5. Misure di capacita termica a bassa temperatura

Si trova sperimentalmente che la capacita termica molare (a volume costante) dei solidi
elementari ha un valore approssimativamente costante ad alta temperatura (legge di Dulong e
Petit), mentre diminuisce —in misura diversa per diverse sostanze — al diminuire della

temperatura. La figura seguente mostra ad esempio il calore specifico del rame in funzione della
temperatura.
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Valori sperimentali della capacita termica del rame (la curva mostra I’andamento ottenuto dalla teoria elementare di
Einstein (1907)).

C’¢ un modo estremamente semplice per dedurre il valore asintotico che si osserva ad alta
temperatura. Consideriamo un reticolo cristallino di N atomi: questi atomi oscillano intorno alle
loro posizioni di equilibrio nel reticolo cristallino, e ciascuno di essi ha 3 gradi di liberta. Ad ogni
grado di liberta ¢ associata sia un’energia cinetica, sia un’energia potenziale, e poiche il valore
medio di ciascuna componente quadratica dell’energia contribuisce con k772 all’energia media
totale (principio di equipartizione dell’energia), I’energia media totale ¢ U = 3NkT = 3nRT.
Poiché C =09U/dT , allora la capacita termica molare & 3R = 24.94 J/mole-K.

La meccanica quantistica porta ad una modifica del principio di equipartizione dell’energia:
Einstein ¢ stato il primo a produrre un’approssimazione che tiene conto della meccanica
quantistica. L’approssimazione di Einstein funziona male a temperature molto basse ma ¢
sufficiente per descrivere 1’andamento globale della capacita termica molare (v. figura).

La verifica della formula di Einstein richiede misure fatte a diverse temperature: in questo
esperimento ci limitiamo ad una sola temperatura, quella di ebollizione dell’azoto liquido (=

77 K; questo ci permette di fare un semplice confronto con la capacita termica a temperatura
ambiente).

Lo schema di esperimento ¢ quello riportato nell’articolo di Thompson e White, riprodotto alla
fine di questa nota.



Appendice: il modello di Einstein

Come funziona 1’approssimazione di Einstein? Per capirlo dobbiamo assumere come noto un
risultato della Meccanica Quantistica, vale a dire che un oscillatore ha livelli energetici

g, = ha)(n-i-l)
2

dove w ¢ la frequenza naturale dell’oscillatore (se K € la costante elastica e | la massa, allora
o = Jk/ ). Percio ’energia media di un oscillatore quantistico ¢ data da
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dove 0, = e ¢ la temperatura di Einstein.

Se si assume che gli atomi in un cristallo si possano approssimare come oscillatori semplici,
ciascuno con 3 gradi di liberta, allora in totale ci sono 3N gradi di liberta e I’energia media ¢

1 1

Si noti che se il rapporto 6, /T ¢ molto piccolo, allora

E

U = 3Nk0, | L+ L | < 3nir
26



e si ritrova il risultato che ci aveva portato alla legge di Dulong e Petit.

Dalla formula per I’energia interna media, e assumendo N =N,, si trova la capacita termica
molare
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Questa capacita termica dipende solo dal rapporto — = T =

molto piccolo, allora la capacita termica vale approssimativamente
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, € che se il rapporto €
T pp

2
9_1;; 1 7=3R
T (6,/T)

e in questo caso si riottiene la legge di Dulong e Petit.

Se invece il rapporto ¢ grande, allora

3Ri eezs/T

92
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e questa espressione tende a zero (quindi la legge di Dulong e Petit € violata).

La temperatura di Einstein ¢ grande per solidi con grande costante elastica (molto rigidi) oppure
con massa piccola (nuclei leggeri): per esempio il diamante ha una temperatura di Einstein di
circa 1450 K e la sua capacita termica si avvicina a quella della legge di Dulong e Petit solo ad
alta temperatura.



British ball can be readily determined:

)
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o _ (_.‘i)A ip, A=00143 f?,
m

m
p = 0.002 37 slugs/ft>, m =(1.62/16)/32 slugs,
C, =0.36.

""Reference 5(b), p. 161.
12Reference 5(b), p. 160.
3Reference 5(b), p. 164.
!4Reference 5(b), pp. 164-165.
!SReference 5(b), p. 165.
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An experiment to measure the latent heat of vaporization of liquid nitrogen and the average heat
capacities at constant pressure of several materials in the temperature range 77-295 K is
described. This exercise uses normally available laboratory apparatus and is suitable for the

general physics laboratory.

I. INTRODUCTION

We have recently developed a laboratory experiment for
our general physics courses that incorporates the use of a
cryogenic fluid {liquid nitrogen—hereafter called LN,), the
measurement of its latent heat of vaporization, and the
study of the {average) low-temperature heat capacities of
several materials and their relation to the law of Dulong
and Petit. The experiment is simple and uses normally
available laboratory apparatus (assuming a source of LN,
is available). Data collection and analysis can be performed
in a two-hour laboratory period. The values obtained have
small experimental uncertainties and agree well with val-
ues calculated from published data.

II. LATENT HEAT OF VAPORIZATION OF LIQUID
NITROGEN

A schematic of the apparatus used to measure the latent
heat of vaporization of LN, is shown in Fig. 1. An electrical
heater R was suspended in a LN, bath in a cup assembly
which rested on a scale balance pan. As the LN, boiled
away a background loss rate was determined by measuring
m(t), the mass of the LN, plus cup assembly, as a function
of time. After a few minutes of observation, switch S was
closed. The current I and voltage V were measured. Simul-
taneously, measurements of m(t) continued but the rate
was, of course, much faster. A good technique to measure
m(t )is to unbalance the scale one or two grams too light and
read the time as the pointer passes zero, then unbalance
again and repeat. A suitably damped dial-type balance
makes this process rapid and simple.

After a few grams of LN, had been boiled off by the
heater, switch S was opened again and the heater time in-
terval, A¢, carefully noted. (A separate timer for this pur-
pose is advantageous). Measurements of m(¢ ) were contin-
ued for a few minutes to re-establish the background. These
data were plotted as shown in Fig. 2.
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The double-wall styrofoam cup assembly, labeled item
% in Fig. 1, was made by suspending a 6-0z cup inside a 14-
oz cup. A styrofoam ring was used to center the cups and a
bead of silicone bathtup-type sealant sealed the joint and
stabilized the assembly. The analytical balance' had a 0-10
g dial. The heater probe had a 33-£2, 10-W wire wound
resistor (nominal value) mounted on the end of a small
stainless steel tube. The power source was a 28-V (nominal)
laboratory supply. The 10-W rating of % was exceeded but
the LN, cooling compensated. The current and voltage
were measured using Keithley Model 130 digital multi-
meters.” Values obtained for the data shown in Fig. 2 were
V=285V and 7=0.871 A.

Straight lines were drawn through the data of Fig. 2.
From the vertical displacement of the two lines near the
center of the heating period the mass of the LN, boiled off
was determined to be 9.35 g. The heating interval was
timed to be 73.4 s. The latent heat of vaporization L, was
calculated from the relation

L, = VIAt /AM. (1)

Fig. 1. Schematic of the
apparatus used to mea-
sure the latent heat of va-
porization of LN,. The
letters refer to the follow-
ing items: B, balance; C,
styrofoam cup assembly;
1, current meter; R, 33 2
resistor; S, switch; V,
voltmeter. The power
source was 28 V.

I
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Fig. 2. Plot of the data which shows the mass of the cup assembly plus LN,
as a function of time for the heat of vaporization of liquid nitrogen mea-
surement. The background rates have been extrapolated to the center of
the heating period which is marked by a dashed line.

The above data gives

_ 28.5x0.871x73.4
B 9.35

The accepted value is 197.7 J/g, or 47.23 cal/g.

L =1951/g. 2)

v

II1. SPECIFIC HEATS OF LEAD AND BERYLLIUM

Our students measure the molar specific heat capacities,
averaged over the temperature range of 77-295 K, for two
metals—Ilead and beryllium. These two metals were chosen
since their molar heat capacities at room temperature are
quite different. Lead has a value near 3R whereas beryllium
is much lower. R is the universal gas constant. If beryllium
should be hard to obtain {its toxicity makes cutting pieces
to size totally out of the question in most machine shops) or
too costly, silicon or carbon would be acceptable substi-
tutes.

The heat capacity measurements were made as follows.
The styrofoam cup was filled with LN, and, together with
the metal piece to be measured, placed on the balance pan
as illustrated in Fig. 3. As before, the mass m(t) was mea-
sured for a few minutes to establish a background loss rate.
The metal was then moved from the scale pan and gently
placed into the cup of LN, using tongs. Measurements of
m(t) continued until the background rate was re-estab-
lished. Extrapolation of the background rates permitted
determination of the mass of liquid which boiled offin cool-
ing the piece of metal from room temperature to 77 K. The
average specific heat was then calculated from the expres-
sion

Ep — (198)Am

n(Ty—77)
where Am is the mass of LN, boiled off in units of grams, n
is the amount of sample in moles, and T, is the original
(room) temperature of the metal in degrees Kelvin.

J/mole K, (3)
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Fig. 3. Schematic diagram illustrating that the metal sample (lead or be-
ryllium) is tranferred from the balance pan into the liquid nitrogen during
the heat capacity measurements. The transfer is made after about 200, as
shown by the data in Fig. 4. B is the balance pan and C'is the cup assembly.

Figure 4 shows data obtained for lead and beryllium
samples of masses 57.0 g (0.275 mole) and 3.62 g (0.402
mole), respectively. Based on this data the average specific
heats at constant pressure C, were calculated to be

(198)(7.60)

C,(lead) = =25.1J/mole K (4)
(0.275)(295 — 77)
= 6.00 cal/mole K (5)
and
C, (beryllium) = — 00430 __ _ 993 y/motek ()
(0.402)(295 — 77)
= 2.32 cal/mole K. (7)
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Fig. 4. Plots of the data which show the mass of the sample cup assembly
plus LN, as a function of time for the heat capacity measurements for lead
{upper) and beryllium (lower). The background rates have been extrapo-
lated into the region where the cooling of the sample occurred. The mass
of the nitrogen boil off Am and the mass of each sample are shown for the
two measurements.

(sec)
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Table I. Molar specific heats at constant pressure at several temperatures
for Be, C(graphite), Si, Cu, and Pb. The units are cal/mole K and degrees
Kelvin.®

T Be C(graphite) Si Cu Pb
70 0.121 0.221 1.02 2.63 5.54
80 0.195 0.278 1.24 3.11 5.64
90 0.299 0.339 1.48 3.52 5.74

100 0.428 0.402 1.72 3.86 5.84

120 0.743 0.539 2.17 4.37 5.94

140 1.130  0.689 2.59 4.75 5.99

160 1.557 0.849 2.99 5.04 6.09

180 1.983 1.019 3.36 5.25 6.14

200 2.39 1.188 3.68 5.40 6.19

220 2.78 1.36 3.95 5.53 6.24

240 17 1.54 4.15 5.63 6.29

260 3.53 1.71 433 5.71 6.34

280 3.90 1.88 4.50 5.78 6.38

300 4.24 205 4.65 5.86 6.44

®Sece for example: AIP Handbook (McGraw-Hill, New York, 1963), p. 4—
48; NBS Cryogenic Engr. Lab WADD Tech. Rep. 60-56, Part II (1960).

Similar data were obtained for silicon and carbon. We
used samples of 7.20 g of silicon and 9.66 g of carbon
(graphite) and determined the specific heats to be 3.31 and
1.13 cal/mole K, respectively.

Dulong and Petit noted that the room temperature spe-
cific heats at constant pressure of most metals (except the
lightest) were near 3R {24.94 J/mole K, or 5.96 cal/mo-
le K). The value obtained for lead was near 3R, but as ex-
pected the values obtained for the other elements were con-
siderably smaller. It is instructive to give the students
literature data for C,(T') and have them compute C, by
numerical integration over the appropriate temperature

Table II. Molar specific heats at constant pressure, averaged over the
temperature interval 77-295 K, for beryllium, graphite, silicon, and lead.
The units are cal/mole K. Column 2 lists values measured in this experi-
ment and column 3 lists values obtained from the data in Table 1.

Sample CP (exp) C »(calc)
Be 2.32 2.10
C(graphite) 1.13 0.92
Si 3.31 3.29
Pb 6.00 6.18

range. For convenience, sets of C, and T" data for the mate-
rials we have used (and also copper for reference) are given
in Table L.

Table II shows the average specific heats that we mea-
sured compared to the values calculated from the data in
Table I. The agreement is quite good for silicon, lead, and
beryllium but not so good for carbon. It should be noted
that the samples we used were all of very high purity. (We
caution that some lead normally found around the labora-
tory may be of questionable purity and may give erroneous
results.)

We also caution that students must be made aware of the
hazards of improper handling of LN,. In our laboratories,
students are required to wear protective eye covers during
the experiment. The laboratory instructor is responsible for
the main LN, storage dewar and dispenses the nitrogen in
small styrofoam cups to the students as required.

'Ohaus Dial-O-Gram model 310 balance. Ohaus Scale Corp., 29 Hanover
Road, Florham Park, New Jersey 07932.
ZKeithley Instruments, Inc., 28775 Aurora Road, Cleveland, Ohio 44139.
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In the course of determining the Schwarzschild interior solution in isotropic coordinates it turns
out that to a given density and coordinate radius there in general correspond two possible spheres
which have distinct masses and distinct physical radii. This situation is here described in detail.

L INTRODUCTION

The well-known “Schwarzschild interior solution” is the
metric (S;) of a region of space-time occupied by a spheri-
cally symmetric static distribution of fluid the density
pl = T*,/8m) of which has a fixed positive value, that is, it is
independent of position and time. No doubt it is considered
so often in expositions of general relativity theory because
of the ease with which its explicit form can be found. One

364 Am. J, Phys. 51 (4), April 1983

should, however, bear in mind that it is formal in character
in as far as the required constancy of p is unphysical: it
implies that the speed of sound is infinite and causality is
violated.! At any rate, an appropriate generic form of the
metric is>?

ds*= —dFrP—F2e*dN? + e dt?, (1
whered2? = d6? + sin*@ d¢ * and A,u,v are functions of 7
alone. One of these may be prescribed arbitrarily, subject to
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