(No↵) ⇡ N̂B + ↵2(N̂B/↵)

= (1 + ↵)N̂B = ↵(Non +No↵)

29

Short recap of the Likelihood Ratio Method (Wilks' theorem) – 1

• Taylor expansion about the MaxL estimator

• Integration

• Extension to more than one parameters (split into two subsets, recall also the definition of Fisher's information matrix)

where Fisher's information matrix is split into submatrices

<latexit sha1_base64="A+kmrRymFb5De5ySJuS00i0x7Ys=">AAADK3ictVLNbtQwEHbCX1n+tnDkYrFC2kp0layg5YJU8SNx4FAktq20TlcTr7Ox6jiRPUGs0jwFz8EDcIVH4ATiingNvNkA3bYSJ0ay9Pn7PPONxhMXSloMgq+ef+HipctX1q52rl2/cfNWd/32ns1Lw8WI5yo3BzFYoaQWI5SoxEFhBGSxEvvx0bOFvv9WGCtz/QbnhYgymGmZSA7oqMm694AlBnjFCjAoQVGmNH3Vf37MMBUIG/UJpWFqyqAoTP6ObjIlEhys5h8O/1nhcFgzI2cpHk+qJfOEpYC/y/f/Xuhmm7Lxx9RRLxrfMaX/x3+pRee2Men2gkHQBD0Lwhb0SBu7k+5PNs15mQmNXIG14zAoMKoW/XAl6g4rrSiAH8FMjB3UkAkbVc231vS+Y6Y0yY07GmnDnsyoILN2nsXuZQaY2tPagjxPG5eYPI4qqYsSheZLo6RUFHO62BE6lUZwVHMHgBvpeqU8BTdmdJu04hLLmdRo646bTHh6DmfB3nAQbg0evX7Y23nazmiN3CX3SJ+EZJvskJdkl4wI9957H71P3mf/g//F/+Z/Xz71vTbnDlkJ/8cvEKoGmg==</latexit>

@ lnL(D|✓)
@✓

⇡ � @2 lnL(D|✓)
@✓2

����
✓=✓̂

(✓̂ � ✓) ⇡ �E


@2 lnL(D|✓)

@✓2

����
✓=✓̂

�
(✓̂ � ✓)

<latexit sha1_base64="f9KzbWzj52pUFBSMasywm36X6B0=">AAAC23iclVFNbxMxEPUuXyV8NIUjF4sIKZVotFsB5YJUUQ4gcShS01aKl8jrzGatem3LnkVEy564Ia78OA6c+Rt40xxoGw6MZPnpvXma0ZvcKukxSX5G8bXrN27e2rjdu3P33v3N/taDY29qJ2AsjDLuNOcelNQwRokKTq0DXuUKTvKzg04/+QTOS6OPcGEhq/hcy0IKjoGa9n/R98M3X1hu1MwvqvA1DEtA3m6/+ocwdU/XsX6bMuuMRUMZfLaUKShwQndY4bho0rbZbemQlRybNe6W7tB1O3w8ou/+30WZk/MSs15v2h8ko2RZ9CpIV2BAVnU47f9mMyPqCjQKxb2fpInFrOEOpVDQ9ljtwXJxxucwCVDzCnzWLM/Q0ieBmdHCuPA00iX7t6Phle9WDZ0Vx9Jf1jpynTapsXiZNVLbGkGL80FFrWjIurspnUkHAtUiAC6cDLtSUfKQO4bLX5iSy7nU6NsumfRyDlfB8e4ofTF6/uHZYP/1KqMN8og8JkOSkj2yT96SQzImIjqIZOQiH2fx1/hb/P28NY5WnofkQsU//gAeeukd</latexit>

L(D|✓) = L(D|✓r,✓s) / exp


�1

2
(✓̂ � ✓)T I(✓̂ � ✓)

�

<latexit sha1_base64="4xFOlfVUnsL4IxEPJvOfDHB2VsE=">AAACb3icbVHLattAFB0pbR7qI06y6KJQhpqWdmOk0jw2AZNu4l0KdRKwjBmNrp0ho5EycxVihL4z5AuyzgcEcm2L0sS9MHA459wHZ5JCK4dheOf5K69er66tbwRv3r57v9na2j51eWkl9GWuc3ueCAdaGeijQg3nhQWRJRrOkstfM/3sGqxTufmD0wKGmZgYNVZSIFGj1lXvMIgTmChTFZlAq27qoDeqrK35Vx5fpzk6AjPG1TyOg1g2VFNkWjCkkcst9TlXBzGY9O/4UasddsJ58WUQNaDNmjoZte7jNJdlBgalFs4NorDAYSUsKqmBppcOCiEvxQQGBI3IwA2reTQ1/0JMyse5pWeQz9l/OyqROTfNEnLSfRfupTYj/6cNShwfDCtlihLByMWicak55nyWM0+VBYl6SkBIq+hWLi+EFRLpN55tSRSljxQTJRO9zGEZnP7oRHud3d8/292jJqN19pF9Zt9YxPZZlx2zE9Znkt2yR2/VW/Me/A/+J58vrL7X9OywZ+V/fwJfQbmi</latexit>

I =

0

BB@
Irr

... Irs
· · · · · ·

Isr
... Iss

1

CCA

<latexit sha1_base64="zKtAGrGcBVunuSynIKLdRs8XfPU=">AAACsHicbZHLbtQwFIadcCvDbYANEhuLEdJ0wSiJKHRTVHERXbAoEtOONE4jx+NM3DqOZZ8gRmleirfhCXgNnIugF45k+df3+xxbv1MthYUg+OX5N27eun1n6+7o3v0HDx+NHz85smVlGJ+zUpZmkVLLpVB8DgIkX2jDaZFKfpyefWj94+/cWFGqb7DRPC7oWolMMAoOJeOf+Mv04zmBnAPdxkSbUkOJCf+hieQZkBqTzFBWh00dNZ86tsTdNusNoqkBQeVJ5LC6OK356+GenEQNMWKdw3lS92SP5BR62eDei/H0H8SvhtbtdnznkyYZT4JZ0BW+LsJBTNBQh8n4N1mVrCq4Aiaptcsw0BDX7duY5M2IVJZrys7omi+dVLTgNq67bBv80pEVzkrjlgLc0YsdNS2s3RSpO1lQyO1Vr4X/85YVZLtxLZSugCvWX5RVErv424/CK2E4A7lxgjIj3Fsxy6mLHNx3XrolFWuhwDYjl0x4NYfr4iiahW9mO19fT/bfDxltoefoBZqiEL1F++gAHaI5Yt4z75332TvwI3/hJz7tj/re0PMUXSr/9A9t7tWB</latexit>

L(D|✓) / exp

⇢
1

2
E


@2 lnL(D|✓)

@✓2

����
✓=✓̂

�
(✓̂ � ✓)2

�

Edoardo Milotti - Bayesian Methods - Spring 2024

30

Short recap of the Likelihood Ratio Method (Wilks' theorem) – 2

• Then, and therefore

• We know that asymptotically, the estimator has a Gaussian distribution with covariance matrix , therefore,
asymptotically, the likelihood approaches the pdf of the estimator.

• When we maximize the likelihood with respect to the whole parameter vector, we find that the estimators for the
subvectors are

and the corresponding maximum likelihood has a fixed value that depends only on data.

• When we maximize the likelihood with respect to the s parameters only, we find and

<latexit sha1_base64="MyD7aCIZ017m+wGG8qvG1YPmwGw=">AAACYXicbVBNS8NAFNzGz8avqEcvi0XwVBLx6yIUvXisYG2hKWWzeW0XN5uw+yKW0B/oT/DswaNXvbmtRWztg2WHmTe8YaJMCoO+/1pylpZXVtfWy+7G5tb2jre792DSXHNo8FSmuhUxA1IoaKBACa1MA0siCc3o8WasN59AG5Gqexxm0ElYX4me4Awt1fV4GKUyNsPEfkWIA0A2olfUDSPoC1VkCUMtnkfugrWupmG4UDBuCCr+NXe9il/1J0P/g2AKKmQ69a73HsYpzxNQyCUzph34GXYKplFwCTZMbiBj/JH1oW2hYgmYTjEpY0SPLBPTXqrtU0gn7F9HwRIzzms3bb6BmdfG5CKtnWPvslMIleUIiv8c6uWSYkrHzdJYaOAohxYwroXNSvmAacbR9j9zJRK2WzQj1zYTzPfwHzycVIPz6tndaaV2Pe1onRyQQ3JMAnJBauSW1EmDcPJCPsgn+Sq9OWXHc/Z+Vp3S1LNPZsY5+AYoObyB</latexit>

✓ =

✓
✓r

✓s

◆

<latexit sha1_base64="OAYN7fnAuHxrjo5GSbiS3vKTGP0=">AAADx3icpVJdb9MwFHUTYKN8dfDIi0WF1EmsJBMDHifGA5N4GNK6TaqzyHGdxpoTW/bNtMrkgX+3v8Av4G/gtH1gW4fQuJLlo3N9fK6vb6alsBBFPztBeO/+g7X1h91Hj588fdbbeH5kVW0YHzEllTnJqOVSVHwEAiQ/0YbTMpP8ODvba/PH59xYoapDmGmelHRaiVwwCp5KNzqXXwefv5NMyYmdlX5zBAoOtEnNm1Ws3cREG6VBYcIvNCaS5zDGWyQ3lLm4cdsNHpCCgluh9pfiLbzSbPP0EO+nzpg7yn3if2ztX23tLXLb2v7jy2+/Y1GCvXMJxIhpAUna60fDaB74JoiXoI+WcZD2fpGJYnXJK2CSWjuOIw2JowYEk7zpktpyTdkZnfKxhxUtuU3cfOQa/NozE5wr41cFeM7+qXC0tG2p/mRJobDXcy25KjeuIf+YOFHpGnjFFkZ5LbEfuHZ+8UQYzkDOPKDMCF8rZgX1XwB+yq+4ZGIqKrBN13cmvt6Hm+Boexi/H+58e9ff/bTs0Tp6iV6hAYrRB7SLvqADNEIseBuMgtMgDfdDFZ6HF4ujQWepeYGuRPjjNylnRAg=</latexit>

L(D|✓r,✓s) / exp


�1

2
(✓̂r � ✓r)

T Irr(✓̂r � ✓r)� (✓̂r � ✓r)
T Irs(✓̂s � ✓s)�

1

2
(✓̂s � ✓s)

T Iss(✓̂s � ✓s)

�

<latexit sha1_base64="4/BAvHzfMJATo+GXkHJkXRh+RPg=">AAACF3icbVDLSsNAFJ34rPUVdSVugkVwVRLxtSy6cVnBPqAJZTKZtEMnkzBzI5QQ/A4/wK1+gjtx69Iv8DectFnY1gPDHM65l3vv8RPOFNj2t7G0vLK6tl7ZqG5ube/smnv7bRWnktAWiXksuz5WlDNBW8CA024iKY58Tjv+6LbwO49UKhaLBxgn1IvwQLCQEQxa6puH7hBD5voxD9Q40l/mwpACzvO+WbPr9gTWInFKUkMlmn3zxw1ikkZUAOFYqZ5jJ+BlWAIjnOZVN1U0wWSEB7SnqcARVV42OSG3TrQSWGEs9RNgTdS/HRmOVLGgrowwDNW8V4j/eb0UwmsvYyJJgQoyHRSm3ILYKvKwAiYpAT7WBBPJ9K4WGWKJCejUZqb4bMAEqLyqk3Hmc1gk7bO6c1m/uD+vNW7KjCroCB2jU+SgK9RAd6iJWoigJ/SCXtGb8Wy8Gx/G57R0ySh7DtAMjK9fUWahIg==</latexit>

✓̂
<latexit sha1_base64="2znd/rSCbWwuTs9WQjyYhY29PHY=">AAACAnicbVC7TsNAEFyHVwivACWNRYREQ2QjXmUEDXRBIg8pMdH5ckmOnM/W3RopstzxAbTwCXSIlh/hC/gNLokLEhhppdHMrnZ3/EhwjY7zZeUWFpeWV/KrhbX1jc2t4vZOXYexoqxGQxGqpk80E1yyGnIUrBkpRgJfsIY/vBr7jUemNA/lHY4i5gWkL3mPU4JGqt/cJ0du2imWnLIzgf2XuBkpQYZqp/jd7oY0DphEKojWLdeJ0EuIQk4FSwvtWLOI0CHps5ahkgRMe8nk2tQ+MErX7oXKlER7ov6eSEig9SjwTWdAcKDnvbH4n9eKsXfhJVxGMTJJp4t6sbAxtMev212uGEUxMoRQxc2tNh0QRSiagGa2+LzPJeq0YJJx53P4S+rHZfesfHp7UqpcZhnlYQ/24RBcOIcKXEMVakDhAZ7hBV6tJ+vNerc+pq05K5vZhRlYnz/tPJei</latexit>

I�1

<latexit sha1_base64="5JMlDgim75oFg/jVE5obbNBEqOg=">AAACVHicfVDLSsNAFJ3Gd31VXboZLKKrkogvEEF041LBVqEp4WYybQcnkzhzI5SQP/M7BLduXOgnuHD6ELQVLwxzOOdc7r0nTKUw6LovJWdqemZ2bn6hvLi0vLJaWVtvmCTTjNdZIhN9F4LhUiheR4GS36WaQxxKfhveX/T120eujUjUDfZS3oqho0RbMEBLBZWGj12OsBNoekr9LmDuh4mMTC+2Xz4UiyLQJ9R/yCCi33bzr90ElapbcwdFJ4E3AlUyqqug8uZHCctirpBJMKbpuSm2ctAomORF2c8MT4HdQ4c3LVQQc9PKB/cXdNsyEW0n2j6FdMD+7MghNv0VrTMG7JpxrU/+pTUzbB+3cqHSDLliw0HtTFJMaD9MGgnNGcqeBcC0sLtS1gUNDG3kv6aEoiMUmqJsk/HGc5gEjb2ad1g7uN6vnp2PMponm2SL7BKPHJEzckmuSJ0w8kReyTv5KD2XPp0pZ2ZodUqjng3yq5yVL9mKtwk=</latexit>

✓0r = ✓̂r; ✓0s = ✓̂s

<latexit sha1_base64="9ZunY634TAMJkbIM5a7R3lfk9xA=">AAACJnicbVDLSgMxFM3UV62vUZdugkXaVZkRXxuh6MZlBfuAThkyadqGZjJDckcow/yC3+EHuNVPcCfizp2/YfpY2NYDIYdz7uXee4JYcA2O82XlVlbX1jfym4Wt7Z3dPXv/oKGjRFFWp5GIVCsgmgkuWR04CNaKFSNhIFgzGN6O/eYjU5pH8gFGMeuEpC95j1MCRvLtsgcDBqRU8jW+xt6AQOoFkejqUWi+dOpmma99u+hUnAnwMnFnpIhmqPn2j9eNaBIyCVQQrduuE0MnJQo4FSwreIlmMaFD0mdtQyUJme6kk4syfGKULu5FyjwJeKL+7UhJqMcrmsqQwEAvemPxP6+dQO+qk3IZJ8AknQ7qJQJDhMfx4C5XjIIYGUKo4mZXTAdEEQomxLkpAe9zCTormGTcxRyWSeO04l5Uzu/PitWbWUZ5dISOURm56BJV0R2qoTqi6Am9oFf0Zj1b79aH9TktzVmznkM0B+v7F+y+ppk=</latexit>

✓00s = ✓̂s

<latexit sha1_base64="viOUMUvoWew7Ph6njb0LVRWHIYs=">AAACznicnVFNbxMxEPUuXyV8pXDkYhGhphKNditoOVbAASQOQWraSvGy8jqzWater2XPVkRmxZWfx5VfwN/ASXOgbU6MZPnpzbyZ0ZvCKOkwSX5H8a3bd+7e27rfe/Dw0eMn/e2nJ65prYCJaFRjzwruQEkNE5So4MxY4HWh4LQ4f7/Mn16AdbLRx7gwkNV8rmUpBcdA5f1fn4cfvrOiUTO3qMPnGVaAvMvtqw3szk7udikztjHYUAbfDGUKSpzSPVZaLnza+f2ODlnF0W/Qh7Z0j24ct/v1mH7KvbX/KafMynmFWd4fJKNkFfQmSNdgQNYxzvt/2KwRbQ0aheLOTdPEYOa5RSkUdD3WOjBcnPM5TAPUvAaX+ZXzHX0ZmBktGxueRrpi/1V4XrvlqqGy5li567kluSk3bbF8m3mpTYugxeWgslU02L48I51JCwLVIgAurAy7UlHxcAIMx74ypZBzqdF1veBMet2Hm+Bkf5QejN58eT04erf2aIs8Jy/IkKTkkByRj2RMJkREBxGLICrjcXwRd/GPy9I4WmuekSsR//wLrLrknQ==</latexit>

L(D|✓r,✓
00
s) / exp


�1

2
(✓̂r � ✓r)

T Irr(✓̂r � ✓r)

�

Edoardo Milotti - Bayesian Methods - Spring 2024

31

Short recap of the Likelihood Ratio Method (Wilks' theorem) – 3

• This means that when we define the likelihood ratio , and recall that the estimators are

 asymptotically Gaussian, we find that

has a chi-square distribution with r degrees of freedom (Wilks' theorem).

<latexit sha1_base64="EJ4xq8mFi0M/3ETU5WWINHOQF2k=">AAACdXicdVHLSsNAFJ3EV62vqksRBqtWQWoivjZCURcuXChYFZoSJpNJOziZhJkbpcR8qAvXfoJbJ7ULnwcuczj3Hu7lTJAKrsFxXix7bHxicqoyXZ2ZnZtfqC0u3eokU5S1aSISdR8QzQSXrA0cBLtPFSNxINhd8HBW9u8emdI8kTcwSFk3Jj3JI04JGMmvPXnCDIcEn2AvUoTml1vnz16QiFAPYvPkHvQZkMJXO3+ojYavt4v/PI1/TKXHr9WdpjME/k3cEamjEa782psXJjSLmQQqiNYd10mhmxMFnApWVL1Ms5TQB9JjHUMliZnu5sOACrxhlBBHiTIlAQ/Vr46cxLo80kzGBPr6Z68U/+p1MoiOuzmXaQZM0s9FUSYwJLhMG4dcMQpiYAihiptbMe0TkzOYP/m2JeA9LkEXVZOM+zOH3+R2r+keNg+u9+ut01FGFbSC1tAWctERaqELdIXaiKJXa8yateasd3vVXrc3P0dta+RZRt9g734A757BUQ==</latexit>

� =
L(D|✓r,✓

00
s)

L(D|✓0
r,✓

0
s)

<latexit sha1_base64="lm9uBoFi7C7/wORlNvg5geQdqA4=">AAACg3icnVHLSsNAFJ3EV62vqjvdDBZBEUtSfG0KohvdKVgVmhpuJtN26GQSZm6EErL0I/0CF/6E09qFr5UXLnM45x7u5UyUSWHQ814dd2Z2bn6hslhdWl5ZXautb9ybNNeMt1kqU/0YgeFSKN5GgZI/ZppDEkn+EA0vx/rDM9dGpOoORxnvJtBXoicYoKXC2sthM5AqkNYRA21RuhcMAIsgSmVsRol9igAHHKEsQ00P6R9CqPef7uh1WGhd/s9Ow1rda3iTor+BPwV1Mq2bsPYWxCnLE66QSTCm43sZdgvQKJjkZTXIDc+ADaHPOxYqSLjpFpO4SrprmZj2Um1bIZ2wXx0FJGZ8o51MAAfmpzYm/9I6OfbOuoVQWY5csc9FvVxSTOk4exoLzRnKkQXAtLC3UjYADQztD33bEom+UGjKqk3G/5nDb3DfbPgnjePbo/r5xTSjCtkmO2SP+OSUnJMrckPahJF3Z93ZcrbdOffAbbpHn6OuM/Vskm/ltj4ACmPFLw==</latexit>

�2 ln� = (✓̂r � ✓r)
T Irr(✓̂r � ✓r)

Edoardo Milotti - Bayesian Methods - Spring 2024

32

Application of the Likelihood Ratio Method to estimating NS and NB

• The problem at hand is defined by

data:

unknown parameters:

null hypothesis:

alternative hypothesis:

• maximum of a Poisson likelihood with just one measurement (N)

(the actual measurement is the MaxL estimate).
This means that the previous estimates ARE MaxL estimates, and we can use them to calculate the likelihood ratio.

<latexit sha1_base64="+iYlKUm2HLOBjoXmY0bZ5YxQphM=">AAACHHicbVDLSsNAFJ3UV62vqEtBgkWoICURX8uiG1dSwT6gDWEynbRDZyZhZiKUkJ3f4Qe41U9wJ24Fv8DfcNJm0YcHBs49517uneNHlEhl2z9GYWl5ZXWtuF7a2Nza3jF395oyjAXCDRTSULR9KDElHDcUURS3I4Eh8ylu+cPbzG89YSFJyB/VKMIug31OAoKg0pJnHlbuvS6DaiBYEvL0dKoKgvTEM8t21R7DWiROTsogR90zf7u9EMUMc4UolLLj2JFyEygUQRSnpW4scQTREPZxR1MOGZZuMv5Hah1rpWcFodCPK2usTk8kkEk5Yr7uzI6U814m/ud1YhVcuwnhUawwR5NFQUwtFVpZKFaPCIwUHWkCkSD6VgsNoIBI6ehmtvikT7iSaUkn48znsEiaZ1XnsnrxcF6u3eQZFcEBOAIV4IArUAN3oA4aAIFn8ArewLvxYnwYn8bXpLVg5DP7YAbG9x/5V6Jv</latexit>

(Non, No↵)
<latexit sha1_base64="HLT+z9DIUUGCulXnNDTsjf7u1Oo=">AAACRnicbVDBTttAEB2nUGhKS1qOvVhESFSqIrsqtJdKKFxyqqggCVIcRevN2FmxXlu740qR5V/qd/ABXDjAlRs31Gs3xocQeNJqn96b0cy8MJPCkOddO41Xa+uvNzbfNN9uvXu/3frwcWDSXHPs81Sm+jxkBqVQ2CdBEs8zjSwJJQ7Di+OFP/yD2ohUndE8w3HCYiUiwRlZadLqBWEqp2ae2K8IaIbEyp+BxIj2A8lULLH4VU66ga74lyXttNYCLeIZfZ602l7Hq+A+J35N2lDjZNK6C6YpzxNUxCUzZuR7GY0LpklwiWUzyA1mjF+wGEeWKpagGRfVxaW7Z5WpG6XaPkVupS53FCwxi6NsZcJoZla9hfiSN8op+jEuhMpyQsUfB0W5dCl1F/G5U6GRk5xbwrgWdleXz5hmnGzIT6aEIhaKTNm0yfirOTwng68d/7Bz8Ptb+6hbZ7QJn2AX9sGH73AEPTiBPnD4C1dwA7fOpXPvPDj/HksbTt2zA0/QgP8pKrPK</latexit>

✓ = (hNBi, hNSi)
<latexit sha1_base64="Hc2Rh6MLP5oCMnOggY3B9c6ljwM=">AAACFXicbZDLSsNAFIYnXmu9RV24cDNYBFclEW8boejGlVS0F2hCmEwn6dDJJMxMhBLyHD6AW30Ed+LWtU/gazhNs7CtPwx8/OcczpnfTxiVyrK+jYXFpeWV1cpadX1jc2vb3NltyzgVmLRwzGLR9ZEkjHLSUlQx0k0EQZHPSMcf3ozrnSciJI35oxolxI1QyGlAMVLa8sx9hyEeMpLd5d6DIwqGV9DyzJpVtwrBebBLqIFSTc/8cfoxTiPCFWZIyp5tJcrNkFAUM5JXnVSSBOEhCklPI0cRkW5WfCCHR9rpwyAW+nEFC/fvRIYiKUeRrzsjpAZytjY2/6v1UhVcuhnlSaoIx5NFQcqgiuE4DdingmDFRhoQFlTfCvEACYSVzmxqi09DypXMqzoZezaHeWif1O3z+tn9aa1xXWZUAQfgEBwDG1yABrgFTdACGOTgBbyCN+PZeDc+jM9J64JRzuyBKRlfv03fnsk=</latexit>

hNSi = 0
<latexit sha1_base64="faHW3E0IBa6j6ECYXl7nCD1yg9Y=">AAACGHicbZDLSsNAFIYn9VbrLepON4NFcFUS8bYsunElFe0FmlIm09N26GQSZyZCCQWfwwdwq4/gTty68wl8DadpFrb1h4GP/5zDOfP7EWdKO863lVtYXFpeya8W1tY3Nrfs7Z2aCmNJoUpDHsqGTxRwJqCqmebQiCSQwOdQ9wdX43r9EaRiobjXwwhaAekJ1mWUaGO17T2PE9HjkNyM2neeTBl7Ah6w07aLTslJhefBzaCIMlXa9o/XCWkcgNCUE6WarhPpVkKkZpTDqODFCiJCB6QHTYOCBKBaSfqHET40Tgd3Q2me0Dh1/04kJFBqGPimMyC6r2ZrY/O/WjPW3YtWwkQUaxB0sqgbc6xDPA4Ed5gEqvnQAKGSmVsx7RNJqDaxTW3xWY8JrUYFk4w7m8M81I5L7lnp9PakWL7MMsqjfXSAjpCLzlEZXaMKqiKKntALekVv1rP1bn1Yn5PWnJXN7KIpWV+/EVigSg==</latexit>

hNSi 6= 0

<latexit sha1_base64="xErdNYYJkCTJWE5kAq6bQ/n7B9w=">AAAC6XicdZJLb9NAEMfX5tESXgGOXAYipHJIZCMoXCpVcOFQWS0ibaU4jcabdbzK+sHumCoyluAjcENc+VR8Ag58CTaxoS860kr//c3OQzMbFUoa8ryfjnvl6rXra+s3Ojdv3b5zt3vv/r7JS83FkOcq14cRGqFkJoYkSYnDQgtMIyUOovmbpf/go9BG5tl7WhRinOIsk7HkSBZNur93NoJPISWC8ClsQRhr5FVzPwrqKnhUgziq+g2pww8lTiF8J2cJodb5MbREZXA6UWhkCoGlDYA+tOLSBE3dAjVJVLBTn+i29L/mbFd/UR/8LfAuT5ogVSfhwaTb8wbeyuCi8FvRY63tTrq/wmnOy1RkxBUaM/K9gsbVsjGuRN0JSyMK5HOciZGVGabCjKvVUmp4YskU4lzbkxGs6OmIClNjFmlkX6ZIiTnvW8L/+UYlxa/GlcyKkkTGm0JxqYByWG4YplILTmphBXItba/AE7SjI/sPzlSJ5ExmZOqOnYx/fg4Xxf6zgb85eLH3vLf9up3ROnvIHrMN5rOXbJu9ZbtsyLiz5xw7n50v7tz96n5zvzdPXaeNecDOmPvjD3Xz6q4=</latexit>

L(N |✓) = ✓N

N !
e�✓) lnL(N |✓) ⇠ N ln ✓ � ✓) @L

@✓
=

N

✓
� 1 = 0) ✓̂ = N

Edoardo Milotti - Bayesian Methods - Spring 2024

33

Application of the Likelihood Ratio Method to estimating NS and NB (ctd.)

• MaxL estimates

alternative hypothesis:

null hypothesis:

• Likelihoods

alternative hypothesis:

null hypothesis:

<latexit sha1_base64="EhkvVWuX9aWhJPcRvXE1IQybHHk=">AAACeHicbVFNj9MwEHUCW0phaYAjF4sKwUpLlVS7Cxekqlw4VUXQD6mpoonrtFYdJ9gTpBLlh3Ljxn/ghPtxaLsdydLTe/NmRs9xLoVB3//tuA8eXtQe1R83njy9fNb0nr8YmazQjA9ZJjM9icFwKRQfokDJJ7nmkMaSj+PV540+/sm1EZn6juucz1JYKJEIBmipyPsVSlALyWm4BCz7VdSjod4xn2gIMl8C7UdhCrjUaZklSXVNwx8FzOmp8duB8cChKvr+/KDIa/ltf1v0Pgj2oEX2NYi8v+E8Y0XKFTIJxkwDP8dZCRoFk7xqhIXhObAVLPjUQgUpN7Nym1FF31hmTpNM26eQbtlDRwmpMes0tp2bG82ptiHPadMCk4+zUqi8QK7YblFSSIoZ3QRO50JzhnJtATAt7K2ULUEDQ/stR1tisRAKTdWwyQSnOdwHo047uGvffr1pdXv7jOrkFXlN3pGAfCBd8oUMyJAw8sepOU3Hc/651H3rXu1aXWfveUmOyu38Byb8wA0=</latexit>

hN̂Bi = ↵No↵ , hN̂Si = Non � ↵No↵

<latexit sha1_base64="8IDeUquXGWjJQR0CYQpDeYnPd3k=">AAACenicbVHJbtswEKXUzXU3Jz32MohRIIELQwrS5VIgSC89BSlaJwFMQxjRlE2EolRyVMBQ9aG99tKf6KGUrYPjdACCj+/NQj6mpVaOouhXEN67/+Dho97j/pOnz56/GOztX7qiskJORKELe52ik1oZOSFFWl6XVmKeanmV3nxq9asf0jpVmG+0KuUsx4VRmRJInkoGP7lGs9AS+BKpPm+SM+B2w3wE4JlFUXPU5RKbbocRxA0cnic8R1ravC5MM4KtY5Y1R2+Af69wDrvdv251j/rJYBiNo3XAXRB3YMi6uEgGf/i8EFUuDQmNzk3jqKRZjZaU0LLp88rJEsUNLuTUQ4O5dLN67VIDrz0zh6ywfhmCNbtdUWPu3CpPfWb7FLerteT/tGlF2YdZrUxZkTRiMyirNFABreUwV1YK0isPUFjl7wpiid5Z8h9za0qqFsqQa1pn4l0f7oLL43H8bvz2y8nw9KzzqMdesQN2yGL2np2yz+yCTZhgv4NesBfsB3/Dg/AoHG1Sw6CrecluRXjyD1qzv0k=</latexit>

hN̂Bi =
↵

↵+ 1
(Non +No↵), hN̂Si = 0

<latexit sha1_base64="7+186ABbAaWvqa/vBtWfvhm04MQ=">AAACqXicbVHbSgMxEM2ut1pvVR99iRZBEcuueHsR6uWhDyIWrBZ7WbJptgaT7JJkxbLdL/KL/AJ/w2xbxLUOBM6cmTkznPgRo0o7zqdlz8zOzS8UFotLyyura6X1jUcVxhKTBg5ZKJs+UoRRQRqaakaakSSI+4w8+a/XWf3pjUhFQ/GgBxHpcNQXNKAYaUN5pY/bvZthzXP3h16bI/0iecLRewovYDuQCCd3P3Qo0m4+TdN8vp1C0k0O8z1TMkGQ1zF5XsgQ00pZl1cqOxVnFHAauBNQBpO490pf7V6IY06Exgwp1XKdSHcSJDXFjKTFdqxIhPAr6pOWgQJxojrJyNQU7hqmB4NQmic0HLG/JxLElRpw33RmR6q/tYz8r9aKdXDeSaiIYk0EHi8KYgZ1CLMfgj0qCdZsYADCkppbIX5BxkVt/jG3xad9KrRKi8YZ968P0+DxqOKeVk7qx+Xq1cSjAtgCO2APuOAMVEEN3IMGwNa6dWZVrUv7wK7bTft53Gpbk5lNkAsbfwOBOtd/</latexit>

L(D|H1)|max =
N

Non
on

Non!
e
�Non

N
Noff
o↵

No↵ !
e
�Noff

<latexit sha1_base64="gds5TD7Ko1VB/KrvVnseS4FlTFM=">AAADqXicpVJdb9MwFHUTPkb5ascjL4aKqVVFlUyw8YJUPh72gNAm0a2iLpHjOo01x4nsG7Qq8x/iH/EL+Bu4XYTWrk/sSpaP7/E99j26cSGFgSD43fD8O3fv3d950Hz46PGTp6327qnJS834iOUy1+OYGi6F4iMQIPm40JxmseRn8fmnJX/2k2sjcvUNFgWfZnSuRCIYBZeK2o1fX7qfL4+ioHcZkYxCqrMqoxcW773HJNGUVaGtvv6jcmVfWEwkT6Bb84TKIqW23nEfhxZ31yr6+NoxSWwPEy3mKfR+rCs7YX5R1OKvb62OCWnukdQUlPFqn2VOHkTGzda+XOFmY+Hte3LEtqb+TxlHrU4wCFaBb4KwBh1Ux3HU+kNmOSszroBJaswkDAqYVlSDYJLbJikNd+6c0zmfOKioc2darYbK4lcuM8NJrt1SgFfZ6xUVzYxZZLG7ufyt2eSWyW3cpITk3bQSqiiBK3b1UFJKDDleTiieCc0ZyIUDlGnh/opZSp1v4OZ47ZVYzIUCY5vOmXDTh5vgdH8QHgzenrzpDD/WHu2g5+gl6qIQHaIhOkLHaISY1/YOvaH3we/7J/7Y/3511WvUNc/QWvjsL85uLzk=</latexit>

L(D|H0)|max =
1

Non!

✓
↵

↵+ 1
(Non +No↵)

◆Non

exp

✓
� ↵

↵+ 1
(Non +No↵)

◆

⇥ 1

No↵ !

✓
1

↵+ 1
(Non +No↵)

◆Noff

exp

✓
� 1

↵+ 1
(Non +No↵)

◆

Edoardo Milotti - Bayesian Methods - Spring 2024

34

Application of the Likelihood Ratio Method to estimating NS and NB (ctd.)

• MaxL ratio

therefore the significance can be obtained from because has a chi-square distribution with 1
degree of freedom (only one parameter – the background rate – matters in the case of null hypothesis, while the
alternative hypothesis has two parameters – background rate and source rate) .

• if then , and we estimate the significance as

(a perfect match with exp. data gives a vanishing chi, the actual value of chi is an estimate of the size of the fluctuation in
terms of standard deviations).

• to be continued ...

<latexit sha1_base64="8JRifdciDrdC05z/0D5Ul9fg4ts=">AAADJnicpVLLbtQwFHVCgTK8prBkY3WEmKrSKEG8NkgVsOgCVa3EtJUmQ3TjcWas2k5k3yBGaX6B7+AD2MInsEOou+76G3WmEWqm3XGlyMfn3JNjXTvJpbAYBCeef2Pl5q3bq3c6d+/df/Cwu/Zo32aFYXzIMpmZwwQsl0LzIQqU/DA3HFQi+UFy9L7WD75wY0WmP+E852MFUy1SwQAdFa95zyLpuicQRwpwZlSp4GtF39IoNcDKj/0Px9txsHHckquGD5f52id5iv3GHoHMZ1A1K92kYdUoO/+Mma426aVtmrr/t2TnMWI6w43PS3ynnRb+X1C9vzZpIcTdXjAIFkWvgrABPdLUbtw9iyYZKxTXyCRYOwqDHMclGBRM8qoTFZbnwI5gykcOalDcjsvFjVb0qWMmNM2M+zTSBXvZUYKydq4S11mf0i5rNXmdNiowfTMuhc4L5JpdBKWFpJjR+nnQiTCcoZw7AMwId1bKZuAGie4RtVISMRUabdVxkwmX53AV7D8fhK8GL/de9LbeNTNaJU/IOumTkLwmW2Sb7JIhYd4374f30/vlf/d/+3/8vxetvtd4HpNW+afn9KwHmA==</latexit>

�max =
L(D|H0)|max

L(D|H1)|max
=

✓
↵

↵+ 1

Non +No↵

Non

◆Non
✓

1

↵+ 1

Non +No↵

No↵

◆Noff

<latexit sha1_base64="W9/pl033qymuKiMfTqv1s81aDDo=">AAACGHicbVDLSgMxFM3UV62vUXe6CRbBjWWm+FoW3bisYB/QGUomTdvQJDMkGbEMA36HH+BWP8GduHXnF/gbZtpZ2NYDgcM593BvThAxqrTjfFuFpeWV1bXiemljc2t7x97da6owlpg0cMhC2Q6QIowK0tBUM9KOJEE8YKQVjG4yv/VApKKhuNfjiPgcDQTtU4y0kbr2wWnVY8JjJtFDXY8jPZQ84egxhV277FScCeAicXNSBjnqXfvH64U45kRozJBSHdeJtJ8gqSlmJC15sSIRwiM0IB1DBeJE+cnkDyk8NkoP9kNpntBwov5NJIgrNeaBmcyOVPNeJv7ndWLdv/ITKqJYE4Gni/oxgzqEWSGwRyXBmo0NQVhScyvEQyQR1qa2mS0BHVChVVoyzbjzPSySZrXiXlTO787Kteu8oyI4BEfgBLjgEtTALaiDBsDgCbyAV/BmPVvv1of1OR0tWHlmH8zA+voFe8Ggkg==</latexit>

�2 ln�max
<latexit sha1_base64="iNddX9c6Le01brf2nKDddz6LZZA=">AAACCHicbVDLSsNAFL3xWeur6tJNsAhuLEnxtSy6cVnBPqAJZTKZtEMnkzBzI5TSH/AD3OonuBO3/oVf4G84bbOwrQcuHM45l3s5QSq4Rsf5tlZW19Y3Ngtbxe2d3b390sFhUyeZoqxBE5GodkA0E1yyBnIUrJ0qRuJAsFYwuJv4rSemNE/kIw5T5sekJ3nEKUEjeedVT0hPmHxIuqWyU3GmsJeJm5My5Kh3Sz9emNAsZhKpIFp3XCdFf0QUcirYuOhlmqWEDkiPdQyVJGbaH01/HtunRgntKFFmJNpT9e/GiMRaD+PAJGOCfb3oTcT/vE6G0Y0/4jLNkEk6OxRlwsbEnhRgh1wximJoCKGKm19t2ieKUDQ1zV0JeI9L1OOiacZd7GGZNKsV96py+XBRrt3mHRXgGE7gDFy4hhrcQx0aQCGFF3iFN+vZerc+rM9ZdMXKd45gDtbXL5ZbmjM=</latexit>

�2 ln�

Edoardo Milotti - Bayesian Methods - Spring 2024

<latexit sha1_base64="dZhBaY4Cv4r69VGgMf6eZrHtRgE=">AAACEHicbVDLTgIxFO34RHyNuHTTSExwQ2aIQZdENy4xkUfCDKRTOtDQdiZtx0Am/IQf4FY/wZ1x6x/4Bf6GBWYh4ElucnLOvTk3J4gZVdpxvq2Nza3tnd3cXn7/4PDo2D4pNFWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKRnczv/VEpKKReNSTmPgcDQQNKUbaSD27MO5WoKcohx4e0m6l5F727KJTduaA68TNSBFkqPfsH68f4YQToTFDSnVcJ9Z+iqSmmJFp3ksUiREeoQHpGCoQJ8pP579P4YVR+jCMpBmh4Vz9e5EirtSEB2aTIz1Uq95M/M/rJDq88VMq4kQTgRdBYcKgjuCsCNinkmDNJoYgLKn5FeIhkghrU9dSSkAHVGg1zZtm3NUe1kmzUnar5erDVbF2m3WUA2fgHJSAC65BDdyDOmgADMbgBbyCN+vZerc+rM/F6oaV3ZyCJVhfvwfXm94=</latexit>

x2 ⇠ �2(1)
<latexit sha1_base64="87gJBgRxsfL+IhyjQqZt7sZnIxY=">AAACDnicbVDLTsJAFL3FF+Kr6tLNRGKCG9Iagy6JblxiImACDZkOU5gwnTYzUyIp/IMf4FY/wZ1x6y/4Bf6GA3Qh4ElucnLOvTk3x485U9pxvq3c2vrG5lZ+u7Czu7d/YB8eNVSUSELrJOKRfPSxopwJWtdMc/oYS4pDn9OmP7id+s0hlYpF4kGPYuqFuCdYwAjWRurY9vhpjNqKhahN+qzknnfsolN2ZkCrxM1IETLUOvZPuxuRJKRCE46VarlOrL0US80Ip5NCO1E0xmSAe7RlqMAhVV46+3yCzozSRUEkzQiNZurfixSHSo1C32yGWPfVsjcV//NaiQ6uvZSJONFUkHlQkHCkIzStAXWZpETzkSGYSGZ+RaSPJSbalLWQ4rMeE1pNCqYZd7mHVdK4KLuVcuX+sli9yTrKwwmcQglcuIIq3EEN6kBgCC/wCm/Ws/VufVif89Wcld0cwwKsr1931Jui</latexit>

|x| ⇠ �(1)

<latexit sha1_base64="t/215UxEG94We60TsdvM6XBqayc=">AAADOnichVJdixMxFM2MX2v92K4++nKxCF0Wy0yRVVgWFn3xSVa0uwvNUDJppg2byYxJRrYM+TP7O/YH+Kpvvvoi4qs/wExn0E4reCHk5N5zci43iXPBtQmCr55/7fqNm7e2bnfu3L13f7u78+BEZ4WibEQzkamzmGgmuGQjw41gZ7liJI0FO43PX1X1049MaZ7J92aRsyglM8kTTolxqcmOd/AOkzxX2QVg/UGZ8ukQsJBYuCumZIJTYuYqLVNyYS3AYUMaWixYYnAJ5Zs/nEw6ylLrSmPAiSK0xETkcwJ7ENoGVxxH6Nf1trx93IOVY5JYixWfzc0u1Hvkbu20Gqg4Kx30/5rvNqaw4Vpp/mML6771ju2k2wsGwTJgE4QN6KEmjifd73ia0SJl0lBBtB6HQW6ikijDqWC2gwvNckLPyYyNHZQkZToql69s4YnLTCHJlFvSwDK7qihJqvUijR2z6l6v16rkv2rjwiQvopLLvDBM0tooKQSYDKovA1OuGDVi4QChirtegc6Jm6NxH6vlEvMZl0bbjptMuD6HTXAyHIT7g/23z3pHL5sZbaFH6DHqoxA9R0foNTpGI0S9S++T99n74l/53/wf/s+a6nuN5iFqhf/rN4VaDtk=</latexit>

S ⇡
p
�2 ln�max =

p
2

⇢
Non ln


↵+ 1

↵

✓
Non

Non +No↵

◆�
+No↵ ln


(↵+ 1)

✓
No↵

Non +No↵

◆��

