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• MaxL ratio

therefore the significance can be obtained from                          because                  has a chi-square distribution with 1 
degree of freedom (only one parameter – the background rate – matters in the case of null hypothesis, while the 
alternative hypothesis has two parameters – background rate and source rate) . 

• if                         then                      , and we estimate the significance as

(a perfect match with exp. data gives a vanishing chi, the actual value of chi is an estimate of the size of the 
fluctuation in terms of standard deviations).

• to be continued ... 
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Bayesian approach
(see M.L. Knoetig, ApJ 790:106, 2014)

• broader definition of a (Berge & al., A&A 466, 1219–1229 (2007))

• comparison between competing hypotheses: 
• H0: the observed counts are due to background only
• H1: a signal process contributes to the counts

<latexit sha1_base64="JXdq2bSQt9IJPRvQEy3FcQSuJA0=">AAADEHicnVLNbtQwEHZSfsryt1uOXCxWSEVarZIKFS5IbVEljkVi20qbJZo4zq5V24nsCeoS5SX6AFzhEbghrrwBT8Br4OzmsD+cGMma8ffNfLbHkxRSWAyC356/c+v2nbu79zr3Hzx89Ljb2zu3eWkYH7Fc5uYyAcul0HyEAiW/LAwHlUh+kVy9bfiLT9xYkesPOC/4RMFUi0wwQAfFPa8XgSxmQN/QKDPAquM4UoAzo6pc1xRXd/UqmWVrrNvWTqMViYReq6THH6MpKAWr4H5UWBFfDxZu7txMxJ8HpwN8kS4ZuvTzxjccTU9pivWGenORbXmH/q9+3O0Hw2BhdDsI26BPWjuLu3+iNGel4hqZBGvHYVDgpAKDgkled6LS8gLYFUz52IUaFLeTavF3NX3ukJRmuXFLI12gqxUVKGvnKnGZzdvsJteA/+LGJWavJ5XQRYlcs+VBWSkp5rQZBJoKwxlK93oBzAh3V8pm4H4P3bisnZKIqeu4rTuuM+FmH7aD84NheDg8fP+yf3TS9miXPCXPyD4JyStyRN6RMzIizLv2vnhfvW/+jf/d/+H/XKb6XlvzhKyZ/+svIDr+uw==</latexit>

↵ =
Aonton
Ao↵to↵

=

R
on A

�
on( x, y,�z, E, t)d xd yd�zdEdtR

o↵ A�
o↵( x, y,�z, E, t)d xd yd�zdEdt

FOV 
coords.

zenithal 
angle

Energy
time

Acceptance

<latexit sha1_base64="D8dfL4UanLk797+8OYFkbXnENBM="></latexit>

P (Hi|Non, No↵) =
P (Non, No↵)|Hi)P0(Hi)

P (Non, No↵)



Edoardo Milotti - Bayesian Methods - Spring 2024 4

• evidence

• since the likelihood is determined by Poisson probabilities defined by continuous parameters, this must be 
extended to the following expression 

where the vectors of mean counts can be further specified in terms of signal count and background count
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• with these assumptions, the expected numbers of events are
• in the OFF region (H0 only)

• in the ON region (H0)

• in the ON region (H1)

• corresponding likelihoods
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• priors from Jeffreys' rule

• null hypothesis (expand the expression to prove the result)
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• alternative hypothesis (signal + background; results only, for details see the Knoetig 2014)

• the Jeffreys' priors are improper, they are determined up to unknown proportionality constants and – taking 
equal prior probabilities ½ for the two hypotheses – one finds

                   with  
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The Astrophysical Journal, 790:106 (8pp), 2014 August 1 Knoetig

The analysis presented here follows the method outlined
by Caldwell & Kröninger (2006) and may be considered
an analytical special case. Agostini et al. (2013) applied the
method in order to analyze and set stringent upper limits on the
neutrino-less double-beta decay of 76Ge. Kashyap et al. (2010)
recently presented a similar frequentist method. The analysis is
performed in two steps. First, the probability that the observed
counts are due to background only is calculated. If this is lower
than a previously defined consensus value, then the signal is said
to be detected. Second, the signal contribution is estimated or
an upper limit for the signal is calculated, depending on whether
the detection limit has been reached.

3.1. Hypothesis Test

Let H0 denote the null hypothesis that the observed counts
are due to background only. The alternative hypothesis H1 is
that a signal process contributes to the counts. H1 could be a
bad model too, in case of systematic uncertainties. I should note
that this is sometimes the case when, e.g., signal counts leak into
the off region. Nevertheless, in the following, it is assumed that
the systematic uncertainties are negligible and the two-model
set of exclusive rival hypotheses {H0,H1} is complete. By using
Bayes’ theorem, one may calculate the conditional probability
of H0 as

P (H0|Non, Noff) = P (Non, Noff |H0)P0(H0)
P (Non, Noff)

, (3)

where P (Non, Noff|Hi) is the conditional probability of observ-
ing the data, given the hypothesis Hi and that P0(Hi) is the prior
probability for Hi. For a set of exclusive rival hypotheses such
that

∑
i P (Hi) = 1 and P (Hi ∧ Hj ) = 0 for i ̸= j , the law of

total probability gives

P (Non, Noff) =
∑

i

P (Non, Noff |Hi)P0(Hi). (4)

Furthermore, in continuously parameterized models, the con-
tinuous counterpart of the law of total probability, with sums
replaced by integrals, gives

P (Non, Noff) =
∑

i

∫
P (Non, Noff|λi , Hi)P0(λi |Hi)dλiP0(Hi).

(5)

One obtains the sum over the full set of hypotheses Hi and
integrates with respect to their parameters λi . By assuming the
two-hypothesis set {H0,H1}, one can write Equation (5) in terms
of the expected number of signal events λs and the expected
number of background events λbg:

P (Non, Noff) =
∫

P (Non, Noff |λbg,H0)P0(λbg|H0)dλbgP0(H0)

+
∫

P (Non, Noff |λs, λbg,H1)P0(λs, λbg|H1)dλsdλbgP0(H1).

(6)

Here, P (Non, Noff |λbg,H0) and P (Non, Noff |λs, λbg,H1) denote
the conditional probabilities to measure the data.

Assuming that the number of signal events (if any) and
the number of background events are independent, Poisson-
distributed random variables with means λs and λbg, the ex-
pected number of events in the off region is

E(Noff) = λbg. (7)

The expected number of events E(N ) in the on region, assuming
the null hypothesis H0, is

E(Non) = αλbg, (8)

or assuming H1, is

E(Non) = λs + αλbg. (9)

For the conditional probabilities to measure the data or likeli-
hoods, this yields

P (Non, Noff|λbg,H0) = PP(Non|αλbg)PP(Noff|λbg), (10)

and

P (Non, Noff |λs, λbg,H1) = PP(Non|λs + αλbg)PP(Noff|λbg).
(11)

The priors P0(λbg|H0) and P0(λs, λbg|H1) are chosen according
to Jeffreys’s rule (see Jeffreys 1998; Beringer et al. 2012):

P0(λi |Hi) ∝
√

det[I (λi |Hi)], (12)

Ikl(λi |Hi) = −E

[
∂2 ln L(Non, Noff|λi , Hi)

∂λk∂λl

]
, (13)

where Ikl denotes the Fisher information matrix, L is the
likelihood function (either Equation (10) or (11)), E is the
expectation value with respect to the model with index i, and λi

is its parameter vector. In Appendix A, I show that

P0(λbg|H0) ∝
√

1 + α

λbg
, (14)

P0(λs, λbg|H1) ∝
√

1
λbg(αλbg + λs)

. (15)

The On/Off Jeffreys’s priors are improper, i.e., they integrate
to infinity over the parameter space. There is a debate among
statisticians concerning the use of improper priors in Bayesian
model selection (Berger & Pericchi 2001), as the priors are only
specified up to the proportionality constants c0, c1, which do not
cancel out. The probability of H0 to be true given the measured
counts is therefore

P (H0|Non, Noff) = c0γ
′

c0γ ′ + c1δ′ (16)

= γ ′

γ ′ + c1/c0δ′ (17)

with

γ ′ :=
∫ ∞

0
P (Non, Noff|λbg,H0)P0(λbg|H0)dλbgP0(H0), (18)

δ′ :=
∫ ∞

0

∫ ∞

0
P (Non, Noff|λs, λbg,H1)

× P0(λs, λbg|H1)dλsdλbgP0(H1). (19)

To calculate the analytic outcome of Equation (17), the priors
for the hypotheses P0(H0) and P0(H1) have to be identified.
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recently presented a similar frequentist method. The analysis is
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than a previously defined consensus value, then the signal is said
to be detected. Second, the signal contribution is estimated or
an upper limit for the signal is calculated, depending on whether
the detection limit has been reached.

3.1. Hypothesis Test

Let H0 denote the null hypothesis that the observed counts
are due to background only. The alternative hypothesis H1 is
that a signal process contributes to the counts. H1 could be a
bad model too, in case of systematic uncertainties. I should note
that this is sometimes the case when, e.g., signal counts leak into
the off region. Nevertheless, in the following, it is assumed that
the systematic uncertainties are negligible and the two-model
set of exclusive rival hypotheses {H0,H1} is complete. By using
Bayes’ theorem, one may calculate the conditional probability
of H0 as

P (H0|Non, Noff) = P (Non, Noff |H0)P0(H0)
P (Non, Noff)

, (3)

where P (Non, Noff|Hi) is the conditional probability of observ-
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that
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The On/Off Jeffreys’s priors are improper, i.e., they integrate
to infinity over the parameter space. There is a debate among
statisticians concerning the use of improper priors in Bayesian
model selection (Berger & Pericchi 2001), as the priors are only
specified up to the proportionality constants c0, c1, which do not
cancel out. The probability of H0 to be true given the measured
counts is therefore
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with
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To calculate the analytic outcome of Equation (17), the priors
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• a possible choice for the c constants is to take them equal, Knoetig 2014 advocates a different choice

and, finally, 

           where 

The Astrophysical Journal, 790:106 (8pp), 2014 August 1 Knoetig

Given the lack of prior information as to which hypothesis is
more likely, they are chosen to be equal

P0(H0) = P0(H1) = 1
2
. (20)

When the model parameter spaces are the same, it is common
to set c0 = c1. In the case where the two models have differing
dimensions, special effort has to be invested to assign a value to
c1/c0 based on extrinsic arguments (Berger & Pericchi 2001).
Therefore, imagine no counts in either region. This means no
signal was observed, which means the signal hypothesis H1
cannot become more likely

P (H0|0, 0) ! P0(H0). (21)

This is a limit on the posterior model probability, which can be
used as the basis of a robust Bayesian analysis (Berger et al.
1994). In particular, I argue that when no counts are observed,
the probability for either model remains the same, and therefore
equality holds in Equation (21). This approach leads to the
determination of the fraction c1/c0 via the following equation:

c1

c0
= γ ′

δ′ |Non,Noff=0. (22)

The evaluation of Equation (17) together with Equation (22)
may be found in Appendix B. Altogether, the probability of H0
being true given Non and Noff is

P (H0|Non, Noff) = γ

γ + c1/c0δ
, (23)

where γ and δ are defined in terms of the Gamma function Γ(x)
and the hypergeometric function 2F1(a, b; c; z):

γ : = (1 + 2Noff)α1/2+Non+Noff Γ(1/2 + Non + Noff), (24)

δ := 2(1 + α)Non+Noff Γ(1 + Non + Noff)
×2 F1(1/2 + Noff, 1 + Non + Noff; 3/2 + Noff;−1/α),

(25)

c1

c0
=

√
π

2 arctan(1/
√

α)
. (26)

Equation (23), however, is not restricted to small count numbers
and, with current PCs and numerical tools like Mathematica,
can be easily calculated up to thousands of counts.

3.2. Signal Detection

A signal detection based on Equation (23) may be claimed
when the resulting probability of the null hypothesis H0 is low. In
high-energy astrophysics, the consensus (Li & Ma 1983; Abdo
et al. 2009) p value for a source discovery is p = 5.7 × 10−7,
corresponding to a 5σ measurement. Scientists frequently use
lower thresholds for the detection of known sources. However,
this value is used in this paper for the probability of H0 as source
detection criterion.

One must keep in mind that these are two completely different
quantities: a probability of a model and a frequency of an
outcome. P (H0|Non, Noff) explicitly weighs alternative models,
while the frequentist result does not.

That said, and with the help of the inverse error function
erf−1(x), the Bayesian significance Sb is introduced and defined
as “if the probability were normally distributed, it would
correspond to a Sb standard deviation measurement:”

Sb =
√

2 erf−1[1 − P (H0|Non, Noff)]. (27)

Using the above equation, it is easy to compare detection or
discovery claims with different methods and thresholds, as
shown in Section 4.

3.3. Signal Strength

If the counted events lead to a detection, then the signal
parameter strength can be estimated. In other words, it is safe
to assume hypothesis H1. The conditional probability of the
signal and the background parameters λs and λbg may then be
calculated from Bayes’ law:

P (λs, λbg|Non, Noff,H1)

=
P (Non, Noff |λs, λbg,H1)P0(λs, λbg|H1)

∫ ∞
0

∫ ∞
0 P (Non, Noff|λs, λbg,H1)P0(λs, λbg|H1)dλsdλbg

.

(28)

Given the data, one would like to infer the signal λs without
reference to λbg while fully accounting for the uncertainty
on λbg. This can be done by marginalizing over the nuisance
parameter λbg:

P (λs|Non, Noff,H1) =
∫ ∞

0
P (λs, λbg|Non, Noff,H1)dλbg.

(29)
Equation (29) can be analytically calculated using
Equations (11)and (15), and the results from Appendix B, which
is done in Appendix C. The improper prior is acceptable be-
cause the proportionality constant c1 cancels and the posterior
is proper. The result may be expressed in terms of three func-
tions, namely, the Poisson distribution PP(N |λ), the regularized
hypergeometric function 2F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ(c),
and the Tricomi confluent hypergeometric function U(a, b, z):

P (λs|Non, Noff,H1) = PP(Non + Noff|λs)

× U[1/2 + Noff, 1 + Noff + Non, (1 + 1/α)λs]

2F̃1(1/2 + Noff, 1 + Noff + Non; 3/2 + Noff;−1/α)
.

(30)

This posterior contains the full information. In order to quote
numbers, one may take the mode λ∗

s , which is the value of λs that
maximizes the posterior distribution P (λs|Non, Noff,H1), as the
signal estimator. The error on the quoted signal can be evaluated
from the cumulative distribution function. For instance, to get
the smallest Bayesian interval (also known as highest posterior
density or HPD interval) containing the signal parameter with
68% probability, one can solve

0.68 =
∫ λmax

λmin

P (λs|Non, Noff,H1)dλs, (31)

together with the constraint

P (λmin|Non, Noff,H1) = P (λmax|Non, Noff,H1), (32)

numerically for λmin and λmax. The final result may be quoted
as

λs = λ
∗+(λmax−λ∗

s )
s−(λ∗

s −λmin). (33)
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Given the lack of prior information as to which hypothesis is
more likely, they are chosen to be equal

P0(H0) = P0(H1) = 1
2
. (20)

When the model parameter spaces are the same, it is common
to set c0 = c1. In the case where the two models have differing
dimensions, special effort has to be invested to assign a value to
c1/c0 based on extrinsic arguments (Berger & Pericchi 2001).
Therefore, imagine no counts in either region. This means no
signal was observed, which means the signal hypothesis H1
cannot become more likely

P (H0|0, 0) ! P0(H0). (21)

This is a limit on the posterior model probability, which can be
used as the basis of a robust Bayesian analysis (Berger et al.
1994). In particular, I argue that when no counts are observed,
the probability for either model remains the same, and therefore
equality holds in Equation (21). This approach leads to the
determination of the fraction c1/c0 via the following equation:

c1

c0
= γ ′

δ′ |Non,Noff=0. (22)

The evaluation of Equation (17) together with Equation (22)
may be found in Appendix B. Altogether, the probability of H0
being true given Non and Noff is

P (H0|Non, Noff) = γ

γ + c1/c0δ
, (23)

where γ and δ are defined in terms of the Gamma function Γ(x)
and the hypergeometric function 2F1(a, b; c; z):

γ : = (1 + 2Noff)α1/2+Non+Noff Γ(1/2 + Non + Noff), (24)

δ := 2(1 + α)Non+Noff Γ(1 + Non + Noff)
×2 F1(1/2 + Noff, 1 + Non + Noff; 3/2 + Noff;−1/α),

(25)

c1

c0
=

√
π

2 arctan(1/
√

α)
. (26)

Equation (23), however, is not restricted to small count numbers
and, with current PCs and numerical tools like Mathematica,
can be easily calculated up to thousands of counts.

3.2. Signal Detection

A signal detection based on Equation (23) may be claimed
when the resulting probability of the null hypothesis H0 is low. In
high-energy astrophysics, the consensus (Li & Ma 1983; Abdo
et al. 2009) p value for a source discovery is p = 5.7 × 10−7,
corresponding to a 5σ measurement. Scientists frequently use
lower thresholds for the detection of known sources. However,
this value is used in this paper for the probability of H0 as source
detection criterion.

One must keep in mind that these are two completely different
quantities: a probability of a model and a frequency of an
outcome. P (H0|Non, Noff) explicitly weighs alternative models,
while the frequentist result does not.

That said, and with the help of the inverse error function
erf−1(x), the Bayesian significance Sb is introduced and defined
as “if the probability were normally distributed, it would
correspond to a Sb standard deviation measurement:”

Sb =
√

2 erf−1[1 − P (H0|Non, Noff)]. (27)

Using the above equation, it is easy to compare detection or
discovery claims with different methods and thresholds, as
shown in Section 4.

3.3. Signal Strength

If the counted events lead to a detection, then the signal
parameter strength can be estimated. In other words, it is safe
to assume hypothesis H1. The conditional probability of the
signal and the background parameters λs and λbg may then be
calculated from Bayes’ law:

P (λs, λbg|Non, Noff,H1)

=
P (Non, Noff |λs, λbg,H1)P0(λs, λbg|H1)

∫ ∞
0

∫ ∞
0 P (Non, Noff|λs, λbg,H1)P0(λs, λbg|H1)dλsdλbg

.

(28)

Given the data, one would like to infer the signal λs without
reference to λbg while fully accounting for the uncertainty
on λbg. This can be done by marginalizing over the nuisance
parameter λbg:

P (λs|Non, Noff,H1) =
∫ ∞

0
P (λs, λbg|Non, Noff,H1)dλbg.

(29)
Equation (29) can be analytically calculated using
Equations (11)and (15), and the results from Appendix B, which
is done in Appendix C. The improper prior is acceptable be-
cause the proportionality constant c1 cancels and the posterior
is proper. The result may be expressed in terms of three func-
tions, namely, the Poisson distribution PP(N |λ), the regularized
hypergeometric function 2F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ(c),
and the Tricomi confluent hypergeometric function U(a, b, z):

P (λs|Non, Noff,H1) = PP(Non + Noff|λs)

× U[1/2 + Noff, 1 + Noff + Non, (1 + 1/α)λs]

2F̃1(1/2 + Noff, 1 + Noff + Non; 3/2 + Noff;−1/α)
.

(30)

This posterior contains the full information. In order to quote
numbers, one may take the mode λ∗

s , which is the value of λs that
maximizes the posterior distribution P (λs|Non, Noff,H1), as the
signal estimator. The error on the quoted signal can be evaluated
from the cumulative distribution function. For instance, to get
the smallest Bayesian interval (also known as highest posterior
density or HPD interval) containing the signal parameter with
68% probability, one can solve

0.68 =
∫ λmax

λmin

P (λs|Non, Noff,H1)dλs, (31)

together with the constraint

P (λmin|Non, Noff,H1) = P (λmax|Non, Noff,H1), (32)

numerically for λmin and λmax. The final result may be quoted
as

λs = λ
∗+(λmax−λ∗

s )
s−(λ∗

s −λmin). (33)
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Given the lack of prior information as to which hypothesis is
more likely, they are chosen to be equal

P0(H0) = P0(H1) = 1
2
. (20)

When the model parameter spaces are the same, it is common
to set c0 = c1. In the case where the two models have differing
dimensions, special effort has to be invested to assign a value to
c1/c0 based on extrinsic arguments (Berger & Pericchi 2001).
Therefore, imagine no counts in either region. This means no
signal was observed, which means the signal hypothesis H1
cannot become more likely

P (H0|0, 0) ! P0(H0). (21)

This is a limit on the posterior model probability, which can be
used as the basis of a robust Bayesian analysis (Berger et al.
1994). In particular, I argue that when no counts are observed,
the probability for either model remains the same, and therefore
equality holds in Equation (21). This approach leads to the
determination of the fraction c1/c0 via the following equation:

c1

c0
= γ ′

δ′ |Non,Noff=0. (22)

The evaluation of Equation (17) together with Equation (22)
may be found in Appendix B. Altogether, the probability of H0
being true given Non and Noff is

P (H0|Non, Noff) = γ

γ + c1/c0δ
, (23)

where γ and δ are defined in terms of the Gamma function Γ(x)
and the hypergeometric function 2F1(a, b; c; z):

γ : = (1 + 2Noff)α1/2+Non+Noff Γ(1/2 + Non + Noff), (24)

δ := 2(1 + α)Non+Noff Γ(1 + Non + Noff)
×2 F1(1/2 + Noff, 1 + Non + Noff; 3/2 + Noff;−1/α),

(25)

c1

c0
=

√
π

2 arctan(1/
√

α)
. (26)

Equation (23), however, is not restricted to small count numbers
and, with current PCs and numerical tools like Mathematica,
can be easily calculated up to thousands of counts.

3.2. Signal Detection

A signal detection based on Equation (23) may be claimed
when the resulting probability of the null hypothesis H0 is low. In
high-energy astrophysics, the consensus (Li & Ma 1983; Abdo
et al. 2009) p value for a source discovery is p = 5.7 × 10−7,
corresponding to a 5σ measurement. Scientists frequently use
lower thresholds for the detection of known sources. However,
this value is used in this paper for the probability of H0 as source
detection criterion.

One must keep in mind that these are two completely different
quantities: a probability of a model and a frequency of an
outcome. P (H0|Non, Noff) explicitly weighs alternative models,
while the frequentist result does not.

That said, and with the help of the inverse error function
erf−1(x), the Bayesian significance Sb is introduced and defined
as “if the probability were normally distributed, it would
correspond to a Sb standard deviation measurement:”

Sb =
√

2 erf−1[1 − P (H0|Non, Noff)]. (27)

Using the above equation, it is easy to compare detection or
discovery claims with different methods and thresholds, as
shown in Section 4.

3.3. Signal Strength

If the counted events lead to a detection, then the signal
parameter strength can be estimated. In other words, it is safe
to assume hypothesis H1. The conditional probability of the
signal and the background parameters λs and λbg may then be
calculated from Bayes’ law:

P (λs, λbg|Non, Noff,H1)

=
P (Non, Noff |λs, λbg,H1)P0(λs, λbg|H1)

∫ ∞
0

∫ ∞
0 P (Non, Noff|λs, λbg,H1)P0(λs, λbg|H1)dλsdλbg

.

(28)

Given the data, one would like to infer the signal λs without
reference to λbg while fully accounting for the uncertainty
on λbg. This can be done by marginalizing over the nuisance
parameter λbg:

P (λs|Non, Noff,H1) =
∫ ∞

0
P (λs, λbg|Non, Noff,H1)dλbg.

(29)
Equation (29) can be analytically calculated using
Equations (11)and (15), and the results from Appendix B, which
is done in Appendix C. The improper prior is acceptable be-
cause the proportionality constant c1 cancels and the posterior
is proper. The result may be expressed in terms of three func-
tions, namely, the Poisson distribution PP(N |λ), the regularized
hypergeometric function 2F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ(c),
and the Tricomi confluent hypergeometric function U(a, b, z):

P (λs|Non, Noff,H1) = PP(Non + Noff|λs)

× U[1/2 + Noff, 1 + Noff + Non, (1 + 1/α)λs]

2F̃1(1/2 + Noff, 1 + Noff + Non; 3/2 + Noff;−1/α)
.

(30)

This posterior contains the full information. In order to quote
numbers, one may take the mode λ∗

s , which is the value of λs that
maximizes the posterior distribution P (λs|Non, Noff,H1), as the
signal estimator. The error on the quoted signal can be evaluated
from the cumulative distribution function. For instance, to get
the smallest Bayesian interval (also known as highest posterior
density or HPD interval) containing the signal parameter with
68% probability, one can solve

0.68 =
∫ λmax

λmin

P (λs|Non, Noff,H1)dλs, (31)

together with the constraint

P (λmin|Non, Noff,H1) = P (λmax|Non, Noff,H1), (32)

numerically for λmin and λmax. The final result may be quoted
as

λs = λ
∗+(λmax−λ∗

s )
s−(λ∗

s −λmin). (33)
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Given the lack of prior information as to which hypothesis is
more likely, they are chosen to be equal

P0(H0) = P0(H1) = 1
2
. (20)

When the model parameter spaces are the same, it is common
to set c0 = c1. In the case where the two models have differing
dimensions, special effort has to be invested to assign a value to
c1/c0 based on extrinsic arguments (Berger & Pericchi 2001).
Therefore, imagine no counts in either region. This means no
signal was observed, which means the signal hypothesis H1
cannot become more likely

P (H0|0, 0) ! P0(H0). (21)

This is a limit on the posterior model probability, which can be
used as the basis of a robust Bayesian analysis (Berger et al.
1994). In particular, I argue that when no counts are observed,
the probability for either model remains the same, and therefore
equality holds in Equation (21). This approach leads to the
determination of the fraction c1/c0 via the following equation:

c1

c0
= γ ′

δ′ |Non,Noff=0. (22)

The evaluation of Equation (17) together with Equation (22)
may be found in Appendix B. Altogether, the probability of H0
being true given Non and Noff is

P (H0|Non, Noff) = γ

γ + c1/c0δ
, (23)

where γ and δ are defined in terms of the Gamma function Γ(x)
and the hypergeometric function 2F1(a, b; c; z):

γ : = (1 + 2Noff)α1/2+Non+Noff Γ(1/2 + Non + Noff), (24)

δ := 2(1 + α)Non+Noff Γ(1 + Non + Noff)
×2 F1(1/2 + Noff, 1 + Non + Noff; 3/2 + Noff;−1/α),

(25)

c1

c0
=

√
π

2 arctan(1/
√

α)
. (26)

Equation (23), however, is not restricted to small count numbers
and, with current PCs and numerical tools like Mathematica,
can be easily calculated up to thousands of counts.

3.2. Signal Detection

A signal detection based on Equation (23) may be claimed
when the resulting probability of the null hypothesis H0 is low. In
high-energy astrophysics, the consensus (Li & Ma 1983; Abdo
et al. 2009) p value for a source discovery is p = 5.7 × 10−7,
corresponding to a 5σ measurement. Scientists frequently use
lower thresholds for the detection of known sources. However,
this value is used in this paper for the probability of H0 as source
detection criterion.

One must keep in mind that these are two completely different
quantities: a probability of a model and a frequency of an
outcome. P (H0|Non, Noff) explicitly weighs alternative models,
while the frequentist result does not.

That said, and with the help of the inverse error function
erf−1(x), the Bayesian significance Sb is introduced and defined
as “if the probability were normally distributed, it would
correspond to a Sb standard deviation measurement:”

Sb =
√

2 erf−1[1 − P (H0|Non, Noff)]. (27)

Using the above equation, it is easy to compare detection or
discovery claims with different methods and thresholds, as
shown in Section 4.

3.3. Signal Strength

If the counted events lead to a detection, then the signal
parameter strength can be estimated. In other words, it is safe
to assume hypothesis H1. The conditional probability of the
signal and the background parameters λs and λbg may then be
calculated from Bayes’ law:

P (λs, λbg|Non, Noff,H1)

=
P (Non, Noff |λs, λbg,H1)P0(λs, λbg|H1)

∫ ∞
0

∫ ∞
0 P (Non, Noff|λs, λbg,H1)P0(λs, λbg|H1)dλsdλbg

.

(28)

Given the data, one would like to infer the signal λs without
reference to λbg while fully accounting for the uncertainty
on λbg. This can be done by marginalizing over the nuisance
parameter λbg:

P (λs|Non, Noff,H1) =
∫ ∞

0
P (λs, λbg|Non, Noff,H1)dλbg.

(29)
Equation (29) can be analytically calculated using
Equations (11)and (15), and the results from Appendix B, which
is done in Appendix C. The improper prior is acceptable be-
cause the proportionality constant c1 cancels and the posterior
is proper. The result may be expressed in terms of three func-
tions, namely, the Poisson distribution PP(N |λ), the regularized
hypergeometric function 2F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ(c),
and the Tricomi confluent hypergeometric function U(a, b, z):

P (λs|Non, Noff,H1) = PP(Non + Noff|λs)

× U[1/2 + Noff, 1 + Noff + Non, (1 + 1/α)λs]

2F̃1(1/2 + Noff, 1 + Noff + Non; 3/2 + Noff;−1/α)
.

(30)

This posterior contains the full information. In order to quote
numbers, one may take the mode λ∗

s , which is the value of λs that
maximizes the posterior distribution P (λs|Non, Noff,H1), as the
signal estimator. The error on the quoted signal can be evaluated
from the cumulative distribution function. For instance, to get
the smallest Bayesian interval (also known as highest posterior
density or HPD interval) containing the signal parameter with
68% probability, one can solve

0.68 =
∫ λmax

λmin

P (λs|Non, Noff,H1)dλs, (31)

together with the constraint

P (λmin|Non, Noff,H1) = P (λmax|Non, Noff,H1), (32)

numerically for λmin and λmax. The final result may be quoted
as

λs = λ
∗+(λmax−λ∗

s )
s−(λ∗

s −λmin). (33)
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Given the lack of prior information as to which hypothesis is
more likely, they are chosen to be equal

P0(H0) = P0(H1) = 1
2
. (20)

When the model parameter spaces are the same, it is common
to set c0 = c1. In the case where the two models have differing
dimensions, special effort has to be invested to assign a value to
c1/c0 based on extrinsic arguments (Berger & Pericchi 2001).
Therefore, imagine no counts in either region. This means no
signal was observed, which means the signal hypothesis H1
cannot become more likely

P (H0|0, 0) ! P0(H0). (21)

This is a limit on the posterior model probability, which can be
used as the basis of a robust Bayesian analysis (Berger et al.
1994). In particular, I argue that when no counts are observed,
the probability for either model remains the same, and therefore
equality holds in Equation (21). This approach leads to the
determination of the fraction c1/c0 via the following equation:

c1

c0
= γ ′

δ′ |Non,Noff=0. (22)

The evaluation of Equation (17) together with Equation (22)
may be found in Appendix B. Altogether, the probability of H0
being true given Non and Noff is

P (H0|Non, Noff) = γ

γ + c1/c0δ
, (23)

where γ and δ are defined in terms of the Gamma function Γ(x)
and the hypergeometric function 2F1(a, b; c; z):

γ : = (1 + 2Noff)α1/2+Non+Noff Γ(1/2 + Non + Noff), (24)

δ := 2(1 + α)Non+Noff Γ(1 + Non + Noff)
×2 F1(1/2 + Noff, 1 + Non + Noff; 3/2 + Noff;−1/α),

(25)

c1

c0
=

√
π

2 arctan(1/
√

α)
. (26)

Equation (23), however, is not restricted to small count numbers
and, with current PCs and numerical tools like Mathematica,
can be easily calculated up to thousands of counts.

3.2. Signal Detection

A signal detection based on Equation (23) may be claimed
when the resulting probability of the null hypothesis H0 is low. In
high-energy astrophysics, the consensus (Li & Ma 1983; Abdo
et al. 2009) p value for a source discovery is p = 5.7 × 10−7,
corresponding to a 5σ measurement. Scientists frequently use
lower thresholds for the detection of known sources. However,
this value is used in this paper for the probability of H0 as source
detection criterion.

One must keep in mind that these are two completely different
quantities: a probability of a model and a frequency of an
outcome. P (H0|Non, Noff) explicitly weighs alternative models,
while the frequentist result does not.

That said, and with the help of the inverse error function
erf−1(x), the Bayesian significance Sb is introduced and defined
as “if the probability were normally distributed, it would
correspond to a Sb standard deviation measurement:”

Sb =
√

2 erf−1[1 − P (H0|Non, Noff)]. (27)

Using the above equation, it is easy to compare detection or
discovery claims with different methods and thresholds, as
shown in Section 4.

3.3. Signal Strength

If the counted events lead to a detection, then the signal
parameter strength can be estimated. In other words, it is safe
to assume hypothesis H1. The conditional probability of the
signal and the background parameters λs and λbg may then be
calculated from Bayes’ law:

P (λs, λbg|Non, Noff,H1)

=
P (Non, Noff |λs, λbg,H1)P0(λs, λbg|H1)

∫ ∞
0

∫ ∞
0 P (Non, Noff|λs, λbg,H1)P0(λs, λbg|H1)dλsdλbg

.

(28)

Given the data, one would like to infer the signal λs without
reference to λbg while fully accounting for the uncertainty
on λbg. This can be done by marginalizing over the nuisance
parameter λbg:

P (λs|Non, Noff,H1) =
∫ ∞

0
P (λs, λbg|Non, Noff,H1)dλbg.

(29)
Equation (29) can be analytically calculated using
Equations (11)and (15), and the results from Appendix B, which
is done in Appendix C. The improper prior is acceptable be-
cause the proportionality constant c1 cancels and the posterior
is proper. The result may be expressed in terms of three func-
tions, namely, the Poisson distribution PP(N |λ), the regularized
hypergeometric function 2F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ(c),
and the Tricomi confluent hypergeometric function U(a, b, z):

P (λs|Non, Noff,H1) = PP(Non + Noff|λs)

× U[1/2 + Noff, 1 + Noff + Non, (1 + 1/α)λs]

2F̃1(1/2 + Noff, 1 + Noff + Non; 3/2 + Noff;−1/α)
.

(30)

This posterior contains the full information. In order to quote
numbers, one may take the mode λ∗

s , which is the value of λs that
maximizes the posterior distribution P (λs|Non, Noff,H1), as the
signal estimator. The error on the quoted signal can be evaluated
from the cumulative distribution function. For instance, to get
the smallest Bayesian interval (also known as highest posterior
density or HPD interval) containing the signal parameter with
68% probability, one can solve

0.68 =
∫ λmax

λmin

P (λs|Non, Noff,H1)dλs, (31)

together with the constraint

P (λmin|Non, Noff,H1) = P (λmax|Non, Noff,H1), (32)

numerically for λmin and λmax. The final result may be quoted
as

λs = λ
∗+(λmax−λ∗

s )
s−(λ∗

s −λmin). (33)

3
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• since

we determine the significance of the alternative hypothesis in terms of Gaussian standard deviations from 

<latexit sha1_base64="9tOtNmLnQN10NkuIxWAcmhTjSk8="></latexit>

P (H1|Non, No↵) = 1� P (H0|Non, No↵)

<latexit sha1_base64="LMQWPKbX3Mai4Hu0YBwhGMs2jdU="></latexit>

SB =
p
2 erf�1 [1� P (H0|Non, No↵)]
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• if the signal hypothesis holds, we can compute the posterior pdf for the mean signal counts from Bayes law

and marginalizing with respect to the mean background counts

In Knoetig 2014, it is shown that the integral can be evaluated analytically in terms of the regularized 
hypergeometric function and of the Tricomi confluent hypergeometric function

<latexit sha1_base64="c+T1HFBaSBf1sdBTrL7rPFQSyBk="></latexit>

p(�s,�bkg|Non, No↵ , H1) =
p(Non, No↵ |�s,�bkg, H1)p0(�s,�bkg|H1)R1

0

R1
0 p(Non, No↵ |�0

s,�
0
bkg, H1)p0(�0

s,�
0
bkg|H1)d�0

sd�
0
bkg
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p(�s|Non, No↵ , H1) =
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0
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0
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Given the lack of prior information as to which hypothesis is
more likely, they are chosen to be equal

P0(H0) = P0(H1) = 1
2
. (20)

When the model parameter spaces are the same, it is common
to set c0 = c1. In the case where the two models have differing
dimensions, special effort has to be invested to assign a value to
c1/c0 based on extrinsic arguments (Berger & Pericchi 2001).
Therefore, imagine no counts in either region. This means no
signal was observed, which means the signal hypothesis H1
cannot become more likely

P (H0|0, 0) ! P0(H0). (21)

This is a limit on the posterior model probability, which can be
used as the basis of a robust Bayesian analysis (Berger et al.
1994). In particular, I argue that when no counts are observed,
the probability for either model remains the same, and therefore
equality holds in Equation (21). This approach leads to the
determination of the fraction c1/c0 via the following equation:

c1

c0
= γ ′

δ′ |Non,Noff=0. (22)

The evaluation of Equation (17) together with Equation (22)
may be found in Appendix B. Altogether, the probability of H0
being true given Non and Noff is

P (H0|Non, Noff) = γ

γ + c1/c0δ
, (23)

where γ and δ are defined in terms of the Gamma function Γ(x)
and the hypergeometric function 2F1(a, b; c; z):

γ : = (1 + 2Noff)α1/2+Non+Noff Γ(1/2 + Non + Noff), (24)

δ := 2(1 + α)Non+Noff Γ(1 + Non + Noff)
×2 F1(1/2 + Noff, 1 + Non + Noff; 3/2 + Noff;−1/α),

(25)

c1

c0
=

√
π

2 arctan(1/
√

α)
. (26)

Equation (23), however, is not restricted to small count numbers
and, with current PCs and numerical tools like Mathematica,
can be easily calculated up to thousands of counts.

3.2. Signal Detection

A signal detection based on Equation (23) may be claimed
when the resulting probability of the null hypothesis H0 is low. In
high-energy astrophysics, the consensus (Li & Ma 1983; Abdo
et al. 2009) p value for a source discovery is p = 5.7 × 10−7,
corresponding to a 5σ measurement. Scientists frequently use
lower thresholds for the detection of known sources. However,
this value is used in this paper for the probability of H0 as source
detection criterion.

One must keep in mind that these are two completely different
quantities: a probability of a model and a frequency of an
outcome. P (H0|Non, Noff) explicitly weighs alternative models,
while the frequentist result does not.

That said, and with the help of the inverse error function
erf−1(x), the Bayesian significance Sb is introduced and defined
as “if the probability were normally distributed, it would
correspond to a Sb standard deviation measurement:”

Sb =
√

2 erf−1[1 − P (H0|Non, Noff)]. (27)

Using the above equation, it is easy to compare detection or
discovery claims with different methods and thresholds, as
shown in Section 4.

3.3. Signal Strength

If the counted events lead to a detection, then the signal
parameter strength can be estimated. In other words, it is safe
to assume hypothesis H1. The conditional probability of the
signal and the background parameters λs and λbg may then be
calculated from Bayes’ law:

P (λs, λbg|Non, Noff,H1)

=
P (Non, Noff |λs, λbg,H1)P0(λs, λbg|H1)

∫ ∞
0

∫ ∞
0 P (Non, Noff|λs, λbg,H1)P0(λs, λbg|H1)dλsdλbg

.

(28)

Given the data, one would like to infer the signal λs without
reference to λbg while fully accounting for the uncertainty
on λbg. This can be done by marginalizing over the nuisance
parameter λbg:

P (λs|Non, Noff,H1) =
∫ ∞

0
P (λs, λbg|Non, Noff,H1)dλbg.

(29)
Equation (29) can be analytically calculated using
Equations (11)and (15), and the results from Appendix B, which
is done in Appendix C. The improper prior is acceptable be-
cause the proportionality constant c1 cancels and the posterior
is proper. The result may be expressed in terms of three func-
tions, namely, the Poisson distribution PP(N |λ), the regularized
hypergeometric function 2F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ(c),
and the Tricomi confluent hypergeometric function U(a, b, z):

P (λs|Non, Noff,H1) = PP(Non + Noff|λs)

× U[1/2 + Noff, 1 + Noff + Non, (1 + 1/α)λs]

2F̃1(1/2 + Noff, 1 + Noff + Non; 3/2 + Noff;−1/α)
.

(30)

This posterior contains the full information. In order to quote
numbers, one may take the mode λ∗

s , which is the value of λs that
maximizes the posterior distribution P (λs|Non, Noff,H1), as the
signal estimator. The error on the quoted signal can be evaluated
from the cumulative distribution function. For instance, to get
the smallest Bayesian interval (also known as highest posterior
density or HPD interval) containing the signal parameter with
68% probability, one can solve

0.68 =
∫ λmax

λmin

P (λs|Non, Noff,H1)dλs, (31)

together with the constraint

P (λmin|Non, Noff,H1) = P (λmax|Non, Noff,H1), (32)

numerically for λmin and λmax. The final result may be quoted
as

λs = λ
∗+(λmax−λ∗

s )
s−(λ∗

s −λmin). (33)

3
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Figure 1. Comparison of the On/Off hypothesis test with Jeffreys’s and Gregory’s priors for low and large count numbers. (a) The null hypothesis posterior probability
is shown as a function of Non in the low counts regime. (b) Shows the same, but using the nonlinear Bayesian significance scale Equation (27). (c) The limiting curves
for which Non:Sb ! 3 or Sb ! 5 are shown. (d) Shows a comparison in the large counts regime and additionally Li & Ma (1983) and Equation (17).

3.4. Signal Upper Limit

If the data show no significant detection, then an upper limit
on the signal parameter may be calculated, assuming that the
signal is present (i.e., H1 is true) but too weak to be measured.
For example, a 99% probability limit λ99 on the signal parameter
λs is calculated by solving

∫ λ99

0
P (λs|Non, Noff,H1)dλs = 0.99. (34)

This result comes naturally in a Bayesian approach of the
problem but is hard to calculate in a frequentist approach. In
particular, frequentists struggle with the marginalization of the
problem and with special cases at the border of the parameter
space, all of which lead to ad hoc adjustments without theoretical
justification (Rolke et al. 2005). The only practical remedy
comes from Monte Carlo studies which show that, in fact, such
limits with adjustments have (at least) the claimed frequentist
coverage. In this Bayesian approach, all possible values in the
parameter space are dealt with in a uniform way, no matter if
there are zero counts or thousands of counts. The signal upper
limit result is particularly interesting for Non = Noff = 0.
It underlines the fact that measuring zero is different from
not measuring at all, and hence valid limits can be derived.
Importantly, the estimates are always physically meaningful
(i.e., positive λ∗

s , λmin, λmax, λ99, . . .).

4. VALIDATION

Jeffreys’s prior is constructed by a formal rule (Jeffreys 1998)
and motivated by the requirement for invariance under one-to-
one transforms. However, this is not the only possible choice

and, when data are sparse, the choice of the prior is important.
In order to validate that this is a reasonable choice, I compare it
to the prior from Gregory (2005), the frequentist solution from
Li & Ma (1983), and to a simulation.

4.1. Model Comparison

For the On/Off problem, one alternative with informative flat
priors was presented by Gregory (2005). The hypothesis test,
in this case, is dependent on the prior signal upper boundary
λsmax in addition to Non, Noff , and α. Therefore, reasonable
assumptions on the signal upper boundary λsmax have to be
made in order to compare Equations (14) and (24) of Gregory
(2005) with Equation (23). The signal posteriors, however, can
be compared directly as they depend only on the three initial
parameters in both cases.

The hypothesis test comparison is shown in Figure 1.
Figures 1(a)–(c) show the situation for a typical low-count case
with α = 0.2 and an assumed λsmax = 22, such that a signal
detection with that strength would be without any doubt. Gre-
gory’s prior shows similar behavior to Jeffreys’s prior, but is
slightly shifted towards higher probabilities for the null hypoth-
esis P (H0|Non, Noff) or lower significance Sb (Equation (27)). In
Figure 1(c), one can see the limiting curve for which Non, given
Noff , the significance Sb is !3 or !5. This shows that when it
comes to decision making in the low-count regime, both models
are mostly within one count of each other.

Figure 1(d) shows a comparison of the different priors
for high-count numbers with α = 0.2, Noff = 300, and
λsmax = 170. Additionally, the methods are compared to the
frequentist result of Li & Ma (1983) and Equation (17). Both
methods appear to converge on Li & Ma’s result for large number
counts, but Jeffreys’s prior gives a closer approximation. From

4

Comparison of significance obtained in the large counts regime between two 
priors and with Li & Ma (from Knoetig 2024).
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The generic purpose of a model selection statistic is to set up a tension between the predictiveness of a 
model (for instance indicated by the number of free parameters) and its ability to fit observational data. 
Oversimplistic models offering a poor fit should of course be thrown out, but so should more complex 
models that offer poor predictive power. 

There are two main types of model selection statistic that have been used in the literature so far. 
Information criteria look at the best-fitting parameter values and attach a penalty for the number of 
parameters; they are essentially a technical formulation of "chi-squared per degrees of freedom" 
arguments. By contrast, the Bayesian evidence applies the same type of likelihood analysis familiar from 
parameter estimation, but at the level of models rather than parameters. It depends on goodness of fit 
across the entire model parameter space.

(Liddle & al., 2006 – Astronomy & Geophysics, Volume 47, Issue 4, pp. 4.30-4.33)

3. Model selection
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ABSTRACT
Model selection is the problem of distinguishing competing models, perhaps featuring differ-
ent numbers of parameters. The statistics literature contains two distinct sets of tools, those
based on information theory such as the Akaike Information Criterion (AIC), and those on
Bayesian inference such as the Bayesian evidence and Bayesian Information Criterion (BIC).
The Deviance Information Criterion combines ideas from both heritages; it is readily com-
puted from Monte Carlo posterior samples and, unlike the AIC and BIC, allows for parameter
degeneracy. I describe the properties of the information criteria, and as an example compute
them from Wilkinson Microwave Anisotropy Probe 3-yr data for several cosmological models.
I find that at present the information theory and Bayesian approaches give significantly different
conclusions from that data.

Key words: methods: data analysis – methods: statistical – cosmology: theory.

1 I N T RO D U C T I O N

Although it has been widely recognized only recently, model selec-
tion problems are ubiquitous in astrophysics and cosmology. While
parameter estimation seeks to determine the values of a parameter
set chosen by hand, model selection seeks to distinguish between
competing choices of parameter set. A considerable body of statis-
tics literature is devoted to model selection [excellent textbook ac-
counts are given by Jeffreys (1961), Burnham & Anderson (2002),
MacKay (2003) and Gregory (2005)] and its use is widespread
throughout many branches of science. For a non-technical overview
of model selection as applied to cosmology, see Liddle, Mukherjee &
Parkinson (2006a), and for an overview of techniques and applica-
tions see Lasenby & Hobson (2006).

In general, a model is a choice of parameters to be varied and a
prior probability distribution on those parameters. The goal of model
selection is to balance the quality of fit to observational data against
the complexity, or predictiveness, of the model achieving that fit.
This tension is achieved through model selection statistics, which
attach a number to each model enabling a rank-ordered list to be
drawn up. Typically, the best model is adopted and used for further
inference, such as permitted parameter ranges, though the statistics
literature has also seen increasing interest in multimodel inference
combining a number of adequate models (e.g. Hoeting et al. 1999;
Burnham & Anderson 2004).

There are two main schools of thought in model selection.
Bayesian inference, particularly as developed by Jeffreys culminat-
ing in his classic textbook (Jeffreys 1961) and by many others since,
can assign probabilities to models as well as to parameter values,
and manipulate these probabilities using rules such as Bayes’ the-
orem. Information-theoretic methods, pioneered by Akaike (1974)

⋆E-mail: a.liddle@sussex.ac.uk

with his Akaike Information Criterion (AIC), instead focus on the
Kullback–Leibler information entropy (Kullback & Leibler 1951)
as a measure of information lost when a particular model is used
in place of the (unknown) true model. Variants on this latter theme
include the Takeuchi Information Criterion (TIC, Takeuchi 1976),
which extends the AIC by dropping the assumption that the model
set considered includes the true model. Bayesian statistics include
the Bayesian evidence and an approximation to it known as the
Bayesian Information Criterion (BIC, Schwarz 1978), which, de-
spite the name, does not have an information-theoretic justification.

Given the plethora of possible statistics, one might despair as to
which to use, especially if they give conflicting results. Cosmolo-
gists, in particular, tend to ally themselves with a Bayesian method-
ology, for example the use of Markov Chain Monte Carlo (MCMC)
methods to carry out parameter likelihood analyses, and are there-
fore tempted to adopt methods advertised as such. However, even
if one were to side automatically against frequentist approaches,
the situation does not appear that clear-cut; Burnham & Anderson
(2004) have argued that the AIC can be derived in a Bayesian way
(and the BIC in a frequentist one), and that one should not casu-
ally dismiss a criterion soundly grounded in information theory.

Nevertheless, in my view the Bayesian evidence is the preferred
tool; in Bayesian inference it is precisely the quantity which up-
dates the prior model probability to the posterior model probability,
and has an unambiguous interpretation in these probabilistic terms.
The problem with the evidence is the difficulty in calculating it
to the required accuracy, though the situation there has improved
with the development of the nested sampling algorithm (Skilling
2006) and its implementation for cosmology in the CosmoNest
code1 (Mukherjee, Parkinson & Liddle 2006; Parkinson, Mukherjee
& Liddle 2006). This Letter is principally directed at circumstances

1 http://cosmonest.org

C⃝ 2007 The Author. Journal compilation C⃝ 2007 RAS
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Akaike Information Criterion (AIC). 

This was derived by Hirotugu Akaike in 1974, and takes the form 

where k is the number of parameters in the model. The subscript “max” indicates that one should find the parameter 
values yielding the highest possible likelihood within the model. This second term acts as a kind of “Occam factor”; 
initially, as parameters are added, the fit to data improves rapidly until a reasonable fit is achieved, but further 
parameters then add little and the penalty term 2k takes over. The generic shape of the AIC as a function of number of 
parameters is a rapid fall, a minimum, and then a rise. The preferred model sits at the minimum.

The AIC was derived from information-theoretic considerations, specifically an approximate minimization of the 
Kullback–Leibler information entropy which measures the distance between two probability distributions.

(Liddle & al., 2006)

<latexit sha1_base64="dVLzviphFsvedG15fEiPJ94Y7v4="></latexit>

AIC = �2 lnLmax + 2k
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Outline of Akaike's derivation

1. max log-likelihood ratio between conjectured model (k-dimensional parameter vector) and true model (L-dimensional parameter vector)

2. this depends on the dataset, which is distributed according to the true model; in order to get rid of the fluctuations, we average the max log-
likelihood over the true distribution

3. here we remark that: 
• this is purely theoretical, since we do not know the true pdf
• the r.h.s. expression is the negative of the Kullback-Leibler divergence between the conjectured and the true pdf
• the r.h.s. expression can be written as

<latexit sha1_base64="dzmWxx7aRgGu9C+jq25UNgGbOAQ=">AAACKnicbZDLSsNAFIYnXmu9VV26CRahBSmJSHVZdOOygr1AE8tkOmmHTiZh5kQsMS/hc/gAbvUR3BW3gq/htM3Ctv4w8POdczhnfi/iTIFljY2V1bX1jc3cVn57Z3dvv3Bw2FRhLAltkJCHsu1hRTkTtAEMOG1HkuLA47TlDW8m9dYjlYqF4h5GEXUD3BfMZwSDRt3CmcOF40tMEr/09OwMMDgwoIAfktKwnJbTGZ6ictotFK2KNZW5bOzMFFGmerfw4/RCEgdUAOFYqY5tReAmWAIjnKZ5J1Y0wmSI+7SjrcABVW4y/VVqnmrSM/1Q6ifAnNK/EwkOlBoFnu4MMAzUYm0C/6t1YvCv3ISJKAYqyGyRH3MTQnMSkdljkhLgI20wkUzfapIB1hmBDnJui8f6TIBK8zoZezGHZdM8r9jVSvXuoli7zjLKoWN0gkrIRpeohm5RHTUQQS/oDb2jD+PV+DTGxtesdcXIZo7QnIzvX16PqFY=</latexit>
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Outline of Akaike's derivation

4. the second term in the expansion is unknown, but it is a constant and we can get rid of it, and change sign as well (with an additional factor 2, 
see later), so that by minimizing the first term we actually minimize the KL divergence

5. going back to Wilks' theorem, we know that the remaining L-k degrees of freedom in the likelihood ratio are (asymptotically) normally 
distributed, therefore the -2log has a chi-square distribution with L-k degrees of freedom, with mean value L-k, and therefore the required mean 
value has an asymptotic bias 2(L-k); using the max likelihood as an estimator of the mean, we find that the discrepancy expressed by the 
equation above can be written as 

after dropping the constant L 

<latexit sha1_base64="BIcDNYMfmwll+Ikxhc/lu+pHwJI=">AAACH3icbVDLSsNAFJ34tr6qLt2MFqEilqRIdVl041LBaqGJZTKdtEMnkzBzI5aYtd/hB7jVT3AnbvsF/obTNgurHrhwOOde7r3HjwXXYNtDa2Z2bn5hcWm5sLK6tr5R3Ny60VGiKGvQSESq6RPNBJesARwEa8aKkdAX7Nbvn4/823umNI/kNQxi5oWkK3nAKQEjtYu7R1VXyDQoPzy6PQIu9BiQu7TcP8gOMnyIq/12sWRX7DHwX+LkpIRyXLaLX24noknIJFBBtG45dgxeShRwKlhWcBPNYkL7pMtahkoSMu2l41cyvG+UDg4iZUoCHqs/J1ISaj0IfdMZEujp395I/M9rJRCceimXcQJM0smiIBEYIjzKBXe4YhTEwBBCFTe3YtojilAw6U1t8XmXS9BZwSTj/M7hL7mpVpxapXZ1XKqf5RktoR20h8rIQSeoji7QJWogip7QC3pFb9az9W59WJ+T1hkrn9lGU7CG3wotokI=</latexit>
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Bayesian Information Criterion (BIC). 

This was derived by Gideon Schwarz in 1978, and strongly resembles the AIC. It is given by 

where N is the number of datapoints. Since a typical dataset will have ln N > 2, the BIC imposes a stricter penalty against 
extra parameters than the AIC. 

It was derived as an approximation to the Bayesian evidence, to be discussed next, but the assumptions required are very 
restrictive and unlikely to hold in practice, rendering the approximation quite crude.

(Liddle & al., 2006)
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BIC = �2 lnLmax + k lnN
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Bayesian evidence

Model selection aims to determine which theoretical models are most plausible given some data, without 
necessarily considering preferred values of model parameters.

Ideally, we would like to estimate posterior probabilities on the set of all competing models using Bayes' theorem: 

and select the best model using the odds ratio

or the Bayes factor, if we assume equal prior probabilities for the different models: 

<latexit sha1_base64="Y21N3KxmRkgcJ0a4wTkDceZtDRQ="></latexit>

P (Mi|D, I) =
P (D|Mi, I)P (Mi|I)P
k P (D|Mk, I)P (Mk|I)

<latexit sha1_base64="qdiBFjrwCvUtWvzD6i0eP9oGjTc="></latexit>

Bi,j =
P (D|Mi, I)

P (D|Mj , I)

<latexit sha1_base64="W/MQmxqNvl1Il2DidQgQWlD9YCQ=">AAACe3icbZHfSuQwFMbT6u6Oo7uO66U3wUHQZRhacdWbAVEv3IvFWdhRYWYop2mqGdOmJOnCUPt+voIv4a3eCCbtCP7ZA4GP3/lyknwJM86U9rw7x52b//T5S2Ohubj09dtya+X7mRK5JHRABBfyIgRFOUvpQDPN6UUmKSQhp+fh9ZHtn/+jUjGR/tXTjI4TuExZzAhog4JWOEpAXxHgxWkZFKwzKXujWAIp+pu/A3Zz3Pm1VVZ6Umvcw/jFcHxjLAbi2ls7LZy8wImFQavtdb2q8Efhz0QbzaofrDjOKBIkT2iqCQelhr6X6XEBUjPCadkc5YpmQK7hkg6NTCGhalxUYZR4w5AIx0KalWpc0dc7CkiUmiahcdqnq/c9C//XG+Y63h8XLM1yTVNSHxTnHGuBbbI4YpISzadGAJHM3BWTKzBRaZP/m1PsbC0EV2YIRBGzXwEcW4wr3mya0Pz3EX0UZ9tdf7e7+2enfXA4i6+B1tA62kQ+2kMH6AT10QARdIvu0QN6dJ7ctvvD7dRW15ntWUVvyv35DGbXvuY=</latexit>

Oi,j =
P (Mi|D, I)

P (Mj |D, I)
=

P (D|Mi, I)P (Mi|I)

P (D|Mj , I)P (Mj |I)
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Thus, we see that the Bayes factor is a ratio of evidences

As usual, each evidence is obtained by marginalizing the likelihood with respect to the (potentially different) 
parameters:

<latexit sha1_base64="qdiBFjrwCvUtWvzD6i0eP9oGjTc="></latexit>

Bi,j =
P (D|Mi, I)

P (D|Mj , I)

<latexit sha1_base64="BWJIoxYaQotCmXF1d8cDOP2V06c="></latexit>

P (D|Mi, I) =

Z

⇥i

P (D|✓i,Mi, I)p(✓i|Mi, I)d✓i
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The evidence of a model is thus the average likelihood of the model in the prior. 

Unlike the AIC and BIC, it does not focus on the best-fitting parameters of the model but asks “of all the parameter 
values you thought were viable before the data came along, how well on average did they fit the data?”. Literally, it is the 
likelihood of the model given the data. 

The evidence rewards predictability of models, provided they give a good fit to the data, and hence gives an axiomatic 
realization of Occam's razor. 

A model with little parameter freedom is likely to fit data over much of its parameter space, whereas a model that could 
match pretty much any data that might have cropped up will give a better fit to the actual data but only in a small region 
of its larger parameter space, pulling the average likelihood down.

(Liddle & al., 2006)
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Which statistics?

Of these statistics, we would advocate using – wherever possible – the Bayesian evidence, which is a full implementation 
of Bayesian inference and can be directly interpreted in terms of model probabilities. It is computationally challenging to 
compute, being a highly peaked multidimensional integral, but recent algorithm development has made it feasible in 
cosmological contexts. 

If the Bayesian evidence cannot be computed, the BIC can be deployed as a substitute. It is much simpler to compute as 
one need only find the point of maximum likelihood for each model. However, interpreting it can be difficult. Its main 
usefulness is as an approximation to the evidence, but this holds only for gaussian likelihoods and provided the 
datapoints are independent and identically distributed. The latter condition holds poorly for the current global 
cosmological dataset, though it can potentially be improved by binning of the data, hence decreasing the N in the penalty 
term.

The AIC has been widely used outside astrophysics but is of debatable utility. It has been shown to be “dimensionally 
inconsistent”, meaning that it is not guaranteed to give the right result even in the limit of infinite unbiased data. It may 
be useful for checking the robustness of conclusions drawn using the BIC. The evidence and BIC are dimensionally 
consistent.

(Liddle & al., 2006)



Our next important topic: Bayesian estimates often require complex 
numerical integrals. How do we confront this problem? 

          enter the Monte Carlo methods!

1. acceptance-rejection sampling
2. importance sampling
3. statistical bootstrap
4. Bayesian methods in a sampling-resampling perspective
5. Introduction to Markov chains and to Random Walks (RW)
6. Simulated annealing
7. The Metropolis algorithm
8. Markov Chain Monte Carlo (MCMC)
9. The Gibbs sampler
10. The efficiency of MCMC algorithms
11. Affine-invariant MCMC algorithms (EMCEE)
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Example: generation of beta-distributed random numbers

<latexit sha1_base64="ei9sgycMZZ8H3f91w1RvpTPRbeY="></latexit>

p(x) =
xa(1� x)b

B(a+ 1, b+ 1)

<latexit sha1_base64="uS2U2xtj0MozHajZ6QMo/LrB4rQ="></latexit>

xmax =
a

a+ b
normalized distribution           unnormalized distribution   modal value

<latexit sha1_base64="PuTFtfbo3TNEiLQ6wQkAbkOSme4=">AAACL3icbVBNSwJBGJ7p0+xLC7p0GZJAD8muRHUJpC4dDVIDU3l3dqzB2Z1lZjaUzT/TtS79mugSXfsXzaqHzB4YeHie92seLxJcG8f5wAuLS8srq5m17PrG5tZ2Lr/T0DJWlNWpFFLdeqCZ4CGrG24Eu40Ug8ATrOn1L1O/+ciU5jK8McOItQO4D3mPUzBW6ub2oq5THJTIOUkGHSBF92hQ6nijbq7glJ0xyDxxp6SApqh18xjf+ZLGAQsNFaB1y3Ui005AGU4FG2XvYs0ioH24Zy1LQwiYbifjD4zIoVV80pPKvtCQsfq7I4FA62Hg2coAzIP+66Xif14rNr2zdsLDKDYspJNFvVgQI0maBvG5YtSIoSVAFbe3EvoACqixmc1sSWcbKYW2Q8D3eRofCJLKZKxnszY0929E86RRKbsn5cr1caF6MY0vg/bRASoiF52iKrpCNVRHFD2hZ/SCXvEbfsef+GtSuoCnPbtoBvj7B1Kepf8=</latexit>

p0(x) = xa(1� x)b

24
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<latexit sha1_base64="sIJDvKhoJ7kUt6o2CjilJdNwqdI=">AAACGHicbVA7T8MwGLR5lvBqYWSxqJCYqqRCwFjBwthK9CG1UeU4TmvVsSPbQVRRfwErLPwaNsTKxr/BaTPQlpMsne6+ly9IONPGdX/gxubW9s5uac/ZPzg8Oi5XTjpaporQNpFcql6ANeVM0LZhhtNeoiiOA067weQ+97tPVGkmxaOZJtSP8UiwiBFsrNR6Hparbs2dA60TryBVUKA5rEA4CCVJYyoM4Vjrvucmxs+wMoxwOnMGqaYJJhM8on1LBY6p9rP5pTN0YZUQRVLZJwyaq387MhxrPY0DWxljM9arXi7+5/VTE936GRNJaqggi0VRypGRKP82CpmixPCpJZgoZm9FZIwVJsaGs7Qln22k5NoOwWHI8pwwR7mM5rrj2NC81YjWSade865r9dZVtXFXxFcCZ+AcXAIP3IAGeABN0AYEUPACXsEbfIcf8BN+LUo3YNFzCpYAv38BSBee+Q==</latexit>x

generated pairs 
(red = accepted pairs)

normalized histogram of the 
accepted x's

comparison with the plot of the 
normalized beta distribution 
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f x( ) = 2
π
exp − x

2

2
⎛
⎝⎜

⎞
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x ≥ 0

g x( ) = exp −x( )
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Example: random numbers with semi-Gaussian distribution from exponentially distributed random 
numbers.



f x( ) = 2
π
exp − x

2

2
⎛
⎝⎜

⎞
⎠⎟

x ≥ 0

g x( ) = exp −x( )

⇒
f x( ) = cg x( )
′f x( ) = c ′g x( )

⎧
⎨
⎪

⎩⎪
⇒

2
π
exp − x

2

2
⎛
⎝⎜

⎞
⎠⎟
= cexp −x( )

x 2
π
exp − x

2

2
⎛
⎝⎜

⎞
⎠⎟
= cexp −x( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⇒ x = 1; c = 2
π
exp − x

2

2
+ x

⎛
⎝⎜

⎞
⎠⎟
≈1.31549

Definition of contact point (to maximize efficiency)
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Short summary: 

1. we create a data set by randomly sampling from the exponential distribution

2. we use the acceptance-rejection algorithm to resample the data set with the target 
distribution (the half-Gaussian)

This is a sampling – resampling technique (see later ... )

33



Notice that in this method we generate pairs of real numbers that are uniformly distributed 
between f(x) and the x-axis, therefore we can use these pairs to estimate the total area 
under the curve

(here the reference area is the area of the enclosing rectangle which corresponds to a uniform distribution)  

area =
# of accepted pairs

# of pairs
reference area
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In general, if                , where p is a pdf h x( ) = f x( ) p x( )

h x( )dx
a

b

∫ = f x( ) p x( )dx
a

b

∫ = Ep f x( )⎡⎣ ⎤⎦ ≈
1
N

f xn( )
n=1

N

∑

and we find that the variance of this estimate of the integral is

1
N

1
N −1

f xn( ) − Ep f x( )⎡⎣ ⎤⎦⎡⎣ ⎤⎦
2

n=1

N

∑⎧
⎨
⎩

⎫
⎬
⎭

We encounter a problem with this method when we must sample functions 
that have many narrow peaks.

here the x are i.i.d with pdf p(x)
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h x( )dx
a

b

∫ = f x( ) p x( )dx
a

b

∫ = f x( ) p x( )
q x( )

⎡

⎣
⎢

⎤

⎦
⎥q x( )dx

a

b

∫

= Eq f x( ) p x( )
q x( )

⎡

⎣
⎢

⎤

⎦
⎥ ≈

1
N

f xn( ) p xn( )
q xn( )n=1

N

∑

this pdf is troublesome ...  therefore, we use this ...

These methods are still not very efficient and there is a better alternative, the Markov Chain Monte Carlo method 
(see later)
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here the x are i.i.d with pdf q(x)

36

2. Importance sampling



The bootstrap method is a resampling 
technique that helps calculating many 
statistical estimators
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3. An important resampling technique: the Bootstrap method (B. Efron, 1977)
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Bootstrap recipe: 

if you need to find the distribution of the mean 
(or any other statistical estimator) use the 
dataset itself to generate new datasets

 resample from dataset (with replacement)
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bootstrap estimate of correlation 
coefficient distribution

Example from Di Ciccio & Efron, Statistics of Science 11 (1996) 189 and Efron, Statistics of Science 13 (1998) 95

counts of CD4 limphocytes
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See Python example ... 




