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Our next important topic: Bayesian estimates often require complex
numerical integrals. How do we confront this problem?

» enter the Monte Carlo methods!

. acceptance-rejection sampling

. importance sampling

. statistical bootstrap

. Bayesian methods in a sampling-resampling perspective

. Introduction to Markov chains and to Random Walks (RW)
. Detailed balance and Boltzmann's H-theorem

. The Gibbs sampler

. Simulated annealing and the Traveling Salesman Problem (TSP)
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. The Metropolis algorithm
10. Markov Chain Monte Carlo (MCMC)
11. Affine-invariant MCMC algorithms (EMCEE)

Edoardo Milotti - Bayesian Methods - Spring 2024 2



6. Detailed balance and Boltzmann's H-theorem

From the definition of conditional probabilities we find

P[S(n) =S;and S(n+1) = 5;] = P[S(n) = S;|S(n+1)=5,|P[S(n+1) =
i)

= P[S(n+1) = 5;|S(n) = S;|P|S(n) =5;
therefore, when a Markov chain is time reversed we find

P[S(n) — 5,-|5(n + 1) — Sj]
P[5(n) = Si]
P[S(n + 1) = Sj]

= P[S(n+1) = S5;|S(n) = S/]

()
T -
P[S(n) = S,-\S(n + 1) = Sj] = p;jm
i
which shows that the reversed chain is time-dependent.
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Howeuver, if states are distributed according to the invariant distribution, we have

*
7.(-I

PIS(n) = SiS(n+1) = S]] = pyj

a*
J

which means that the backward transition probabilities are again time-independent, and in particular they
must coincide with the forward transition probabilities, i.e.,

pjiT; = PijT;
a condition which is called detailed balance.

So, if stationary distribution then detailed balance ... however the reverse also holds

+1
(n ) _ Zﬂ pij = Zﬂ( )PJ, _ 7T( )ZPJ' _ 7T(n)
i.e., a distribution is stationary if and only if it satisfies the condition of detailed balance
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Physical aside: continuous-time Markov processes

The time-dependence of the reversed chain is a manifestation of the dissipative character of the chain. Another important
related result is the validity of the H-theorem for Markov processes.

In the case of continuous-time processes we can write

P <5ik’ tkv Sik—l' tk_]_, C e 5,’0, to) =
— P (Sikv tk|5ik_1, tik—1,...; 5,'0, to) P (S,'k_l, tk—1,...; Sio' to)

Memoryless processes

P (S;k, Lk; Sik—l’ te—1;...; 5,'0, to) =P (S;k, tk)

Markov processes

P (S;k, Lk, S;k_l, tk—1,...; 5,’0, to) =P (Sik, tk‘S,’k_l, tk—l) P (Sik—l' tk—l)
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For Markov processes the following equation also holds

P(S, t+ At) = P(S,, t)+
+ ) [P (Sn t+ At]S;, t) P(Sj, t) — P(Sj, t + At|Sn, t) P(Sh, t)]

J

(master equation).
When we assume that the transition probabilities are time-invariant, and we define the transition rates T
P(Sh t+ At|Sj, t) =T, jAt

we find the differential form of the master equation

d
EP Sn,t Z[T”JP Sj,t) T',n'D(Smt)]
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Using the previous notation for the probability distribution on states, we can rewrite the master equation
as follows

dm,
P — ; [Tn,jﬂ'j(t) — Tj,nﬂ'n(t)]

Next, we assume that transition probabilities are "reversible"

so that

d,
Gt = 3 T mte) = ma(o)

and therefore, at equilibrium
all states are

Z Tn,j (7'(']* — W:) =0 » ﬂ'f = 71';'; equally likely at
J

equilibrium
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Now consider the following sum

H ~ —5¢g

H=> m,inm, ' g

Using the master equation we find a differential equation for H

Exchanging indexes ...

dm,

7T,A,|n7r,7 :Z 07

n

(Inm, 4+ 1)

=> Thj(m -
nJ

7TJ') (In7rj+1)
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Adding the two differential equations we find

dH 1
=5 ZT,U- (mn — ;) (Inm; —In7y)
n,j

Since
(mp — ) (In7; — Inmy) <0
we find
dH
dt S O Boltzmann's H-theorem

The derivative vanishes at equilibrium, and we find that it is a stable point for H. Since H is essentially the negative of
Gibbs' entropy, the theorem states that the entropy of a Markov chain increases up to a maximum which is reached at
equilibrium.
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7. The Gibbs sampler

(adapted from Casella and George,
Explaining the Gibbs sampler Am.Stat. 46 (1992) 167 )

Suppose we are given a joint density f(x, y;, . . .,
y,), and are interested in obtaining characteristics of
the marginal density

f(x) =f...jf(x,y1,...,yp) dy, . ..dy,, (2.1

such as the mean or variance. Perhaps the most natural
and straightforward approach would be to calculate f(x)
and use it to obtain the desired characteristic. However,
there are many cases where the integrations in (2.1) are
extremely difficult to perform, either analytically or nu-
merically. In such cases the Gibbs sampler provides an
alternative method for obtaining f(x).

Rather than compute or approximate f(x) directly,
the Gibbs sampler allows us effectively to generate a
sample X, . . . , X,, ~ f(x) without requiring f(x). By
simulating a large enough sample, the mean, variance,
or any other characteristic of f(x) can be calculated to
the desired degree of accuracy.
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To understand the workings of the Gibbs sampler,
we first explore it in the two-variable case. Starting with
a pair of random variables (X, Y), the Gibbs sampler
generates a sample from f(x) by sampling instead from
the conditional distributions f(x | y) and f(y | x), dis-
tributions that are often known in statistical models.
This is done by generating a “Gibbs sequence’ of ran-
dom variables

Yo, Xo, Y1, X1, Y3, X5, ..., Y3, Xie (2.3)

The initial value Y = y, is specified, and the rest of
(2.3) is obtained iteratively by alternately generating
values from

X ~fx| Y] =y)

1~ 0| X = x). (2.4)

We refer to this generation of (2.3) as Gibbs sampling.
It turns out that under reasonably general conditions,
the distribution of X} converges to f(x) (the true mar-
ginal of X) as k — . Thus, for k large enough, the
final observation in (2.3), namely X; = x;, is effec-
tively a sample point from f(x).
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Let's start with an example, and consider the following joint distribution:

[z, y) (

n
X

We see that f(xz|y) ~ Binomial(n, y)

f(yle) ~ Beta(w + a,n — z + 8)

It is also easy to see that the properly normalized distribution is

>y“;+a—1(1 —y)"_xﬂg_l, r=20,....n 0<y<1

T 1tm11—t ) —1)dt
e = L (et reis o L
F(m+n)
()_(n)F(oz+ﬁ)F(x+a)F(n—x—l—ﬁ) o
» P\T) = . F(Oz)r(ﬁ) F(Oz—l—ﬁ—l—n) marginal distribution
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How do we recover a marginal pdf when we cannot carry out explicit calculations???

We generate a "Gibbs sequence" of random variables
/ / / ! ! 7! ! !
Yo, Xo, Y1, X1, Y3, X5, ..., Y, X,
where the initial values are specified and the others are computed with the rule

X; ~fx|Y; = y))
;+1~f(y Xj’ =xjf)

(Gibbs sampling).

We observe that for large enough k, the final X values have a fixed distribution
that corresponds to the marginal pdf of the x variate.
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Figure 1. Comparison of Two Histograms of Samples of Size
m = 500 From the Beta-Binomial Distribution With n = 16, a = 2,
and B = 4. The black histogram sample was obtained using Gibbs
sampling with k = 10. The white histogram sample was generated
directly from the beta-binomial distribution.



Should we expect this result?

Consider the following expectation value
By [f (xly)] = /Y (aly) () dy = /Y f(a,y)dy = f(x)
therefore we can estimate f(x) with the sum
Fe) = = 3 x| v)

where the y's are generated according to their marginal distribution; finally the Gibbs sampling provides representative
samples that correspond to the marginal distribution of the x's. (for a mathematically accurate proof, check the paper by
Casella&George)
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Does Gibbs sampling converge?

We consider the following case: two discrete random variables with marginally Bernoulli distributions and with a joint

probability distribution described by this matrix

X
0 1
0 P1 P2
Y
1 P3 P4

pi=0,p, + p, + p3 + py

£.,(0,0)  £.,(1,0)
£o,(0,1) £, (1,1)

b

1

P1
P3
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fo = 1£0) (D] =1[p1 + ps p2 + pdl

from the usual formula for
conditional probabilities

f(z,y)
fz ()

=

£.,(0,0)  £.,(1,0)
£o,(0,1) fo,(1,1)

-

ylx —

xly =

D1

P
D3

Pz ]

P1 t D3
P>

P1 + D3
Pa

| P2 T Da

4

P2 t Pa_

P2

P1+ D2
P3

P1 Tt D2
P4

|_P3 + Da4

P>
Pa

D3 t Pa_
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Since we are only interested in the X sequence

P(X] = x| X) = x0) = >, P(X] = x,| Y] =)

y

X P(Y] = y| X = xp).

-

the transition matrix for the X sequence is
Age = AyAyy

This defines the transition probabilities for a Markov chain and from the theory of Markov chains we know that
iterating this produces a fixed probability distribution, i.e., our marginal distribution for X.
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How do we prove that the conditionals determine the marginals? Consider the bivariate case

Suppose that, for two random variables X and Y, we
know the conditional densities fxy(x|y) and
frix(y | x). We can determine the marginal density of
X, fx(x), and hence the joint density of X and Y, through
the following argument. By definition,

£®) = | Frrler, ) dy,

where fyy(x, y) is the (unknown) joint density. Now fx(x) = J Fxiy(x 1) f Frix(y | Ofx(¢) dt dy
using the fact that fxy(x, ¥) = fxy(x | ¥)f¥(y), we have

= f [ f Far® | Y)frix(y | 1) dy]fx(t) dt
fX(x) = fley(x l )’)fY()’) dy’
= f h(x, Dfx(t) dt,

and if we similarly substitute for f,(y), we have
where h(x, 1) = [[ fxpp(x | Wfrix(y | £) dy].
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Let's look at the integral equation, how would it look like in a discrete setting? (in a computer, for instance)

1) = [ L 1) | Frixy | 0fc(0) dt ay

xli = hliilfx]; = «1;[h7);i
:f[fleY(xl)’)fHX()’“) dY]fX(t) dt » fx] XJ:H fx] zj:[f [i[h" ]

= | e 0f2t0) at

or also in vector-matrix notation

fv = fyh'

which is exactly the eigenvalue problem that must be solved to find the asymptotic distribution in Markov processes.
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So, what's the use of all this?

Consider the case where we want to compute the marginal pdf

f(x):f...ff(x,yl,...,yp)dyl...dyp

in a situation where the multidimensional integral can be hard to compute.

The Gibbs sampler completely bypasses the calculation of the multidimensional integral and affords an
easy path to marginalization.

Indeed, the procedure can be easily extended to multidimensional distributions, for example with two
nuisance variables we produce the sequence

’ ’ ’ ’ ’ ’ ’ ’ ’
YO7 ZO) XOa Y17 Zl’ Xla Y27 ZZ) X2a ¢ v

by means of the conditional PDFs
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8. The Traveling Salesman Problem and Simulated Annealing

To introduce the method, we consider the Traveling Salesman Problem (TSP), where we want to find the
shortest closed path that connects N cities.

The problem was first stated by the Viennese mathematician Karl Menger in 1930 and is one of the most
studied problems in combinatorial optimization.

For many up-to-date links, see
http://www.math.uwaterloo.ca/tsp/index.html

See also the history page
http://www.math.uwaterloo.ca/tsp/history/index.html
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12 “cities” randomly distributed in the (0,1) square: the path corresponds to a random permutation of the sequence of
cities.

(path length L=1.93834)
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Paths are enumerated by permutations of “city names”, e.g., {9, 2,7, 8,1, 12, 4,5, 3, 10, 11, 6} (start at 9,

step to 2, and so on until you reach 6 and then return to 9).

The total number of configurations (undirected paths) is

1

—(n—1)!

2

The problem belongs to the class of NP-complete problems (Non-Polynomial complexity, a class of

particularly hard problems)

In such cases there is only one known exact solution: the full enumeration of all paths.
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13 May 1983, Volume 220, Number 4598 SCI E NCE

Optimization by
Simulated Annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi

Summary. There is a deep and useful connection between statistical mechanics
(the behavior of systems with many degrees of freedom in thermal equilibrium at a
finite temperature) and multivariate or combinatorial optimization (finding the mini-
mum of a given function depending on many parameters). A detailed analogy with
annealing in solids provides a framework for optimization of the properties of very
large and complex systems. This connection to statistical mechanics exposes new
information and provides an unfamiliar perspective on traditional optimization prob-
lems and methods.




Approximate solution of the TSP with the Simulated Annealing algorithm

path length - energy of the system

exploration of the configuration space with the Metropolis algorithm (51909 citations to date, April 10, 2024)
(Metropolis, Rosenbluth Rosenbluth ,Teller and Teller, 1953)

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicaoLAs METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpwWARD TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.
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9. The Metropolis algorithm and its application to the TSP
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Figure 8.14: Portrait of American computer scientists Nicholas Metropolis
(1915 - 1999) (seated) and James Henry Richardson (1918 - 1996) at Los
Alamos National Laboratory, Los Alamos, New Mexico, November 1953
(from http://www.life.com).
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1. We generate a new configuration C” from the present configuration C
2. We compute the energy of the new configuration, E’
3. We compute the energy difference AE=E’— E

4. The new configuration is accepted with probability p

-

p=1 AE <0

AE
=exp| —| AE=20
p=exp 2%

"

Additional details

* the algorithm needs a slow cooling (it is common to choose an exponential cooling
schedule)

e if cooling is not gradual, the system can get stuck into a local minimum

* simple exchanges of pairs of cities are the individual moves in the SA solution of the
TSP

e the individual steps from one configuration to the next can be described by a Markov
chain

Edoardo Milotti - Bayesian Methods - Spring 2024

28



*
o
4
L
12
.
06 09
.
, oAl L7
L ‘8
10
.

Edoardo Milotti - Bayesian Methods - Spring 2024

o—ao—‘
23

655

29



Decrease of total path length in a realization of the SA solution of a 50-cities problem
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Here we note that the transition probability can be written as follows

T<c%cv:mm[l,exp(_(ff'—E)ﬂ

kT

Moreover, it is easy to show that the algorithm preserves detailed balance
P(C)T(C—>C)=P(C)T(C’'—C)

where P(C) is the stationary probability of configuration C. Indeed, at equilibrium we find that, if

E’ >E,
P(C)exp(—(E,_E)):P(C')

kT

P(C') _ (E' — E) Boltzmann’s distribution is
= exp| — e s .
kT the equilibrium distribution
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