
SoftwareX 10 (2019) 100353

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

PyMaxEnt: A Python software formaximum entropymoment
reconstruction
Tony Saad1,∗, Giovanna Ruai
Department of Chemical Engineering, University of Utah Salt Lake City, UT 84102, United States of America

a r t i c l e i n f o

Article history:
Received 16 July 2019
Received in revised form 21 October 2019
Accepted 21 October 2019

Keywords:
Maximum entropy reconstruction
Inverse moment problem
Particle size distribution

a b s t r a c t

PyMaxEnt is a software that implements the principle of maximum entropy to reconstruct functional
distributions given a finite number of known moments. The software supports both continuous and
discrete reconstructions, and is very easy to use through a single function call. In this article, we set out
to verify and validate the software against several tests ranging from the reconstruction of discrete
probability distributions for biased dice all the way to multimodal Gaussian and beta distributions.
Written in Python, PyMaxEnt provides a robust and easy-to-use implementation for the community.
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1. Motivation and significance

Data analysis from experimental and numerical observations
often requires post-processing to reconstruct primitive physical
quantities [1]. For example, neutron flux distributions in nuclear
reactors are not readily obtainable but have to be reconstructed
from neutron moments measured numerically or experimen-
tally [2,3]. This reconstruction of primitive quantities is usually
hampered by noisy results and insufficient information render-
ing the reconstruction problem under-determined [1]. A classic
example of this situation is the inverse-moment problem [4,5]
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stated as follows: Given a finite number of known moments –
e.g. averaged properties – for a given observation, find a unique
distribution that is responsible for generating these moments. For in-
stance, in the simulation of particulate systems, one often solves
for the average size and higher order moments of a particle
density distribution [6]. Given these moments, the goal is then
to reconstruct the unknown particle density distribution.

The inverse-moment problem is, by definition, under-
determined since there is an infinite number of real-valued func-
tions that could produce the desired moments. To obtain a unique
distribution, one needs a set of constraints to close the system of
equations. One such set of constraints is obtained by invoking the
principle of maximum entropy [5,7].
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1.1. Maximum entropy

The maximum entropy method is based on the concept that
the distribution that maximizes the information entropy is the one
that is statistically most likely to occur [5]. Information Entropy
is defined as the average rate at which information is produced
by a system. Information Entropy can alternatively be defined as
a measure for how much of a system is unknown. The higher
the information entropy is, the less we know about a process.
When all known information has been taken into consideration, a
system with maximum information entropy is the most probable
state because it is the system in which the least amount of
information has been defined. Mathematically, the information
entropy S, of a distribution p(x), is given by the integral

S = −

∫
Ω

p(x) ln p(x)dx, (1)

where Ω is the support of the distribution.
Given a finite number of moments for p(x), one looks for

a distribution p(x) that maximizes S subject to these known
moments. This can be formulated as a variational problem using
Lagrangian multipliers. Our purpose is to find p(x) that maximizes
the information entropy S given in (1) subject to∫

Ω

xkp(x)dx = µk; k = 0, 1, . . . ,N, (2)

where (N + 1) is the number of known moments. Note that
µk is known for 0 ≤ k ≤ N . Then, by introducing Lagrangian
multipliers λk, we define the entropy functional

H ≡ S +

∑
λk

(∫
Ω

xkp(x)dx − µk

)
, (3)

or, more concisely,

H ≡

∫
Ω

[
−p(x) ln p(x) +

N∑
k=0

λkxkp(x)

]
dx −

N∑
k=0

λkµk. (4)

This functional is a maximum when the functional derivatives
of H with respect to p(x) and λk are zero: δH

δλk
= 0 and δH

δp(x) =

0. The first of these derivatives does not provide us with any
additional information since it returns the constraints defined in
(2). The second of these derivatives, however, evaluates to

ln p(x) = −1 +

N∑
k=0

λkxk. (5)

The general solution of (5) is

p(x) = e−1+
∑N

k=0 λkxk = e
∑N

k=0 λkxk , (6)

where we have set (λ0 − 1) → λ0.

1.2. Solution

To find the maximum entropy solution, we have to solve
for the Lagrangian multipliers λk. For this, we must solve the
following nonlinear system of equations∫

Ω
eλ0+λ1x+···+λkxkdx = µ0,∫

Ω
x eλ0+λ1x+···+λkxkdx = µ1,

...∫
Ω
xkeλ0+λ1x+···+λkxkdx = µk.

(7)

A globally convergent Newton solver may be used to calculate λk.
The Jacobian can also be easily calculated. If we denote the

moments based on the maximum entropy solution as

µ̃k ≡

∫
Ω

xkeλ0+λ1x+···+λkxkdx, (8)

then, the Jacobian is given by

J ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂µ̃0
∂λ0

∂µ̃0
∂λ1

· · ·
∂µ̃0
∂λk

∂µ̃1
∂λ0

∂µ̃1
∂λ1

· · ·
∂µ̃1
∂λk

∂µ̃2
∂λ0

∂µ̃2
∂λ1

· · ·
∂µ̃2
∂λk

...
...

...
...

∂µ̃k
∂λ0

∂µ̃k
∂λ1

· · ·
∂µ̃k
∂λk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
µ̃0 µ̃1 · · · µ̃k

µ̃1 µ̃2 · · · µ̃k+1

µ̃2 µ̃3 · · · µ̃k+2
...

...
...

...

µ̃k µ̃k+1 · · · µ̃k+k

⎤⎥⎥⎥⎥⎥⎦ . (9)

Note that µ̃k is the kth moment based on the reconstructed
distribution. The Newton solver will be based on finding λk such
that ||µ̃k − µk| | is below a certain specified tolerance.

1.3. Initial guesses

The Newton method can be sensitive to initial guesses. It was
found that convergence can be achieved in all of our experiments
if the following initial guesses are used

λinitial
i =

{
− ln

√
2π i = 0,

0 otherwise.
(10)

These guesses are based on a Gaussian distribution with zero
mean and unit variance (µ = 0, σ = 1).

1.4. The discrete case

A similar analysis can be applied in the discrete case. For a set
of discrete data points xi We first define the discrete information
entropy as

S = −

∑
i

pi ln pi, (11)

with the kth moment given by

µk =

∑
i

xki pi. (12)

Similar to the continuous case, we define the entropy functional
as

H ≡ S +

∑
k

λk

(∑
i

xki pi − µk

)

= −

∑
i

pi ln pi +
N∑

k=0

λk

(∑
i

xki pi − µk

)
, (13)

or, more concisely,

H ≡

∑
i

(
N∑

k=0

λkxki pi − pi ln pi

)
−

N∑
k=0

λkµk. (14)

The functional is an extremum (can be shown to be a mini-
mum) if the functional derivatives with respect to pi and λk are
zero: δH

δλk
= 0 and δH

δpi
= 0 The first of these equations re-

turns the moment constraint given by (12). The second functional
derivative returns

δH
δpi

=

N∑
k=0

λkxki − 1 − ln pi = 0, (15)

whose solution for pi is straightforward

pi = e
∑N

k=0 λkxki −1
= e

∑N
k=0 λkxki , (16)

where we set λ0 − 1 → λ0. Similar to the continuous case, a
globally convergent Newton solver can be used to solve for the
Lagrangian multipliers λk.
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Fig. 1. Overview of PyMaxEnt functionality.

2. Software description

The software is written in Python due to its popularity and
ease of use in addition to the availability of a robust multidimen-
sional nonlinear solver through SciPy. The PyMaxEnt software
offers a single interface to both the continuous and discrete max-
imum entropy reconstructions along with a few useful functions
described below.

2.1. Software architecture

The implementation of PyMaxEnt is very simple and takes
form in a single Python file called pymaxent.py. For proper
operation, three separate helper routines are implemented for the
continuous and for the discrete case. These are a numerical inte-
grator, a residual error calculator, and a Newton solver as shown
in Fig. 1. The Newton solver is based on SciPy’s multidimen-
sional root finding routine, fsolve. From the user’s perspective,
a single function call is made to the main routine, reconstruct
(discussed below).

2.2. Software functionalities

To use PyMaxEnt, a single call to the function reconstruct is
made. The function signature is

sol, lambdas = reconstruct(moments, rndvar, bnds)

Here, moments is a required list or array of known moments,
rndvar is an optional argument containing discrete values of
the random variable, and bnds is a tuple [a,b] containing the
expected bounds of the resulting distribution. When rndvar is
provided, the reconstruction assumes a discrete distribution. The
code returns two quantities: (1) the functional form of the so-
lution, i.e. (6), which can be plotted and, (2) a numpy array
containing the Lagrangian multipliers. In the discrete case, the
functional solution is simply a numpy array of values containing
the function values corresponding to (16). Finally, PyMaxEnt pro-
vides a helper routine named moments that calculates the first k
moments of a function and is useful for verification purposes.

2.3. Sample code snippets analysis

Below are some examples of using the PyMaxEnt software.
Starting with an example to reconstruct a basic discrete distri-
bution with two moments and six possible values for a random
variable, x,
from pymaxent import *
mu = [1,3.5]

x = [1,2,3,4,5,6]

sol, lambdas = reconstruct(mu,rndvar=x)

Similarly, for a continuous distribution, one passes a list of
input moments. In this case, however, one must specify the
bounds (bnds) to indicate that this is a continuous reconstruction.
Here’s an example for a Gaussian distribution
from pymaxent import *
mu = [1,0,0.04]

sol, lambdas = reconstruct(mu,bnds=[-1,1])

# plot the reconstructed solution

x = np.linspace(-1,1)

plot(x,sol(x))

3. Illustrative examples

To test and validate PyMaxEnt, we set out to examine the re-
construction of a few probability distributions, spanning discrete
to continuous complex distributions with infinite support.

3.1. Verfication

3.1.1. Balanced die
For a balanced die with face values ranging from 1 to 6, the

probability of landing one side is 1/6. The expected value is
therefore µ1 =

∑
(pixi) =

1
6

∑
(xi) = 3.5. To run this test in

PyMaxEnt, we simply set the following
from pymaxent import reconstruct

mu = [1,3.5] # set the moments

# specify all possible values for the random variable

x = [1,2,3,4,5,6]

sol, lambdas = reconstruct(mu=mu,rndvar=x)

print(sol)

The value of sol returned by the software is
[0.166667 0.166667 0.166667 0.166667 0.166667 0.166667]

which is the expected uniform probability distribution of a bal-
anced die.
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Fig. 2. Maximum entropy reconstruction of a bimodal Gaussian distribution with µ0 = 0.25, σ0 = 1/14, µ1 = 0.5, and σ1 = 1/20. (a) example reconstruction and
(b) area error in reconstruction as a function of the number of input moments.

Fig. 3. Maximum entropy reconstruction for a trimodal Gaussian distribution µ0 = 1/4, µ1 = 2/4, µ2 = 3/4, σ0 = 1/14, and σ1 = σ2 = 1/20. (a) example
reconstruction and (b) area error in reconstruction as a function of the number of input moments.

3.1.2. Biased die
Consider a biased die with the following probabilities: p(1) =

p(2) = p(3) = 1/12, p(4) = 2/12, p(5) = 3/12 and p(6) = 4/12.
The expected value is µ1 = 4.417. To run this test we use
from pymaxent import reconstruct

mu = [1,4.417] # set the moments

# specify all possible values for the random variable

x = [1,2,3,4,5,6]

sol, lambdas = reconstruct(mu=mu,rndvar=x)

print(sol)

The value of sol returned by the software is
[0.0614560 0.0859580 0.120229 0.168163 0.235209 0.328985]

which corresponds to a non-uniform probability distribution for
a biased die, with higher likelihood for the die to land on smaller
values. In other words, the probability of landing on the number
1 is given by the reconstructed solution p(1) = 0.0614560, while
the probability of landing on 2 is given by p(2) = 0.0859580, etc...

Of course there is an error in the computed probabilities as
expected since the nonlinear solver acts on the moments of the
distribution rather than the distribution itself. For example, in this
case, the relative error for the moments is µ0,exact−µ0,computed

µ0,exact
≈

10−13 and µ1,exact−µ1,computed
µ1,exact

≈ 10−7.

3.2. Predictivity and errors

To test the predictivity of PyMaxEnt, we picked a few non-
trivial distributions, generated moments for those distributions,
and then looked at the error in the shape of the reconstructed
distribution versus the chosen distribution as we varied the num-
ber of moments input into the software. The error in the shape
between the reconstructed distribution and the exact one is com-
puted based on the area of the difference between the two curves

as discussed in [8]. This difference can then be normalized by the
area of the input curve (which is identically 1 in all cases here
for probability density functions). Note that for all cases, the error
in the computed moments versus the exact moments is at most
1.49×10−8 which is the default tolerance for the Newton solver.

3.2.1. Multimodal Gaussian distributions
We consider the bimodal Gaussian distribution given by

f (x) =
1

2σ0
√
2π

Exp
[
−

(x − µ0)2

2σ 2
0

]
+

1

2σ1
√
2π

Exp
[
−

(x − µ1)2

2σ1
2

]
.

(17)

Fig. 2a shows a comparison between a bimodal Gaussian with
peaks of different heights and the maximum entropy reconstruc-
tion using 5 and 10 moments, respectively. Evidently, the larger
the number of known moments, the more precise the reconstruc-
tion. In Fig. 2b, the area error committed in the reconstruction,
versus an increasing number of moments is shown. A clear de-
crease in the error is visible up to 10 moments where strange
behavior in the error is visible. This is due to the fact that at
such large number of moments, roundoff errors dominate in the
numerical integration and nonlinear solver. The nature of the
reconstruction contains an exponential of a polynomial which in
turn leads to an expected increase in roundoff errors.

For a trimodal Gaussian distribution, we use

f (x) =
1

3σ0
√
2π

e
−

(x−µ0)
2

2σ2
0 +

1

3σ1
√
2π

e
−

(x−µ1)
2

2σ2
1 +

1

3σ2
√
2π

e
−

(x−µ2)
2

2σ2
2 .

(18)

The reconstructed distribution is shown in Fig. 3a where 5 and
13 moments are used to reconstruct the exact distribution. In this
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Fig. 4. Maximum entropy reconstruction for a beta distribution with α = 3 and β = 9. (a) example reconstruction and (b) area error in reconstruction as a function
of the number of input moments.

Fig. 5. Maximum entropy reconstruction for a log-normal distribution with µ = 0.2 and σ = 0.25. (a) example reconstruction and (b) area error in reconstruction
as a function of the number of input moments.

case, one needs higher order moments to capture the changes in
convexity of this distribution.

Fig. 3b shows the error in the reconstruction as we increase
the number of moments. Again, we see roundoff errors dominate
at the 12th moment.

3.2.2. Beta distribution
The beta distribution can be a challenging distribution to

reconstruct. It is given by

f (x) =
Γ (α + β)
Γ (α)Γ (β)

xα−1(1 − x)β−1, (19)

where Γ is the generalized Gamma function and α and β are
control parameters that dictate the shape of the beta distribution.
Results for this case are shown in Fig. 4. The maximum entropy
reconstruction is able to capture the key features of this distri-
bution especially for the case with singularities at the domain
boundaries.

3.3. Distributions with semi-infinite support

One could run into trouble with the numerical integrator when
integrating over an infinite or a semi-infinite support. This be-
havior is observed especially with distributions that slowly decay
towards infinity such as a log-normal distribution. However, if
integration is carried out on a finite support, one is able to still
recover a reasonable approximation to the distribution. As an
example of this, a log-normal distribution was used with numer-
ical integration performed over the interval [0, 10]. The resulting
reconstruction is shown in Fig. 5.

4. Impact

The implementation presented in this paper has been used in
reconstructing neutron flux distributions in nuclear reactors [2,3].
In addition, it was used in unpublished work by colleagues and
collaborators at Brigham Young University, and at the University
of Utah for the reconstruction of particle size distributions in
carbon dioxide mineralization reactors [6] and in coal combustion
simulations.

New research questions can be pursued in the context of
high-performance computing for reacting particulate transport
such as coal-combustion, gasification, fluidized beds, and nuclear
reactors. Transporting individual particles (or clouds of particles)
is a very costly proposition and one often resorts to methods
that solve for the moments of these particle distributions. The
ability to reconstruct the parent particle size distributions enables
detailed insight into these systems such as understanding how
coal particles move in coal combustors based on their size and
composition.

This code will also be used in a new project that our group is
working on which involves the modeling of hazardous particulate
matter (PM2.5) in the atmosphere and how to accurately measure
such particles using drones.

To the best of our knowledge, we are unaware of publicly
available software that is similar to PyMaxEnt. We believe that
making PyMaxEnt available to the community is a step in the
right direction.

5. Conclusions

In this article, we set out to demonstrate the use of a Python
software for reconstructing density distributions from given mo-
ments using the principle of maximum entropy. The software,
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PyMaxEnt, was shown to reconstruct discrete and continuous
distributions with finite, semi-infinite, and infinite support. Care
must be taken when a large number of moments is used due to
the presence of round-off errors. The Newton solver was shown
to be robust across all tests without changing the initial guess
for the root finding algorithm. If necessary, users can very easily
change the initial guesses of the nonlinear solver. Future work
will include support for higher precision floating point numbers
to reduce the amount of round-off errors.
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