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ABSTRACT

For decades researchers have studied the On/Off counting problem where a measured rate consists of two parts.
One part is due to a signal process and the other is due to a background process, the magnitudes for both of which
are unknown. While most frequentist methods are adequate for large number counts, they cannot be applied to
sparse data. Here, I want to present a new objective Bayesian solution that only depends on three parameters: the
number of events in the signal region, the number of events in the background region, and the ratio of the exposure
for both regions. First, the probability of the counts only being due to background is derived analytically. Second,
the marginalized posterior for the signal parameter is also derived analytically. With this two-step approach it is
easy to calculate the signal’s significance, strength, uncertainty, or upper limit in a unified way. This approach is
valid without restrictions for any number count, including zero, and may be widely applied in particle physics,
cosmic-ray physics, and high-energy astrophysics. In order to demonstrate the performance of this approach, I
apply the method to gamma-ray burst data.
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1. INTRODUCTION

Typical counting experiments measure a discrete set of events,
such as the decay time of a particle. Such data are often (Li & Ma
1983; Cousins et al. 2008) modeled with the Poisson distribution
given by

PP(N |λ) = e−λλN

N !
. (1)

This distribution connects the probability of observing N events
to a nonnegative number of expected events, λ, derived, for
example, from a rate in a fixed time interval or a luminosity and a
cross section. The Poisson distribution may be approximated by
a Gaussian distribution when measuring many events. However,
when the data are sparse, such an approximation is not good
enough. Indeed, in some areas, this is often the rule rather
than the exception, such as in high-energy astrophysics (Loredo
1992). In this paper, a full Bayesian analysis of On/Off data,
valid for any count number, is presented.

2. THE ON/OFF MEASUREMENT

In the On/Off problem, one would like to infer a signal
rate in the presence of an imprecisely known background. The
measurement consists of the observation of Noff events in a
region chosen a priori to be signal free and the observation of
Non events in the region of a potential signal in addition to the
background.

The notation comes from astronomy, where telescopes point
on and off potential source regions. In particle physics, the off
region is taken in some region close to the signal region in the
measured parameter (typically called sideband; e.g., Cousins
et al. 2008) or without a radioactive signal source near the
detector.

The ratio of the exposure for both regions α is assumed to be
known with negligible uncertainty. In gamma-ray astronomy, in
the simplest cases α is

α = Aonton

Aoff toff
, (2)

where A stands for the size and t for the exposure time of
the regions. Berge et al. (2007) illustrate how to generalize
Equation (2) for complex acceptances. Given Non, Noff , and α,
the problem is then to calculate the evidence for a signal and the
posterior distribution of the signal parameter.

Frequentist analyses, based on likelihood ratios and other
methods, are widely used in particle physics (Cousins et al.
2008) and in high-energy astrophysics (as promoted by Li & Ma
1983). However, they often assume normally distributed random
numbers and therefore lose their foundation when applied to low
count numbers.

Gillessen & Harney (2005) have proposed a Bayesian solution
to the question of whether or not the signal parameter is larger
than zero. However, they do not account for the alternative,
simpler hypothesis asserting that all Non come from background
only, i.e., no source. Therefore, the result is an overestimation, as
pointed out by Gregory (2005). There exists a Bayesian solution
to compute the odds ratio of the two hypotheses (Gregory 2005),
but it adds an arbitrary parameter to the problem, depending on
the prior (in particular its upper boundary), which makes the
probability statement hard to interpret.

3. ANALYSIS

In this paper, I present an objective Bayesian analysis.
This is accomplished by using improper priors as a tool to
produce proper posteriors representing our lack of knowledge.
Subjective Bayesian methods can certainly have benefits, in
particular, when a prior opinion is strongly held. One can gain
sensitivity by using informative priors that precisely specify
prior knowledge, such as a prior source detection or a known
background. However, objective Bayesian methods should be
used when one is interested in “what the data have to say”
(Irony & Singpurwalla 1997).
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The analysis presented here follows the method outlined
by Caldwell & Kröninger (2006) and may be considered
an analytical special case. Agostini et al. (2013) applied the
method in order to analyze and set stringent upper limits on the
neutrino-less double-beta decay of 76Ge. Kashyap et al. (2010)
recently presented a similar frequentist method. The analysis is
performed in two steps. First, the probability that the observed
counts are due to background only is calculated. If this is lower
than a previously defined consensus value, then the signal is said
to be detected. Second, the signal contribution is estimated or
an upper limit for the signal is calculated, depending on whether
the detection limit has been reached.

3.1. Hypothesis Test

Let H0 denote the null hypothesis that the observed counts
are due to background only. The alternative hypothesis H1 is
that a signal process contributes to the counts. H1 could be a
bad model too, in case of systematic uncertainties. I should note
that this is sometimes the case when, e.g., signal counts leak into
the off region. Nevertheless, in the following, it is assumed that
the systematic uncertainties are negligible and the two-model
set of exclusive rival hypotheses {H0,H1} is complete. By using
Bayes’ theorem, one may calculate the conditional probability
of H0 as

P (H0|Non, Noff) = P (Non, Noff |H0)P0(H0)

P (Non, Noff)
, (3)

where P (Non, Noff|Hi) is the conditional probability of observ-
ing the data, given the hypothesis Hi and that P0(Hi) is the prior
probability for Hi. For a set of exclusive rival hypotheses such
that

∑
i P (Hi) = 1 and P (Hi ∧ Hj ) = 0 for i �= j , the law of

total probability gives

P (Non, Noff) =
∑

i

P (Non, Noff |Hi)P0(Hi). (4)

Furthermore, in continuously parameterized models, the con-
tinuous counterpart of the law of total probability, with sums
replaced by integrals, gives

P (Non, Noff) =
∑

i

∫
P (Non, Noff|λi , Hi)P0(λi |Hi)dλiP0(Hi).

(5)

One obtains the sum over the full set of hypotheses Hi and
integrates with respect to their parameters λi . By assuming the
two-hypothesis set {H0,H1}, one can write Equation (5) in terms
of the expected number of signal events λs and the expected
number of background events λbg:

P (Non, Noff) =
∫

P (Non, Noff |λbg,H0)P0(λbg|H0)dλbgP0(H0)

+
∫

P (Non, Noff |λs, λbg,H1)P0(λs, λbg|H1)dλsdλbgP0(H1).

(6)

Here, P (Non, Noff |λbg,H0) and P (Non, Noff |λs, λbg,H1) denote
the conditional probabilities to measure the data.

Assuming that the number of signal events (if any) and
the number of background events are independent, Poisson-
distributed random variables with means λs and λbg, the ex-
pected number of events in the off region is

E(Noff) = λbg. (7)

The expected number of events E(N ) in the on region, assuming
the null hypothesis H0, is

E(Non) = αλbg, (8)

or assuming H1, is

E(Non) = λs + αλbg. (9)

For the conditional probabilities to measure the data or likeli-
hoods, this yields

P (Non, Noff|λbg,H0) = PP(Non|αλbg)PP(Noff|λbg), (10)

and

P (Non, Noff |λs, λbg,H1) = PP(Non|λs + αλbg)PP(Noff|λbg).

(11)

The priors P0(λbg|H0) and P0(λs, λbg|H1) are chosen according
to Jeffreys’s rule (see Jeffreys 1998; Beringer et al. 2012):

P0(λi |Hi) ∝
√

det[I (λi |Hi)], (12)

Ikl(λi |Hi) = −E

[
∂2 ln L(Non, Noff|λi , Hi)

∂λk∂λl

]
, (13)

where Ikl denotes the Fisher information matrix, L is the
likelihood function (either Equation (10) or (11)), E is the
expectation value with respect to the model with index i, and λi

is its parameter vector. In Appendix A, I show that

P0(λbg|H0) ∝
√

1 + α

λbg
, (14)

P0(λs, λbg|H1) ∝
√

1

λbg(αλbg + λs)
. (15)

The On/Off Jeffreys’s priors are improper, i.e., they integrate
to infinity over the parameter space. There is a debate among
statisticians concerning the use of improper priors in Bayesian
model selection (Berger & Pericchi 2001), as the priors are only
specified up to the proportionality constants c0, c1, which do not
cancel out. The probability of H0 to be true given the measured
counts is therefore

P (H0|Non, Noff) = c0γ
′

c0γ ′ + c1δ′ (16)

= γ ′

γ ′ + c1/c0δ′ (17)

with

γ ′ :=
∫ ∞

0
P (Non, Noff|λbg,H0)P0(λbg|H0)dλbgP0(H0), (18)

δ′ :=
∫ ∞

0

∫ ∞

0
P (Non, Noff|λs, λbg,H1)

× P0(λs, λbg|H1)dλsdλbgP0(H1). (19)

To calculate the analytic outcome of Equation (17), the priors
for the hypotheses P0(H0) and P0(H1) have to be identified.

2



The Astrophysical Journal, 790:106 (8pp), 2014 August 1 Knoetig

Given the lack of prior information as to which hypothesis is
more likely, they are chosen to be equal

P0(H0) = P0(H1) = 1

2
. (20)

When the model parameter spaces are the same, it is common
to set c0 = c1. In the case where the two models have differing
dimensions, special effort has to be invested to assign a value to
c1/c0 based on extrinsic arguments (Berger & Pericchi 2001).
Therefore, imagine no counts in either region. This means no
signal was observed, which means the signal hypothesis H1
cannot become more likely

P (H0|0, 0) � P0(H0). (21)

This is a limit on the posterior model probability, which can be
used as the basis of a robust Bayesian analysis (Berger et al.
1994). In particular, I argue that when no counts are observed,
the probability for either model remains the same, and therefore
equality holds in Equation (21). This approach leads to the
determination of the fraction c1/c0 via the following equation:

c1

c0
= γ ′

δ′ |Non,Noff=0. (22)

The evaluation of Equation (17) together with Equation (22)
may be found in Appendix B. Altogether, the probability of H0
being true given Non and Noff is

P (H0|Non, Noff) = γ

γ + c1/c0δ
, (23)

where γ and δ are defined in terms of the Gamma function Γ(x)
and the hypergeometric function 2F1(a, b; c; z):

γ : = (1 + 2Noff)α
1/2+Non+Noff Γ(1/2 + Non + Noff), (24)

δ := 2(1 + α)Non+Noff Γ(1 + Non + Noff)

×2 F1(1/2 + Noff, 1 + Non + Noff; 3/2 + Noff;−1/α),

(25)

c1

c0
=

√
π

2 arctan(1/
√

α)
. (26)

Equation (23), however, is not restricted to small count numbers
and, with current PCs and numerical tools like Mathematica,
can be easily calculated up to thousands of counts.

3.2. Signal Detection

A signal detection based on Equation (23) may be claimed
when the resulting probability of the null hypothesis H0 is low. In
high-energy astrophysics, the consensus (Li & Ma 1983; Abdo
et al. 2009) p value for a source discovery is p = 5.7 × 10−7,
corresponding to a 5σ measurement. Scientists frequently use
lower thresholds for the detection of known sources. However,
this value is used in this paper for the probability of H0 as source
detection criterion.

One must keep in mind that these are two completely different
quantities: a probability of a model and a frequency of an
outcome. P (H0|Non, Noff) explicitly weighs alternative models,
while the frequentist result does not.

That said, and with the help of the inverse error function
erf−1(x), the Bayesian significance Sb is introduced and defined
as “if the probability were normally distributed, it would
correspond to a Sb standard deviation measurement:”

Sb =
√

2 erf−1[1 − P (H0|Non, Noff)]. (27)

Using the above equation, it is easy to compare detection or
discovery claims with different methods and thresholds, as
shown in Section 4.

3.3. Signal Strength

If the counted events lead to a detection, then the signal
parameter strength can be estimated. In other words, it is safe
to assume hypothesis H1. The conditional probability of the
signal and the background parameters λs and λbg may then be
calculated from Bayes’ law:

P (λs, λbg|Non, Noff,H1)

= P (Non, Noff |λs, λbg,H1)P0(λs, λbg|H1)∫ ∞
0

∫ ∞
0 P (Non, Noff|λs, λbg,H1)P0(λs, λbg|H1)dλsdλbg

.

(28)

Given the data, one would like to infer the signal λs without
reference to λbg while fully accounting for the uncertainty
on λbg. This can be done by marginalizing over the nuisance
parameter λbg:

P (λs|Non, Noff,H1) =
∫ ∞

0
P (λs, λbg|Non, Noff,H1)dλbg.

(29)
Equation (29) can be analytically calculated using
Equations (11)and (15), and the results from Appendix B, which
is done in Appendix C. The improper prior is acceptable be-
cause the proportionality constant c1 cancels and the posterior
is proper. The result may be expressed in terms of three func-
tions, namely, the Poisson distribution PP(N |λ), the regularized
hypergeometric function 2F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ(c),
and the Tricomi confluent hypergeometric function U(a, b, z):

P (λs|Non, Noff,H1) = PP(Non + Noff|λs)

× U[1/2 + Noff, 1 + Noff + Non, (1 + 1/α)λs]

2F̃1(1/2 + Noff, 1 + Noff + Non; 3/2 + Noff;−1/α)
.

(30)

This posterior contains the full information. In order to quote
numbers, one may take the mode λ∗

s , which is the value of λs that
maximizes the posterior distribution P (λs|Non, Noff,H1), as the
signal estimator. The error on the quoted signal can be evaluated
from the cumulative distribution function. For instance, to get
the smallest Bayesian interval (also known as highest posterior
density or HPD interval) containing the signal parameter with
68% probability, one can solve

0.68 =
∫ λmax

λmin

P (λs|Non, Noff,H1)dλs, (31)

together with the constraint

P (λmin|Non, Noff,H1) = P (λmax|Non, Noff,H1), (32)

numerically for λmin and λmax. The final result may be quoted
as

λs = λ
∗+(λmax−λ∗

s )
s−(λ∗

s −λmin). (33)
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Figure 1. Comparison of the On/Off hypothesis test with Jeffreys’s and Gregory’s priors for low and large count numbers. (a) The null hypothesis posterior probability
is shown as a function of Non in the low counts regime. (b) Shows the same, but using the nonlinear Bayesian significance scale Equation (27). (c) The limiting curves
for which Non:Sb � 3 or Sb � 5 are shown. (d) Shows a comparison in the large counts regime and additionally Li & Ma (1983) and Equation (17).

3.4. Signal Upper Limit

If the data show no significant detection, then an upper limit
on the signal parameter may be calculated, assuming that the
signal is present (i.e., H1 is true) but too weak to be measured.
For example, a 99% probability limit λ99 on the signal parameter
λs is calculated by solving

∫ λ99

0
P (λs|Non, Noff,H1)dλs = 0.99. (34)

This result comes naturally in a Bayesian approach of the
problem but is hard to calculate in a frequentist approach. In
particular, frequentists struggle with the marginalization of the
problem and with special cases at the border of the parameter
space, all of which lead to ad hoc adjustments without theoretical
justification (Rolke et al. 2005). The only practical remedy
comes from Monte Carlo studies which show that, in fact, such
limits with adjustments have (at least) the claimed frequentist
coverage. In this Bayesian approach, all possible values in the
parameter space are dealt with in a uniform way, no matter if
there are zero counts or thousands of counts. The signal upper
limit result is particularly interesting for Non = Noff = 0.
It underlines the fact that measuring zero is different from
not measuring at all, and hence valid limits can be derived.
Importantly, the estimates are always physically meaningful
(i.e., positive λ∗

s , λmin, λmax, λ99, . . .).

4. VALIDATION

Jeffreys’s prior is constructed by a formal rule (Jeffreys 1998)
and motivated by the requirement for invariance under one-to-
one transforms. However, this is not the only possible choice

and, when data are sparse, the choice of the prior is important.
In order to validate that this is a reasonable choice, I compare it
to the prior from Gregory (2005), the frequentist solution from
Li & Ma (1983), and to a simulation.

4.1. Model Comparison

For the On/Off problem, one alternative with informative flat
priors was presented by Gregory (2005). The hypothesis test,
in this case, is dependent on the prior signal upper boundary
λsmax in addition to Non, Noff , and α. Therefore, reasonable
assumptions on the signal upper boundary λsmax have to be
made in order to compare Equations (14) and (24) of Gregory
(2005) with Equation (23). The signal posteriors, however, can
be compared directly as they depend only on the three initial
parameters in both cases.

The hypothesis test comparison is shown in Figure 1.
Figures 1(a)–(c) show the situation for a typical low-count case
with α = 0.2 and an assumed λsmax = 22, such that a signal
detection with that strength would be without any doubt. Gre-
gory’s prior shows similar behavior to Jeffreys’s prior, but is
slightly shifted towards higher probabilities for the null hypoth-
esis P (H0|Non, Noff) or lower significance Sb (Equation (27)). In
Figure 1(c), one can see the limiting curve for which Non, given
Noff , the significance Sb is �3 or �5. This shows that when it
comes to decision making in the low-count regime, both models
are mostly within one count of each other.

Figure 1(d) shows a comparison of the different priors
for high-count numbers with α = 0.2, Noff = 300, and
λsmax = 170. Additionally, the methods are compared to the
frequentist result of Li & Ma (1983) and Equation (17). Both
methods appear to converge on Li & Ma’s result for large number
counts, but Jeffreys’s prior gives a closer approximation. From
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(a) (b)

Figure 2. Comparison of the signal posteriors with Jeffreys’s and Gregory’s priors. (a) A comparison for low count numbers. (b) A comparison for high count numbers
and a normal distribution with mean Equation (35) and variance Equation (36)

(a) (b)

Figure 3. Simulation results of the analysis compared to Li & Ma (1983) and direct background subtraction.

a physical point of view, one could argue that for Non ∼ αNoff ,
P (H0|Non, Noff) should be close to the prior model probability
P0(H0) = 0.5 because any one Non more should increase
the probability for the signal hypothesis H1 and any Non less
should decrease it. Numerically, it seems that this is the case for
Jeffreys’s prior but not for Gregory’s prior.

When comparing the signal posterior, the priors of Jeffrey and
Gregory agree well. Figure 2(a) shows a comparison of the two
methods for low count numbers with α = 0.2 and Noff = 5. The
differences in the signal posterior are marginal. For high count
numbers, as shown in Figure 2(b) with α = 0.2 and Noff = 80,
both methods converge quickly to the classical result of a normal
distribution with

E(λs) = Non − αNoff (35)

Var(λs) = Non + α2Noff . (36)

However, due to subtraction and when Non ∼ αNoff , the normal
distribution can include negative values for the signal confidence
region. This problem is resolved using the Bayesian methods.

Overall, the results are comparable and show that the results
obtained by Jeffreys’s prior are sensible. They behave well in all
test-case examples, in particular, at Non ∼ αNoff , and converge
to the other results for high count numbers.

4.2. Simulations

To further verify the method developed in this paper, the hy-
pothesis test and the maximum signal posterior are calculated

for a simulated set of observations. First, 1000 Non and Noff are
drawn randomly from two Poisson distributions with the means
of Equations (7) and (9). Second, the developed methods are ap-
plied to the simulation, as is Li & Ma’s method for the hypothesis
test and a direct background subtraction (Equation (35)) for the
signal strength. Then, the results of these methods are compared
to one another and to the true parameters. These are λbg = 300
for the background strength and λs = 50 for the signal strength.
The ratio of exposure α is 1/5.

Figure 3(a) shows the hypothesis test simulation results. Li
& Ma’s test statistic shows a small systematic shift compared
to the Bayesian significance (Equation (27)) in agreement with
the results from Section 4.1. In Figure 3(b), the signal strength
comparison is shown. The parameter λ∗

s is first calculated as
the maximum of the marginalized posterior (Equation (30)) and
then with direct background subtraction. Both methods agree
well and can reconstruct the true signal parameter λs = 50 with
similar errors.

5. APPLICATION: GAMMA-RAY BURSTS

Gamma-ray bursts (GRB) are extraterrestrial flashes of
gamma-rays mostly lasting only a few seconds. One inter-
esting question is whether GRBs produce very high-energy
(>100 GeV) gamma-rays, as proposed by some theories (e.g.,
Abdo et al. 2009). Because of the flares’ durations and flu-
ences, gamma-ray satellites and Cherenkov telescopes measure
only a few events during the flare itself or shortly thereafter.
In Table 1, data from 12 GRB observations observed by the

5
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(a)
(b)

Figure 4. Comparison of the marginal signal parameter λs posterior distribution for two gamma-ray bursts. In (a), GRB 080825C, a source is detected and the signal
parameter estimate and its smallest 68% credibility interval is calculated. In (b), an upper limit is calculated for GRB 080330 where no on event was measured.

(A color version of this figure is available in the online journal.)

Table 1
Low Count Gamma-ray Burst Data

GRB Non Noff α Slm P (H0|Non, Noff ) Sb λs λ99 λRef. λRolke
99 Reference

070419A 2 14 0.057 . . . 0.28 1.09 . . . 6.88 . . . 7.34 1
070521 3 113 0.057 . . . 0.72 0.36 . . . 6.12 . . . 3.52 1
070612B 3 21 0.066 . . . 0.26 1.12 . . . 8.00 . . . 8.54 1
080310 3 23 0.128 . . . 0.51 0.66 . . . 7.16 . . . 7.08 1
080330 0 15 0.123 . . . 0.70 0.39 . . . 4.10 . . . 2.40 1
080604 2 40 0.063 . . . 0.58 0.55 . . . 6.12 . . . 5.66 1
080607 4 16 0.112 . . . 0.21 1.27 . . . 9.17 . . . 9.83 1
080825C 15 19 0.063 6.4 9.66E-10 6.11 13.28+4.16

−3.49 . . . 13.7 . . . 2
081024A 1 7 0.142 . . . 0.50 0.67 . . . 5.29 . . . 5.19 1
090418A 3 16 0.123 . . . 0.37 0.89 . . . 7.64 . . . 8.01 1
090429B 2 7 0.106 . . . 0.26 1.13 . . . 6.92 . . . 7.41 1
090515 4 24 0.126 . . . 0.41 0.83 . . . 8.34 . . . 8.66 1

Notes. Table 1 shows low-count gamma-ray burst data where either or both of Non or Noff are �15. Only GRB 080825C was detected with a high significance.
Its reference source strength λRef. is given in Abdo et al. (2009). All calculated values are in bold. The ratio of exposure α is calculated according to Acciari
et al. (2011). The α values are then used for calculating Rolke’s upper limit λRolke

99 .
References. (1) Acciari et al. 2011; (2) Abdo et al. 2009.

space-based Fermi Large Area Telescope (Fermi-LAT) and the
ground-based VERITAS Cherenkov telescope are compiled.1

Due to the difficulty of the detection, those events usually
report an upper limit with low statistics. Only for the Fermi-
LAT GRB 080825C was there significant evidence to report
a discovery. For this GRB, the probability of the background-
only model P (H0|Non, Noff) is 9.66 × 10−10 and the GRB is
therefore detected. The significance expressed on the nonlinear
scale (Equation (27)) is Sb = 6.11. This is comparable to the Li
& Ma result of Slm = 6.4.

In the second step, the most likely value of the signal pa-
rameter and the smallest 68% credibility interval are calcu-
lated. The method is demonstrated in Figure 4. The result is that
λs = 13.28+4.16

−3.49, which is in good agreement with the published
reference of λRef. = 13.7.

1 The α parameter of the VERITAS observations is calculated with their
employed test statistic ratio of Poisson means, according to Cousins et al.
(2008). It is solved numerically for α, except for the case of GRB 080330
where not a single count was measured in the on region and no significance is
given. In this case, the α parameter is assumed to be the mean of the
other VERITAS wobble-mode observations.

In the same figure, an observation from GRB 080330, for
which discovery cannot be claimed, is shown. For GRB 080330
and all other GRBs, the data do not show evidence for a gamma-
ray source. In this case, upper limits λ99 are calculated. All
results are summarized in Table 1 and are compared to the Rolke
99% upper limits λRolke

99 , which VERITAS used. GRB 080330
is special in the sense that not even one on event was measured.
The results are mostly in good agreement but, especially at the
border of the parameter space for Non � αNoff , also deviate
from another and show the limit of Rolke’s method, which are
overcome by the Bayesian method.

6. CONCLUSION

Many particle physicists, cosmic-ray physicists, and high-
energy astrophysicists struggle with sparse On/Off data. With
this new Bayesian method which overcomes the weaknesses
of the currently used methods, it is possible to go down
to single count On/Off measurements. Claiming detections,
setting credibility intervals, or setting upper limits is unified
in a single and consistent method.
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APPENDIX A

JEFFREYS’S PRIORS

Calculation of the prior of λbg in the H0 model:

P0(λbg|H0) =
(

−
∞∑

Non=0

∞∑
Noff=0

× {
∂2
λbg

ln[PP(Non|αλbg)PP(Noff|λbg)]
}

× PP(Non|αλbg)PP(Noff|λbg)
) 1

2

=
√

1 + α

λbg
.

(A1)

Calculation of the prior for λs and λbg in the H1 model:

Is,s = −
∞∑

Non=0

∞∑
Noff=0

{
∂2
λs

ln[PP(Non|λs + αλbg)PP(Noff|λbg)]
}

× PP(Non|λs + αλbg)PP(Noff|λbg) = 1

αλbg + λs
, (A2)

Ibg,bg = −
∞∑

Non=0

∞∑
Noff=0

{
∂2
λbg

ln[PP(Non|λs + αλbg)PP(Noff|λbg)]
}

× PP(Non|λs + αλbg)PP(Noff|λbg)

= αλbg + α2λbg + λs

λbg(αλbg + λs)
, (A3)

Is,bg = Ibg,s = −
∞∑

Non=0

∞∑
Noff=0

× {∂λbg∂λs ln[PP(Non|λs + αλbg)PP(Noff|λbg)]}
× PP(Non|λs + αλbg)PP(Noff|λbg)

= α

αλbg + λs
. (A4)

The off-diagonal elements are equal because the matrix is
symmetric (symmetry of second derivatives). The final result
for P0(λs, λbg|H1) is

P0(λs, λbg|H1) = {det[I (λs, λbg|H1)]} 1
2

=
√

1

λbg(αλbg + λs)
. (A5)

APPENDIX B

CALCULATION OF THE PROBABILITY OF H0

For the calculation of Equation (17), one must solve three
parts. First,∫ ∞

0
P (Non, Noff|λbg,H0)P0(λbg|H0)dλbg

=
∫ ∞

0

e−λbg(1+α)λ
Noff
bg (αλbg)Non

Non!Noff!

√
1 + α

λbg
dλbg

= αNon (1 + α)−Non−Noff Γ
(

1
2 + Non + Non

)
Noff!Non!

; (B1)

and second,∫ ∞

0

∫ ∞

0
P (Non, Noff|λs, λbg,H1)P0(λs, λbg|H1)dλsdλbg

=
∫ ∞

0
PP(Noff|λbg)

√
1

λbg

×
∫ ∞

0
PP(Non|λs + αλbg)

√
1

λs + αλbg
dλsdλbg

=
∫ ∞

0
PP(Noff|λbg)

√
1

λbg

Γ
(

1
2 + Non, αλbg

)
Non!

dλbg. (B2)

Γ(a, z) stands for the upper incomplete gamma function. The
remaining integral with respect to λbg yields

= 1

Non!Noff!

2α− 1
2 −Noff

1 + 2Noff
Γ(1 + Non + Noff)

×2 F1

(
1

2
+ Noff, 1 + Non + Noff; 3

2
+ Noff;− 1

α

)
. (B3)

By inserting Equations (B1) and (B3) into Equation (17) and
simplifying, one finds the solution

P (H0|Non, Noff) = γ

γ + c1/c0δ
, (B4)

γ := (1 + 2Noff)α
1/2+Non+Noff

× Γ(1/2 + Non + Noff), (B5)

δ := 2(1 + α)Non+Noff Γ(1 + Non + Noff)

×2 F1(1/2 + Noff, 1 + Non + Noff; 3/2 + Noff;−1/α).

(B6)

The constant fraction c1/c0 is calculated with Equation (22),
inserting the above results. Equation (23) follows.

APPENDIX C

CALCULATION OF THE MARGINALIZED POSTERIOR
FOR THE SIGNAL PARAMETER

The denominator of Equation (28) is given in Equation(B3)
and does not depend on the parameter λ. The problem is
therefore reduced to calculating the integral:∫ ∞

0
P (Non, Noff|λs, λbg,H1)P0(λs, λbg|H1)dλbg

=
∫ ∞

0
PP(Noff|λbg)PP(Non|λs + αλbg)

×
√

1

λbg(λs + αλbg)
dλbg = e−λs

Non!Noff!

×
∫ ∞

0
(λs + αλbg)Non− 1

2 λ
Noff− 1

2
bg e−λbg(1+α)dλbg, (C1)

which resembles the integral representation of the Tricomi con-
fluent hypergeometric function (see, for instance, NIST 2013,

7
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Equation (13.4.4)). By substituting the integration variable λbg
with

λ = αλbg

λs
, (C2)

one finds the result

e−λs

Non!Noff!
λ

Non− 1
2

s

(
λs

α

)Noff+ 1
2

Γ
(

1

2
+ Noff

)

× U

[
1

2
+ Noff, 1 + Non + Noff,

(
1 +

1

α

)
λs

]
. (C3)

Equations (C3) and (B3), combined in Equation (28), simplified
with Equation (1) and the regularized hypergeometric function
2F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ(c), give the final result for
the marginalized posterior for λs:

P (λs|Non, Noff,H1) = PP(Non + Noff|λs)

× U[1/2 + Noff, 1 + Noff + Non, (1 + 1/α)λs]

2F̃1(1/2 + Noff, 1 + Noff + Non; 3/2 + Noff;−1/α)
.
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