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Our next important topic: Bayesian estimates often require complex
numerical integrals. How do we confront this problem?

» enter the Monte Carlo methods!

. acceptance-rejection sampling

. importance sampling

. statistical bootstrap

. Bayesian methods in a sampling-resampling perspective
Introduction to Markov chains and to Random Walks (RW)
. Simulated annealing

. The Metropolis algorithm

Markov Chain Monte Carlo (MCMC)

. The Gibbs sampler

10. The efficiency of MCMC algorithms

11. Affine-invariant MCMC algorithms (EMCEE)
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4. Bayesian methods in a sampling-resampling perspective (Smith & Gelfand, 1992)

Bayesian Statistics Without Tears:
A Sampling—-Resampling Perspective
A. F. M. SMITH and A. E. GELFAND*

Even to the initiated, statistical calculations based on
Bayes’s Theorem can be daunting because of the nu-
merical integrations required in all but the simplest ap-
plications. Moreover, from a teaching perspective, in-
troductions to Bayesian statistics—if they are given at
all—are circumscribed by these apparent calculational
difficulties. Here we offer a straightforward sampling—
resampling perspective on Bayesian inference, which
has both pedagogic appeal and suggests easily imple-
mented calculation strategies.
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In Bayesian methods we have to evaluate many integrals, like, e.q.,

1(0; x)p(6)
f 1(0‘ x)p(g) do normalization (evidence)

p(6lx) =

p(plx) = fp((ba Ylx) dp. €—— marginalization

E[m(ﬁ)lx] = fm(g)pw,x) d94/ averages (statistical estimators)
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except in simple cases, explicit
evaluation of such integrals will rarely be possible, and
realistic choices of likelihood and prior will necessitate
the use of sophisticated numerical integration or ana-
lytic approximation techniques (see, for example, Smith
et al. 1985, 1987; Tierney and Kadane, 1986). This can
pose problems for the applied practitioner seeking rou-
tine, easily implemented procedures. For the student,
who may already be puzzled and discomforted by the
intrusion of too much calculus into what ought surely
to be a simple, intuitive, statistical learning process, this
can be totally off-putting.
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Bayesian learning as a resampling procedure (importance sampling-
like scheme)

\ /K 1. prior distribution defined

2. the Likelihood distorts by the empirical distribution
the distribution of initial of the initial samples
samples (corresponds to

3. the posterior distribution is a sample acceptance (sampling)

represented by the resampled probability)

empirical distribution
(resampling))
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Example (McCullagh & Nelder): take two sets of binomially
distributed independent random variables X;; and X, (i=1,2,3)

X, = Binomial(nl.l,é?l)
X, = Binomial(ni2 ,92)

The observed random variables are the sums

Y, =X, + X,

-

3
likelihood = [ [ ) (”1> ( e )9{1 (1 — Oy)" 7205 773 (1 — fg)mi2—vits

i1 57\ Ji ) \Yi— Ji

maX(O,yi — niz) <7 < min(”ilv yz)
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Sample data

~N| O O =
o &~ O|DN

OO bW
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Example of implementation in Python (see Jupyter notebook)
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prior distribution
(50000 samples, uniform in 2D parameter space)
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The resampled points are representative of the posterior distribution and can be used to
evaluate any sample estimate
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... these calculational methodologies have also had an impact on
theory. By freeing statisticians from dealing with complicated

calculations, the statistical aspects of a problem can become the main
focus.

Casella & George, in their description of the Gibbs sampler. Am. Stat. 46 (1992) 167



5. Very short introduction to Markov chains

Consider a system such that
e the system can occupy a finite or countably infinite set of states Sj;
e the system changes state randomly at discrete times t = 1,2, .. .;

e if the system is in state S;, then the probability that the system goes into
state S; is

p;j:P[S(n—l—l):5j|5(n):S,-] j=12,...

i.e., this probability depends only on the previous state, and is independent
o all previous states (this is the Markov property);

e the transition probabilities p;; do not depend on time n.

Such a system is a special type of discrete time stochastic process, which is
called Markov chain.



Example:

in the Land of Oz they never have two nice days in a row, rather, after a sunny day it either rains or snows.

If they have a nice day, they are just as likely to have snow as rain the next day. If they have snow or rain, they have
an even chance of having the same the next day. If there is change from snow or rain, only half of the time is this a
change to a nice day. When we denote the three states with the symbols N (Nice), R (Rain), or S (Snow), the

transition probabilities are:

pny =0;  pnr=1/2; pns=1/2
prn =1/4; prr =1/2; prs =1/4
psy =1/4; psr=1/4; pss=1/2

1/2

(representation as a
directed graph)
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Matrix of transition probabilities (also called transition kernel)

PNN  PNR PNS 0 1/2 1)2
P=1 prnv PrRrR PrRs | =] 1/4 1/2 1/4
PSN PSR Pss 1/4 1/4 1/2

This is a row stochastic matrix, where all rows are such that
> jpij =1

There are also column stochastic matrices, and doubly stochastic matrices that are necessarily square:

ZZPU—Zl—n

=1 =1

Sy p=Y 1=m

j=1i=1 j=1
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Discrete-time discrete-space random walks are an example of Markov chains with infinite states.

Pii+1 = Py Pii-1 = (q
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Now let

7T1(n) = P[S(n) = S/

be the probability that at time n the system is in state S;, then:

r{ ) = ZP n+1) = S;S(n) = S;]P[S(n) = S;] =Y piym"”
When we define the vector 7r(") = {775.”)} and the matrix P = {p;;} we see that the equation becomes

(1) _ _(n)p

(1) _ (0)pn

\

n-step transition kernel
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For example, the transition kernels for the weather in the Land of Oz are

0 05 0.5 P

P=1| 025 05 025 »

0.25 0.25 0.5

the transition kernels
seem to converge to

a fixed matrix ... \ p20

PlOO

[ 0.25
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Notice that if the transition kernel converges to a fixed matrix where all rows are equal, then the distribution of
states also converges to a fixed distribution which does not depend on the initial distribution:

Pn > POO (POO)i,j — fj

n—roo all rows equal

4

o0 0 0
r2 =Y m Py = m i =
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Persistent and transient states ...

Type of state

Definition of state (assuming, where applicable,
that the state is initially occupied)

Periodic

Aperiodic

Recurrent /Persistent
Transient

Ephemeral
Positive-recurrent

Null-recurrent
Ergodic

Return to state possible only at times t, 2t, 3t,
..., wheret>1

Not periodic

Eventual return to state certain

Eventual return to state uncertain

s a state j such that p;; = 0 for every i
Recurrent/persistent, finite mean recurrence
time

Recurrent, infinite mean recurrence time
Aperiodic, positive-recurrent




This graph represents the states and the transition probabilities of a finite Markov chain with 6 states.

The arrows correspond to nonzero transition probabilities. If the chain starts with any one of states A, B, Cor D, it can loop
around these four states until a transition D to E occurs, then the system is locked in the E-F loop.

States A, B, C, and D are transient, while states E and F are persistent (and periodic, with period 2). A Markov chain with
just one class, such that all states communicate, is said to be irreducible. This Markov chain is not irreducible.

VERY INTERESTING MATH ON PERSISTENT STATES, HOWEVER WE DO NOT PURSUE IT FURTHER, WE DO NOT NEED IT NOW.
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Limiting probabilities and stationary distributions

Here we prove that the convergence that we saw in the Land of Oz example is a general feature of Markov
chains, under the assumption that the chain is irreducible, and that for some N we have

min p,(jN) =0>0
iJj

Now let

P = min p

(n). (n) (n)
J Rj

i — Maxpj;

be the min and max of the j-the column vector in the n-step transition matrix.



Recall the example:
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we shall show that, in each
column, the min and the max
become closer and closer as n
grows and bracket a value that is
the asymptotic matrix element
(the same for all rows in a given
column)
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Then we find

rj(”H) — ml_in pfjﬁl) = mm P”Jrl — mln(PP”),J = mm Zp,kp(n)
> m_in Zpikrj(n) _ rj( n)
"k
and

R( 1) = max p,(J 1) = max P"Jr1 — max(PP”),J — mapr,kp(")

< mapr,kR(") R(n)

This means that, as n grows, the minimum and the maximum values in a column vector get closer and closer
(the components of the column vector get closer and closer). But do they converge to the same value ???
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We must consider the difference

Rgn) — r](-n) — maxpgj) mkinp,i?) = max [pgj) p,(w)}

Then, shifting the difference by N, we find

(n+N) (n+N) _ (n+N) _ (n+N)| _ (V) (N) | ()
el g

Next we split the difference enclosed in braces into sums of negative and positive contributions

_+_
N N N N (N)1_(n
Z [pgl ) pl(cl )} plj = ZPE; ) pl(cl : ng) + Zpil ) pk:l )]p( )
l l

IA

_|_
N N »(n N N
D by — IR ”+Zp§l> pia 1™
l
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Now consider the structure of the positive sum, it must contain at least one term where one subtracts the smallest element
in the column, so that

4
Z[pElN) _pk:l Zp Zpkl ) < ZP(N) —9

l

Similarly, for the negative sum we find

N — (N N
Z[p( )_pkzl Zp _Zpl(cl) Zd—zpl(ql) =—(1-9)
l l l
and therefore

+

(N) _ (N) (N) _ (N)1p(n) (N) (N) ()
3 [ o] < S -+ S )
l l

(1—-0R"™ — (1~ 5)r§”> = (1-8)(R™ — ™)

J

IA

so that taking strides of N steps at a time, and recallingthat 0 <1 —90 < 1

R§kN) _ BN (1 —6)" {Rg-N) — r(.N)} —0

J J k— oo
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Since

R§-kN) _ N (1—6)k [R§N) — r(.N)} — 0

J J k— o0

the matrix elements in the j-th column converge to a single value pj’-", i.e.,

p;; = lim [P"];; = pf

n—o0o

and

=2 ﬂ-/(<0)p/tj Z 7r1(<0)pj* =
k
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This asymptotic distribution is stable, indeed from

(") = Z 11 b

we find
[m*P]; = Zﬂzpkj = szpkj — Zp;kkpkj — p;'kj — Pf - 7TJ>'k
k k k
or, in matrix form
™ =7"P

i.e., the asymptotic probability vector is the left eigenvector with eigenvalue 1 of
the transition probability matrix. The distribution expressed by the probability
vector 7* is called invariant distribution or stationary distribution.
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