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2. The Li&Ma method (ctd.)

e MaxL ratio

\ L L(D|HO)’max L 84 Non + Noff Non 1 Non + Noff Nots
B L(DIHY) lmax - \a+1 Ny, a+1 N,g

therefore the significance can be obtained from—21n \,,.x because—2In A has a chi-square distribution with 1
degree of freedom (only one parameter — the background rate — matters in the case of null hypothesis, while the
alternative hypothesis has two parameters — background rate and source rate) .

« if 2% ~ x?(1)then |z| ~ x(1), and we estimate the significance as

v —21n f{ n[ - (Non+N0ff)]+ ffn[(oH— )<Non+Noff>]}

(a perfect match with exp. data gives a vanishing chi, the actual value of chi is an estimate of the size of the
fluctuation in terms of standard deviations).

* tobecontinued...
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Bayesian approach
(see M.L. Knoetig, ApJ 790:106, 2014)

* broader definition of o, (Berge & al., A&A 466, 1219-1229 (2007))

Aonton  Jon Adn (W, 0y, ¢z, B, t)dibpdipydd.dEdt
Aotitor [ q Ads wx,wy,qbz,E t)dip,dip, dd,dEdt

/ FOV ‘ \\tlme

Acceptance coords. Energy

O =

zenithal
angle

* comparison between competing hypotheses:
* Hj,: the observed counts are due to background only
* Hy: asignal process contributes to the counts

P(Non, Nogt) | H;) Po(H;)
P(Norn Noff)

P(Hi|Non7 Noff) —
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evidence

P(Nou, Nott) = ¥ P(Non, No)|H;) Po(H;)

since the likelihood is determined by Poisson probabilities defined by continuous parameters, this must be
extended to the following expression

P(Now Not) = 3 [ P(Nows No) Xis H) Po(AH:) ds Fo(H)
— JA.

where the vectors of mean counts can be further specified in terms of signal count and background count

P(Non, Nost) =/ P(Non, Noft )| Abkg, Ho) Po(Abkg|Ho) dAbkg Fo(Ho)
Ao

+/ P NonaNoff)‘)\&)\bkgaHl) P()()\S?)\bkg‘Hl) dA d)\bkg PO(H1>
Aq
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* with these assumptions, the expected numbers of events are
* inthe OFF region (Hg only)

E(Noft) = Abkg
- in the ON region (Ho)
E(Non) = aAbig
- in the ON region (H,)
E(Non) = As + adpkg

* corresponding likelihoods

Aore (aMpig ) Vom

_ g —A bkg —aA

P(Non, Noff)‘Abkga H()) — NOH! e bkg ¢ Non! e bkg
)\Noff A\ A\ N..

P(Nony Noﬂ:)P\s, )\bkgaHl) _ bkg €—>\bkg % ( 8 + « bkg) 6_(>\S+a>\bkg)
Noff! Non!
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priors from Jeffreys' rule

o (M| H;) o< /det [T (X\;|H;

)]

I (Nj|H;) = —E [

null hypothesis (expand the expression to prove the result)

Po(Avkg|Ho) =

NoffaNonZO

1+«
)\bkg

OO

00 Nott N, Nots
SR Abke s 5 (OX0ke) " g, | | Abke
Abkg | N N, ! N g!
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e alternative hypothesis (signal + background; results only, for details see the Knoetig 2014)

1
- As + a)\bkg

Iopig = 1 - Po( s, Moiee | H1) !
s,bkg — 4{bkg,s — —

g g )\S T Of)\bkg 0 sy \bkg 1 )\bkg()\s —I— a)\bkg)
As + a)\bkg + az)\bkg

Abke (As + pkg)

S,S

Ivke bkg =

* the Jeffreys' priors are improper, they are determined up to unknown proportionality constants and —taking
equal prior probabilities 72 for the two hypotheses — one finds

/ o0
Co .
P(Hy|Non, Nogg) = / 4 / y' = /0 P(Non, Nott|Avg, Ho) Po(Aog| Ho)dAvg Po(Hp),
Coy + C15

with
)// / 00 OO
— o = / f P(Non, Nott|As, )\bg, Hp)
y' +c1/cod’ 0 0
X Po(As, Avg| Hy)dAsdApg Po(HY).
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* apossible choice for the c constants is to take them equal, Knoetig 2014 advocates a different choice

/

S
C_O _ §|N0n’Noff:O
and, finally,
V.= (1 + 2Noff)al/2+Non+NOffF(1/2 + Non + Noff)
P(Hy|Non, Nofr) = 4 where 0 1= 2(1+ O‘)NonJrNOffr(l + Non + Nott)
y +c1/cod X9 F1(1/2 4+ Nogr, 1 + Nop + Nogr; 3/2 + Nogr; —1 /)

C1 ﬁ

Co - 2 arctan(1//@)

Edoardo Milotti - Bayesian Methods - Spring 2024 8



* since

P(Hl‘NonaNoff) =1 P(HO|NonaNoff)

we determine the significance of the alternative hypothesis in terms of Gaussian standard deviations from

SB — \/5 eI'f_l [1 — P(HO‘NOIUNOH)]
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if the signal hypothesis holds, we can compute the posterior pdf for the mean signal counts from Bayes law

(Nona Noff‘)\87 Abkga Hl)pO()\sa )\bkg‘Hl)

(Asa)\bk |N0n7NOff7H1)
- fo fo (Non, Noft | A, bkg’Hl)pO( bkngl)d)‘/d)‘bkg

and marginalizing with respect to the mean background counts

p()\S‘NOIU Noffa Hl) — / p()\S7 )\{)kg’Nonv NOff) Hl)d)\{)kg
0

In Knoetig 2014, it is shown that the integral can be evaluated analytically in terms of the regularized
hypergeometric function and of the Tricomi confluent hypergeometric function

P(As|Non, Nogr, H1) = Pp(Nop + Nogr|As)
U[1/2 + Noffa I+ Noff + Nona (1 + 1/05))\8]

X —=
2F1(1/2+ NOff’ 1 + Noff + Non; 3/2+ Noff; —1/0{)
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Comparison of significance obtained in the large counts regime between two
priors and with Li & Ma (from Knoetig 2024).
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3. Model selection

The generic purpose of a model selection statistic is to set up a tension between the predictiveness of a
model (for instance indicated by the number of free parameters) and its ability to fit observational data.
Oversimplistic models offering a poor fit should of course be thrown out, but so should more complex

models that offer poor predictive power.

There are two main types of model selection statistic that have been used in the literature so far.
Information criteria look at the best-fitting parameter values and attach a penalty for the number of
parameters, they are essentially a technical formulation of "chi-squared per degrees of freedom"
arguments. By contrast, the Bayesian evidence applies the same type of likelihood analysis familiar from
parameter estimation, but at the level of models rather than parameters. It depends on goodness of fit

across the entire model parameter space.

(Liddle & al., 2006 — Astronomy & Geophysics, Volume 47, Issue 4, pp. 4.30-4.33)
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ABSTRACT

Model selection is the problem of distinguishing competing models, perhaps featuring differ-
ent numbers of parameters. The statistics literature contains two distinct sets of tools, those
based on information theory such as the Akaike Information Criterion (AIC), and those on
Bayesian inference such as the Bayesian evidence and Bayesian Information Criterion (BIC).
The Deviance Information Criterion combines ideas from both heritages; it is readily com-
puted from Monte Carlo posterior samples and, unlike the AIC and BIC, allows for parameter
degeneracy. I describe the properties of the information criteria, and as an example compute
them from Wilkinson Microwave Anisotropy Probe 3-yr data for several cosmological models.
I find that at present the information theory and Bayesian approaches give significantly different
conclusions from that data.
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Akaike Information Criterion (AIC).

This was derived by Hirotugu Akaike in 1974, and takes the form

AIC = —21In Lax + 2k

where k is the number of parameters in the model. The subscript “max’" indicates that one should find the parameter
values yielding the highest possible likelihood within the model. This second term acts as a kind of “Occam factor”;
initially, as parameters are added, the fit to data improves rapidly until a reasonable fit is achieved, but further

parameters then add little and the penalty term 2k takes over. The generic shape of the AIC as a function of number of
parameters is a rapid fall, a minimum, and then a rise. The preferred model sits at the minimum.

The AIC was derived from information-theoretic considerations, specifically an approximate minimization of the
Kullback—Leibler information entropy which measures the distance between two probability distributions.

(Liddle & al., 2006)
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Outline of Akaike's derivation

1. max log-likelihood ratio between conjectured model (k-dimensional parameter vector) and true model (L-dimensional parameter vector)

f(z]6™®)
f(xl6)

2. thisdepends on the dataset, which is distributed according to the true model; in order to get rid of the fluctuations, we average the max log-
likelihood over the true distribution

Fli®)] F(]6®)
o T ‘Afm”mf@mdx

3. here we remark that:
e thisis purely theoretical, since we do not know the true pdf
* ther.h.s. expression is the negative of the Kullback-Leibler divergence between the conjectured and the true pdf
* ther.h.s. expression can be written as

X n f(x|é(k)) Ir = X n X )(k)y X n X
[ty S2m e = | paio)n f@l0®) ~ [ 1oy faip)
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Outline of Akaike's derivation

4. the second term inthe expansion is unknown, butitis a constant and we can get rid of it, and change sign as well (with an additional factor 2,
see later), so that by minimizing the first term we actually minimize the KL divergence

x nf(x‘é<k)) xr = 20) In f(x]|0%*)) — x|0)In f(x — z|0) In f(z|0%)
[ty S tde = [ f@lom ai®) — [ f@lom e~ <2 [ f@lo)n @)

5. going back to Wilks' theorem, we know that the remaining L-k degrees of freedom in the likelihood ratio are (asymptotically) normally
distributed, therefore the -2log has a chi-square distribution with L-k degrees of freedom, with mean value L-k, and therefore the required mean
value has an asymptotic bias 2(L-k); using the max likelihood as an estimator of the mean, we find that the discrepancy expressed by the
equation above can be written as

—21n f(x|0®) + 2k

after dropping the constant L
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Bayesian Information Criterion (BIC).

This was derived by Gideon Schwarz in 1978, and strongly resembles the AIC. It is given by

BIC=-2InLy.x +kIn N

where N is the number of datapoints. Since a typical dataset will have In N > 2, the BIC imposes a stricter penalty against
extra parameters than the AIC.

It was derived as an approximation to the Bayesian evidence, to be discussed next, but the assumptions required are very
restrictive and unlikely to hold in practice, rendering the approximation quite crude.

(Liddle & al., 2006)
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Bayesian evidence

Model selection aims to determine which theoretical models are most plausible given some data, without
necessarily considering preferred values of model parameters.

Ideally, we would like to estimate posterior probabilities on the set of all competing models using Bayes' theorem:

~ P(D|M;, I)P(M;]|T)
P(M;|D,I) = S . P(D| My, I)P(Mg|I)

and select the best model using the odds ratio

O, . — P(M;|D,I)  P(D|M;,I)P(M;|I)
“) T P(M;|D,I)  P(D|M;, I\P(M;|I
J J J

or the Bayes factor, if we assume equal prior probabilities for the different models:

v P(D’Mjal)
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Thus, we see that the Bayes factor is a ratio of evidences

B ;=
7 P(D|M;,I)

As usual, each evidence is obtained by marginalizing the likelihood with respect to the (potentially different)
parameters:

O;
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The evidence of a model is thus the average likelihood of the model in the prior.

Unlike the AIC and BIC, it does not focus on the best-fitting parameters of the model but asks “of all the parameter
values you thought were viable before the data came along, how well on average did they fit the data? ”. Literally, it is the

likelihood of the model given the data.

The evidence rewards predictability of models, provided they give a good fit to the data, and hence gives an axiomatic
realization of Occam's razor.

A model with little parameter freedom is likely to fit data over much of its parameter space, whereas a model that could
match pretty much any data that might have cropped up will give a better fit to the actual data but only in a small region
of its larger parameter space, pulling the average likelihood down.

(Liddle & al., 2006)
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Which statistics?

Of these statistics, we would advocate using — wherever possible — the Bayesian evidence, which is a full implementation
of Bayesian inference and can be directly interpreted in terms of model probabilities. It is computationally challenging to
compute, being a highly peaked multidimensional integral, but recent algorithm development has made it feasible in
cosmological contexts.

If the Bayesian evidence cannot be computed, the BIC can be deployed as a substitute. It is much simpler to compute as
one need only find the point of maximum likelihood for each model. However, interpreting it can be difficult. Its main
usefulness is as an approximation to the evidence, but this holds only for gaussian likelihoods and provided the
datapoints are independent and identically distributed. The latter condition holds poorly for the current global
cosmological dataset, though it can potentially be improved by binning of the data, hence decreasing the N in the penalty
term.

The AIC has been widely used outside astrophysics but is of debatable utility. It has been shown to be “dimensionally
inconsistent”, meaning that it is not guaranteed to give the right result even in the limit of infinite unbiased data. It may

be useful for checking the robustness of conclusions drawn using the BIC. The evidence and BIC are dimensionally
consistent.

(Liddle & al., 2006)
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Our next important topic: Bayesian estimates often require complex
numerical integrals. How do we confront this problem?

» enter the Monte Carlo methods!

. acceptance-rejection sampling

. importance sampling

statistical bootstrap

. Bayesian methods in a sampling-resampling perspective
Introduction to Markov chains and to Random Walks (RW)
. Simulated annealing

. The Metropolis algorithm

Markov Chain Monte Carlo (MCMC)

. The Gibbs sampler

10. The efficiency of MCMC algorithms

11. Affine-invariant MCMC algorithms (EMCEE)
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1. The acceptance rejection method

0.25} 0.25}
g(x) g(x)
0.20} 0.20}
0.15} 0.15}
y y
f(x) f(x)
0.10} 0.10}
0.05} 0.05}
0 1 2 3 4 5 6 0 1 2 3 4 5 6
X
generate x (uniform)
generate y (uniformin (0,g(y)) outside gray region: reject! inside gray region: accept!
0.25} 0.25}
g(x) g(x)
0.20} 0.20}
0.15} 0.15}
y / y
f(x) f(x)
0.10} 0.10}
&
0.05} 0.05}
0 1 2 3 4 5 6 0 1 2 3 4 5 6
X

generate y (uniform in (0,g(y))
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Example: generation of beta-distributed random numbers

1.5x10° 10} A

1.x107 10}

5.x10" 1}

2%(1 — x)°

Bla+1,b+1) p0(33> = a(l_x>b

p(z) =
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1.5x10710

1.x10710
5.x10""" Pagan
b,
o AN
0 ud'.ﬁ-’.‘évz‘-‘-‘*k‘:"%vs -]
0.0 0.2 04 06 08 1.0
6,
5»
4,
3,
2,
1+
0 ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0
6,
5,
4,
3,
2»
1+
0
0.0 0.2 04 0.6 0.8 1.0

X

generated pairs
(red = accepted pairs)

normalized histogram of the
accepted x's

comparison with the plot of the
normalized beta distribution
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Example: random numbers with semi-Gaussian distribution from exponentially distributed random

numbers.

1.50 :

1.00 +

0.50

..........

------

0.00 !
0.00 0.5

1 l L |
1.00 150 200 2.50
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Definition of contact point (to maximize efficiency)

Fme) T x\/% exp(_’;): cexp(—x)

.

2
= x=1; c= ‘/%exp[—x—+x]z131549
T 2
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Exponentially distributed values

1500

1000

500
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A/R accepted values (10000 accepted sample pairs)

25

3.0

29
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Histogram of accepted x values

800
600
400

200
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Comparison with the original distributions
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Short summary:
1. we create a data set by randomly sampling from the exponential distribution

2. we use the acceptance-rejection algorithm to resample the data set with the target
distribution (the half-Gaussian)

This is a sampling — resampling technique (see later ... )
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Notice that in this method we generate pairs of real numbers that are uniformly distributed
between f(x) and the x-axis, therefore we can use these pairs to estimate the total area
under the curve

(here the reference area is the area of the enclosing rectangle which corresponds to a uniform distribution)

g(x)

0.20F

)‘y 015 i

f(x) # of accepted pairs
area = reference area

R0 # of pairs

0.05f

S
s}
Ny 8
W
(o))

0 1
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In general, if h(x) = f(x)p(x) , Where p is a pdf

Jn(x)dx = Jf x)dx=E,[ f(x ]z%gf(;n

here the x are i.i.d with pdf p(x)

and we find that the variance of this estimate of the integral is

Sl LT

We encounter a problem with this method when we must sample functions
that have many narrow peaks.
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2. Importance sampling

b

J

a

this pdf is troublesome ...

h(x)dx = j.f(x)p(x)dx

:Eq

'

therefore, we use this ...

1] £

1 N

z—;f(xn)

N

?

here the x are i.i.d with pdf g(x)

v

g(x)dx

p(x,)

q(x, )

These methods are still not very efficient and there is a better alternative, the Markov Chain Monte Carlo method

(see later)
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3. An important resampling technique: the Bootstrap method (B. Efron, 1977)

The bootstrap method is a resampling
technique that helps calculating many
statistical estimators

Edoardo Milotti - Bayesian Methods - Spring 2024

37



consider the distribution of a set of measurements

800

600

400

200

0

il

20  -15

10  -05 00 05
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the distribution of data approximates the "true" underlying distribution (in this case a

mixture model)

800 -

400 -

O,

600 -

200 -

/TN - |

PN (-

7% N |
a*ﬂﬁﬁ% //>\\\\ ~
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distribution of mean value obtained from 5000 sets of data (sample size = 50)

1200/

1000

800 |
600

400 -

200

0 ! . . \ L]

06  —04 02 oo 02

You can do this if you have large datasets ... but what if you have only a handful of
measurements?
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example: single dataset (same size as before, 50 measurements)

oo B R |

the discrete distribution is a rough representation of the underlying continuous
distribution ... and yet it can be used just as before ...
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Bootstrap recipe:

if you need to find the distribution of the mean
(or any other statistical estimator) use the
dataset itself to generate new datasets

» resample from dataset (with replacement)
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distribution of mean value

1200

1000

800

600

400

200

re‘peat‘ed sémpl‘ing from

resampling from s:'n le
original distribution b N6

dataset

06  -04 02 00 o2

true mean: -0.2
mean from repeated sampling (size = 250000): -0.200222 =+ 0.0813632
mean from resampling dataset (size = 50): -0.142699 * 0.0838678
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counts of CD4 limphocytes

8- ;
hd H
D - °
-— .
@ .
g w9 . 8
= *.
: -
P < - d
< .
-
< .« » e
™M - .
°
. °
°
~ - il I
Y T v v o - a—— — -_-_-_--I .-
0.2 0.4 0‘6 0‘8
2 3 4 5

FiG. 3. Histogram of 2,000 bootstrap correlation coefficients; bivariate normal sampling model.

B (Baseiine)
bootstrap estimate of correlation

FI1G. 1. The cd4 data; cd4 counts in hundreds for 20 subjects, coefficient distribution
at baseline and after one year of treatment with an experimental
anti-viral drug; numerical values appear in Table 1.

Example from Di Ciccio & Efron, Statistics of Science 11 (1996) 189 and Efron, Statistics of Science 13 (1998) 95
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See Python example ...
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