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Chapter Il

Statistics for HEP



Luca Lista

Statistical
Methods for

Data Analysis
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Lectures taken from “Statistical Methods for Data Analysis in
Particle Physics” by Luca Lista



statistica

Vocabolario on line

Crea un ebook con questa voce | Scaricalo ora (0) Condividi W § m

Nel significato originario, da cui trae il nome, essa rappresenta “la scienza
che si occupa della raccolta e la classificazione di certi fatti concernenti la
popolazione di uno Stato” (Webster’s). Detto con le parole di Trilussa, “L;
na cosa / che serve pe’ fa’ un conto in generale / de la gente che nasce, che
sta male, / che more, che va in carcere e che sposa.”. In questa accezione
essa € piu propriamente nota come statistica descrittiva.

(D’ Agostini)



Statistics in HEP

Particle collisions are recorded in form of data delivered by detectors
— Measurements of particle position in the detector, energy, time, ...

Usually a large number of collision events are collected by an experiment, each
event usually containing large amounts of data

Intrinsic randomness of physics process

Collision event data are all different from each other
(Quantum Mechanics: P = |M|?)

e Detector response is somewhat random

e [uctuations, resolution, efficiency,....




Statistics in HEP

Distributions of measured quantities in data:

— are predicted by a theory model,
— depend on some theory parameters,
— e.9.: particle mass, cross section, etc.

Given our data sample, we want to:
— measure theory parameters and answer
guestions about the nature of data

® |s the Higgs boson real? (strong evidence? Quantify!)
e |s Dark Matter real”? (No evidence, so far... Quantify!)

¢ \What is the range of theory parameters compatible
with the observed data? \What parameter range can we
exclude”
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What is probability?

Probability doesn’t have a unique, Universal definition!

® [he applicability of each definition depends on the kind of claim we are
considering to applying the concept of probability

® One subjective approach expresses the degree of belief of the claim, which
may vary from subject to subject

® [or repeatable experiments, probability may be a measure of how
frequently the claim is true
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The importance of being repeatable

Repeatable experiments

* \What’s the probability to extract one ace in a deck of
cards”

* \What is the probability to win a lottery”?

e \What is the probability that a pion is incorrectly identified
as a muon in a particle detector?

more complicated:

What is the probabillity that a fluctuation in the background
can produce a peak in the yy spectrum with a magnitude at

least equal to what has lbeen observed by a given
experiment?

Note: different question w.r.t.: what is the probabillity that the
peak is due to a background fluctuation? (non repeatable!)



Unrepeatable claims

Could be about future events:

— what’s the probability that tomorrow it will
rain in Trieste?

— what’s the probability of your favourite team
will win next championship?

But also past events:

— what’s the probability that dinosaurs went
extinct because of an asteroid?

More In general,
it's about unknown events:

— what is the probability that matter is
made of particles heavier than 1 eV?

— what is the probabillity that

climate changes are mainly due to
human intervention?



Maths basics of probability

e Probability determined by symmetry properties of a
random device

e “Equally undecided” about event outcome,
according to Laplace definition

P = 1/6 (each dice)

P=14P=1/10



Composite cases

e Composite cases are
managed via combinatorial

¢ Reduce the (composite) event of interest into
elementary equiprobable events

(sample space) analysis -~
e Statements about an event can be defined via ,:‘“e";

set algebra - and/or/not = intersection/union/

complement

E.Q:

2 ={(1,1)} 18 11/6
3={12), 2,1); e

4 _ {(1 ,3)’ 2,2), ’1)} 0.14 -5/36
5=1{1,4), (2,3), (3,2), (4,1)} etc. ... 012 1179

- E.g.:
“sum of two dices is even and greater than four”
{(dy,dp):mod(d; +d,,2)=0}n{(d,dy):d; +d, >4}

0.1

0.08

0.06

0.04

0.02

III|III|IIIIIIIlIII|III|III|II]|III|II

4112

—4118

1/36

N —

10

12

d+d

1" 72



Events

e Note that in physics and statistics usually the word event have
different meanings

e Statistics: a subset in the sample space

e E.g.: “the sum of two dices is = 5”

e Physics: the result of a collision, as recorded by our experiment
— E.g.: a Higgs to two-photon candidate event

® |n several concrete cases, an event in statistics may correspond
to many possible collision events

o —E.g.: “p1(y) > 40 GeV”,
“The measured myis > 125 GeV”



Frequentist Probability

‘ Probablllty P = frequeney of occurrence of an event IN the Ilmlt of \
very large number (N—voo) of repeated tnals ~

M

Probability: P = lim

N— 0

Number of favourable cases N = Number of trials

e Exactly realizable only with an
Infinite number of trials
— Conceptually is unpleasant
— Pragmatically acceptable by physicists

- Easy to compute integrals

e Only applicable to repeatable experiments



Bayesian Probabillity

e Expresses one’s degree of belief that a claim is true
— How strong would you bet?
— Applicable to all unknown events/claims, not only repeatable experiments
— Each individual may have a different opinion/prejudice

e Quantitative rules exist about how subjective probability should be modified
after learning about some observation/evidence

e — Consistent with Bayes Theorem
* — Prior probability and Posterior probabillity (following olbservation)

e — [The more information we receive, the more Bayesian probabillity is
insensitive on prior subjective prejudice (unless pathological cases...)



Bayesian vs. Frequentist

D’D T"E SUN J’USF EXPUXI.? Taken from xkcd
(ITS NIGHT, S0 WERE NOT SURE,)
THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.
( THEN, TROWS TWO DICE. |F THEY
BOTH COME UP SIX, IT UES TO US.
OTHERWISE,, ITTEU.STI-ETEUIH
LET's TRY.
DETECTOR! HAS THE
&NCD\(F_‘M’ —
9[;5 FREQUENTIST STATISTICIAN: BAYESIAN STRATISTIOAN:
W THE PROGABILITY OF THIS RESULT
HAPPENING BY CHANCE 15 5=0027. BET YOU $50
GNCE p<0.05, T. CONCLUDE IT HASNT.
Wn‘ THE SUN HAS EXPLODED. ]

M |



Bayesian vs. Frequentist

The Frequentistlikelihood and the Bayesian posteriorask two different

statistical questions of the data: A

Given the
prior and the
data, extract
the pdf of the
parameters.

Regions of high
quality of fit



AXioms

Axiomatic probability definitions
— Terminology: () = sample space, F = event space, P = probability measure
— Let (QQ, FC29, P) be a measure space that satisfies:

* V(El, ,En) EF”IEimEJ':O.
*x PQ)=1

* P El-):.z P(E;)

l:.l.. Ny

*x P(E)>0 VE€F

The same formalism applies to
either frequentist and Bayesian probability




Probability Distributions

Given a discrete random variable, we can assign a probability to each individual value:

In case of a continuous variable, the probability assigned to an individual value may be O

e A probability density better quantifies the probability content (unlike P({x}) = 0 !):

Discrete and continuous distributions can be combined using Dirac’s delta functions.

P(x) = P({x}) -
dP(x) 3 3
) ( — ]L(I) = 0
da -
= L
(1]) B 15 . | : llllllllllllllllllllllllllllllllllllllllllllllll
da 2((1)|2/(') 888888888

50% prob. to have zero (P({0}) = 0.5), 50% distributed according to f(x)



(Gaussian Case

¢ Many random variables in real experiments follow a Gaussian distribution

Central Limit Theorem:

approximate sum of multiple random contributions, regardless of the individual distributions

e Frequently used to model detector resolution

0.4
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Poisson Case

Distribution of the number of
occurrences of random event
uniformly distributed in a
measurement range whose
rate IS known

— E.g.: number of rain drops in a
given area and in a given time
Interval, number of cosmic rays
crossing a detector in a given time
interval

Can be approximated
with a Gaussian
distribution for large
values of V.

0.3
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Binomial Case

* Probability to extract » red balls over N trials, given
the fraction p of red balls in a basket

Red:

* Typical application in physics:
detector efficiency (e = p)

P(n; N,p) =




PDFs In higher dimensions

* |n more dimensions (n random variables), PDF can be defined as:

o —f..x,)
= flx;...x
dx;...dx, ! "

® [he probability associated to an event E is obtained by integrating
the PDF over the corresponding set in the sample space

Q

P(E)=J flxg...x)dx" E ?
e C_




Mean & Variance

e Given a random variable x with distribution f(x) we can define:

e Mean or Elg(z) = (g(x)) /'(/(.1‘)')"(.1‘)(1.1‘
expected value: Blz] = () / v f(x)da
e Variance: Var[z] = ((z — (2))?) = () — (2)°

e Standard deviation: o, = \/Var[z] = V (@%) — (z)

e Covariance and correlation coefficient of two variables x and v:

cov(x,y)

cov(z,y) = ((x — (x))(y — (y))) Dy =
| o | n.z'ny



Conditional Probability

e Probability of A, given B: P(A | B), i.e.:
probability that an event known to belong
to set B also belongs to set A:

- P(A|B) =P(AnB)/P(B) — Notice that:
P(A|Q) =P(AnQ)/P(Q))

e Event A is said to be independent of B if the probability of A given
B Is equal to the probabillity of A:
- P(AIB)=P(A)

e [f Ais independent of B then P(A n B) =
P(A) P(B)

e [f Aisindependenton B, Bis
iIndependent on A




Independent Variables

d*P , '
- = f(#,9) : |
drdy fol@) = [ fap)dy
* 1D projections: < -
(marginal distributions) fu,(y) = / f(x,y)dx

« x and y are independent if: Y $P(o.4)
fz,y) = fo(x) fy(y) s
SP(y)
+ We saw that 4 and B are / ) v
Independent events if: / 5P(a)
P(ANB) = P(A)P(B)

X
e Whered={x"x<x'<x+dx},B={)':y<y'<y+dy}



The Bayes Theorem

P(A|B) = P(ﬁ(;)B)
o - A0

P(A|B)P(B) = P(B|A)P(A)

P(A) = prior probability P(A|B) = posterior probability



The Bayes Theorem: the role of the posterior

* Bayes theorem allows to determine probability about hypotheses or claims H
that not related random variables, given an observation or evidence E:

¢ P(H) = prior probability e P(H | E) = posterior probability, given E

The Bayes rule allows to define a rational way to modify
one’s prior belief once some observation is known



Frequentist approach In practice

Let’s take an example: muon fake rate estimation

e A detector identifies muons with high efficiently, € = 95%

e A small fraction & = 5% of pions are incorrectly identified as
muons (“fakes”)

e |f a particle is identified as a muon, what is the probability it is really a muon”?

® [he answer also depends on the composition of the sample!

¢ |.e.:the fraction of muons and pions in the overall sample

This example is usually presented as an epidemiology case.
Nalve answers about fake positive probability are often wrong!



Bayesian resolution ") = . PEMIA

EO = ‘+,9 Ai: H, T

¢ Using Bayes theorem:
= P(u|+)=P(+[p)Pu)/P(+)
Where our inputs are:
— P(+|p)=€=0.95,P(+|m)=6=0.05

* We can decompose P(+) as:
= P(+)=P(+|p)P(u)+P(+|rm)P(r)

¢ Putting all together:
— P(p[+)=eP(p)/(eP(u)+6P(m))

- Assume we have a sample made of P(u)=4% muons and P(r1)=96% pions, we
have:

— P(u]+) = 0.95 x 0.04 / (0.95 x 0.04 + 0.05 x 0.96)=0.44
 Even if the selection efficiency is very high, the low

sample purity makes P(u|+) lower than 50%.



Bayesian resolution

Muons: P(p) = 4% -;

All particles:
> P

Pions: P(m) =96% < P(Q) =100%




Bayesian resolution

P(+) =8.6%
P(Hp)=e=95% PHwW=1-e=5%
1

Muons: P(n) = 4% -;

P(Hrm)=0=5%

Pions: P(n) =96% <

L T P(_ln) =]1—-0= 95%




The Likelihood Function

® |n many cases, the outcome of our experiment can be modelled as a set of
random variables x1, ..., Xn whose distribution takes into account:

® intrinsic sample randomness (quantum physics is intrinsically random),
e detector effects (resolution, efficiency, ...).

* Theory and detector effects can lbe described according to some
parameters 61, ..., Om, whose values are, in most of the cases, unknown

e [he overall PDF, evaluated at our observation x1, ..., Xn, Is called likelihood

function:

® |n case our sample consists of N independent measurements (collision events) the
likelihood function can be written as:

L=T1 fix,...x;6,...0,)

= m




Bayes and the Likelihood Function

Given a set of measurements x4, ..., X,, Bayesian posterior PDF of the unknown
parameters 64, ..., 6, can be determined as:

P, 0|2y, 2,) = 'L(’1.1°"‘-~1'N:Hl-"'-9,,,,”’_

e \Where 11(64, ..., 6,,) is the subjective prior probability
* The denominator [ L(x, 6 ) (6 ) d™B is a normalization factor

e The observation of x4, ..., X, modifies the prior knowledge of the unknown
parameters 64, ..., 6,

o [fT1(B4, ..., B, Iis sufficiently smooth and L is sharply peaked around the true
values 6, ..., 6,,, the resulting posterior will not be strongly dependent on the
prior’'s choice



lterating Bayes

Bayes theorem can be applied sequentially for repeated independent
observations (posterior PDF = learning from experiments)

Py = Prior

Prior P, oc Py X L,

Note that applying Bayes theorem directly
from prior to (obs1 + obs2) leads to the
same result:

Piiy=PyX L z=Py XLy XL,=P,

observation 1

[Conditioned posterior 1

wc’n 2

[ Conditioned posterior 2

— =

Py oc Py XL, Py XL XL,

P; < Py XL XL, XL

\bse:vation 3
Composite likelihood = product of

individual likelinoods
(for independent observations)




Inference

Determining information about unknown parameters
Using probability theory

Probability
=4 >

Data fluctuate according
to process randomness

Model parameters uncertainty
due to fluctuations of the data
sample




Bayesian Inference

The posterior PDF provides all the information about the unknown parameters
(let’s assume here it’s just a single parameter B for simplicity)

P(6le) L(z;0)x(6)
~ [ L(x:0)x(6)dd
e Given P(B|x), we can determine: = 0
— The most probable value (best estimate) % "TE p = 68.3%, as lo
— Intervals corresponding to a specified 08E for a Gaussian
probability OSE

e Notice that if 11(0) is a constant, the most
probable value of 6 correspond to the

maximum of the likelihood function | | | o 0



Frequentist Inference

Assigning a probability level of an unknown parameter

makes No sense In the frequentist approach
— Parameters are not random variables!

* A frequentist inference procedure determines a central value and an
uncertainty interval that depend on the observed measurements

¢ [he central value and interval extremes are random variables

® NoO subjective element is introduced in the determination

* The function that returns the central value given an observed
measurement is called estimator

e Different estimator choices are possible, the most frequently adopted
IS the maximum likelihood estimator because of its statistical
properties discussed in the following



Frequentist Coverage

® Repeating the experiment will result each
time in a different data sample

e For each data sample, the estimator
returns a different central value 8

e An uncertainty interval [9° — 6, ' + 8] can
be associated to the estimator’s value 6

e Some of the confidence intervals contain
the fixed and unknown true value of 6,
corresponding to a fraction equal to 68%
of the times, in the limit of very large
number of experiments (coverage)

Repeated experiments
A

True value of 6




Choice of 68% Intervals

Different interval choices are possible, corresponding to the same
probability level (usually 68%, as 1o for a Gaussian)

— Equal are as in the right and left tails . Alequvalentfora |
symmetric distribution |

— Symmetric interval
— Shortest interval

Reported as 0 = UP + 6 (sym.) or 8 = UP (asym.)

Equal tails interval Symmetric interval




Upper and Lower Limits

o A fully asymmetric interval choice is obtained setting one extreme of
the interval to the lowest or highest allowed range

® [he other extreme indicates an upper or lower limits to the “allowed”
range

e For upper or lower limits, usually a probability of 90% or 95% is
preferred to the usual 68% adopted for central intervals

e Reported as: 6<64 (90%CL)ore>06'° (90%CL)

0.8 0.8

P(6)
P(6)

0.7~ 0.7

0.6 S— 0.6 E—
0.5 f— 05 f—
0.4 f— 0.4 E—
0.3 S— 0.3 f—
0.2 5— 0.2 f—

0.1—

0.1—




Frequentist Inference - 2

An estimator Is a function of a given set of measurements that
provides an approximate value of a parameter of interest which
appears in our PDF model (best fit)

e Simplest example:
e Assume a Gaussian PDF with a known ¢ and an unknown p
e — A single experiment provides a measurement x
e — \We estimate p as u=x

e — The distribution of u (repeating the experiment many times) is the original
Gaussian

e — 68.3% of the experiments (in the limit of large number of repetitions) will
provide an estimate within: py—-o<u<py+o0

U=X+0



The Maximum Likelihood Method

® [he maximum-likelihood estimator is
the most adopted parameter estimator

| p(]:'m NEAR » UP> _
® [he best fit parameters THE OCEAN ASEASHELL
correspond to the set of values :mm mm)p(mm
that maximizes the likelihood “m THE OEAN) © \THE Ocenn
function P(Im‘”
- ~
® [he maximization can be i
performed analytically only in &CR"“S"Wj
the simplest cases, and 5”“"’5@\'
numerically for most of realistic Ty T
cases SEASHELL AND DOV HOLD IT TOYOUR ERR,

YOU (AN PROBABLY HEAR THE OCEAN.



Meaning of parameter estimate

» We are interested in some physical unknown
parameters

» Experiments provide samplings of some PDF
which has among its parameters the physical
unknowns we are interested In

» Experiment’s results are statistically “related” to
the unknown PDF

— PDF parameters can be determined from the
sample within some approximation or uncertainty

» Knowing a parameter within some error may mean
different things:



Meaning of parameter estimate

— Frequentist: a large fraction (68% or 95%,
usually) of the experiments will contain, in the limit
of large number of experiments, the fixedg
unknown true value within the quoted confidence
interval, usually [u — o,u + o] (coverage)

— Bayesian: we determine a degree of belief that
the unknown parameter is contained in a specified
interval can be quantified as 68% or 95%

» We will see that there is still some more degree of
arbitrariness in the definition of confidence
intervals...



Statistical inference vs Hypothesis testing

Probability
Rt > -

Data fluctuate according

Stat|Stlca| to process randomness

Inference Inference
Ve | _—

Model uncertainty due to
fluctuations of the data sample

> Toe ] Hypothesis

testing

Which hypothesis is the most
consistent with the experimental
data?



Parameter estimators

* An estimator is a function of a given sample whose statistical
properties are known and related to some PDF parameters

—‘Best fit”

» Simplest example:
—Assume we have a Gaussian PDF with a known o and an
unknown u
- A single experiment will provide a measurement x
- We estimate u as uest = x
- The distribution of pest
(repeating the experiment many times) is the original Gaussian

68.27%, on average, of the experiments will provide
an estimate withini u—-o<ust<u+ o

« We can determine: u = usst + o



Likelihood function

« Given a sample of N events each with variables (x, ..., x,), the

likelihood function expresses the probability density of the
sample, as a functlon of the unknown parameters:

I, — Hf O, -, 0,)

* Sometimes the used notatlon for parameters is the same as for
conditional probability:

f(il?h'“ Q;n‘gh... 79m)'

* |f the size N of the sample is also a random variable, the
extended likelihood function is also used:

L = p(N:0,,- Hf a0y, 0,)

—Where p is most of the tlmes a Poisson distribution whose

average Is a function of the unknown parameters s

* In many cases it is convenient to use —In L or —2In L:



Maximum likelihood estimates

* ML is the widest used parameter estimator

* The "best fit" parameters are the set that maximizes
the likelihood function

—*Very good” statistical properties, as will be seen in the
following

* The maximization can be performed analytically, for
the simplest cases, and numerically for most of the
cases

» Minuit is historically the most used minimization
engine in High Energy Physics
—F. James, 1970’s; rewritten in C++ recently



Extended likelihood function

* For Poissonian sighal and background processes:
(S+b)n€_(8+b) n

L(zi;s,0,0) = - | [(fsPo(2i:0) + foPo(i; 0))
f B S . ' i=1
s+ b ~(s+b) T ‘
b s = € — H(SPS(:Q; 0) + bPy(x;;0))
fb T s _|_ b ) 1=1

* We can fit simultaneously s, 5 and d minimizing:

—InL=s5+b-— Z In(sP,(x;;0) + bPy(x;;0)) + Inn!

1=1

« Sometimes s is replaced by u sy, where s, is the theory
estimate and u is called signal strength



(Gaussian Case

* |[f we have n independent measurements all modeled with
(or approximated to) the same Gaussian PDF, we have:

n

2

—2In L = Z (i — 2 Fn(ln27 + 21Ino)

. o2
1=1

« An analytical minimization of —2In L w.r.t y (assuming o2 IS
known) gives the arithmetic mean as ML estimate of u:

n

X 1
e |If 62 is also unknown, the ML estimate of 52 is:

n

. 1 |
0'2 — — T; — 1)
. Z;( — 1)
e The above estimate can be demonstrated to have an
unpleasant feature, called bias (= next slide)



Estimators: Efficiency

* The variance of any consistent estimator is subject to a lower
bound (Crameér-Rao bound):

1 4 ob(0) 2 ) bias of 4
00

A\

Var|0] >

- Oln L(xzy, - ,xn;0) 2
00 } Fisher information

e Efficiency can be defined as the ratio of Crameér-Rao bound and
the estimator’s variance:

A Ver
e(0) = -
Var|6|
— Efficiency for ML estimators tends to 1 for large number of

measurements

— l.e.: ML estimates have, asymptotically, the smallest possible
variance



Estimators: Bias

* The bias of a parameter is the average value of its
deviation from the true value

b(e):<é—9>:<é>—9

—ML estimators may have a bias, but the bias
decreases with large number of measurements (if
the fit model is correct...!)

—E.qg.: in the case of the estimate of a Gaussian’s o2,
the unbiased estimate is the well known:

AQ n Y 1 N9 ML method
O “unbias. — 10 — 1 S (’Lz — ,LL) underestimates
= n—1= the variance o2



Estimators: Robustness

- If the sample distribution has (slight?) deviations from the
theoretical PDF model, some estimators may deviate more or less
than others from the true value

—E.g.: unexpected tails (“outliers™)

 The median is a robust estimate of a distribution average, while the
mean is not

* Trimmed estimators: removing »n extreme values

 Evaluation of estimator robustness:

— Breakdown point: max. fraction of incorrect measurements above
which the estimate may be arbitrary large

* Trimmed observations at x% have a break point of x
* The median has a break point of 0.5

— Influence function:

* Deviation of estimator if one measurement is replaced by an
arbitrary (incorrect measurement)



Neyman’s Confidence Intervals

Procedure to determine frequentist confidence intervals

« Scan the allowed range of an unknown
parameter 6

* Given a value of ¢ compute the interval :
[x,, x,] that contain x with a probability 1 : D)
— o equal to 68% (or 90%, 95%) =

e Choice of interval needed! 21, ™ %,(6), 6,(%)
R o e e
- Invert the confidence belt: for an A ERC AN
observed value of x, find the interval [0, £

0, ] —

A fraction of the experiments equal to 1
— a Will measure x such that the
corresponding [6,, 6,] contains (“covers

the true value of ¢ (“coverage”)

X80 X8

Possible experimental values x

 Note: the random variables are [6,, 6,], L
not 4! o = significance level



Neyman’s Confidence Intervals: Gaussian case

 Assume a Gaussian 5
distribution with 45
unknown average u
and known o =1

* The belt inversion is 3
trivial and gives the
expected result:

Central value //} =X,
(11, o] =[x — 0, x + 7] -

III|IIII|IIII|IIII|IIII|IIII|IIII|IIII

Il —a=68%

* SO we can quote: 0.5

'JIII|IIII

| |IIIIIlllllllllIllllllllllllllIlllllllllllll

HU—=—X=T O o 05 1 15 2 25 3 35 4 45 5

(-




ML Errors

* A parabolic approximation of —2In L around the
minimum is equivalent to a Gaussian
approximation

—Sufficiently accurate in many but not all cases

noo N2
—2InlL = E (:LZ 2,u) - const.
o
i—1

 Estimate of the covariance matrix from 2nd order
partial derivatives w.r.t. fit parameters at the
minimum; |

. _02 InL

i 00,00,

01, =0,

* Implemented in Minuit as MIGRAD/HESSE
function



Asymmetric Errors

* Another approximation alternative to the parabolic one may be to
evaluate the excursion range of —-2In L.

» Error (no) determined by the range around the maximum for which
—2In L increases by +1 (+n2 for no intervals)

A  Errors can be
oL asymmetric

 For a Gaussian
PDF the result

2InL, 41 IS identical to

the 2nd order

derivative

dIni, matrix

o 0 * Implemented in
Minuit as
MINOS function

>
I

o
>



Asymmetric Errors (Gaussian case)

* We have the previous log-likelihood function:

n

2

—2InL = Z Gt Fn (In27 + 21no)

. o2
1=1

« The error on u Is given by:




Error Propagation

Assume we estimate from a fit the parameter set:
0=, ...,0,) and we know their covariance matrix ©,

We want to determine a new set of parameters that are functions of 6.

0= ).

For small uncertainties, a linear approximation maybe sufficient

A Taylor expansion around the central values of @ gives, using the error matrix

O,
Y Z 00, 00,
k.l
Few examples in case of no correlation: N
n
Opty = Oz—y = /05 + U:Z - {
n

¢ 2
O zy Tz /y T2\ 2 oy
ry /Yy \/ x Y

0,2 = 200,

O, Ge 9
Onx —

&



Asymmetric Errors: warnings

* Much better to know the original PDF and
propagate/combine the information properly!

—Be careful about interpreting the meaning of the
result

* Average value and Variance propagate linearly,
}/_vhile Imost probable value (mode) does not add
iInearly

* Whenever possible, use a single fit rather than
multiple cascade fits, and quote the final
asymmetric errors only



Asymmetric Errors: warnings
* Be careful about:

—Asymmeltric error propagation
—Combining measurements with asymmetric errors
—Difference of “most likely value” w.r.t. “average value”

« Nalve quadrature sum of o, and o_ lead to wrong
answer

—Violates the central limit theorem: the combined
result should be more symmetric than the original
sources!

—A model of the non-linear dependence may be
needed for quantitative calculations

—Biases are very easy to achieve (depending on o, —
o_, and on the non-linear model)



Binned Likelihood

Sometimes data are available as binned histogram
— Most often each bin obeys Poissonian statistics (event counting)

The likelihood function is the product of Poisson PDFs corresponding to each bin
having entries n,

The expected number of entries »; depends on some unknown parameters: y; =
/’ti(ela <o em)

The function to minimize is the following —2 In L:

Mhins
—2InL = —21n H POiSS(?’li; [Li<917 T aem))

1=1

Tbins  — 1, (604 o 0m) (9 , 9 %
_91n H € ﬂz( 1y° , m)

n,!
i=1 ’

The expected number of entries y; is often approximated by a continuous function
u(x) evaluated at the center x; of the bin

Alternatively, 1, can be a combination of other histograms (“templates”)
— E.g.: sum of different simulated processes with floating yields as fit parameters



Binned Likelihood

* Bin entries can be approximated by Gaussian variables for
sufficiently large number of entries with standard deviation
equal to n; (Neyman’s y2)

 Maximizing L is equivalent to minimize:

Nhins 2

Z (7’12' — ,[L(Tz* 6)17 C 7977’&))

n;

2 _
X —
=1

« Sometimes, the denominator #; is replaced (Pearson’s x2) by:

Ui — U (xi; 61: ) em)

In order to avoid cases with zero or small »,

* Analytic solution exists for linear and other simple problems
—E.qg.: linear fit model

. Mﬁsft of the cases are treated numerically, as for unbinned
its



Binned fit: example

* Binned fits are convenient w.r.t.
unbinned fits because the number

Gaussian fit (determine yield, u and o)

of input variables decreases from i
the number of entries to the number - +
of bins = !

200}
—Usually simpler and faster i - }
numerically 150E-

—Unbinned fits become unpractical -
for very large number of entries 100}

* A fraction of the information is lost,
hence a possible loss of precision LIy
may occur for small number of S o= 0 ‘ ?
entries

* Treat correctly bins with small
number of entries!




Binned fit quality: the p-value

 The maximum value of the likelihood function obtained from the fit doesn’t
usually give information about the goodness of the fit

« The y2 of a fit with a Gaussian underlying model is distributed according
to a known PDF

)~ % 5 n is the number of
2. N n—2 —X degrees of freedom
P(X 9 71) _ F(ﬁ) X e = (n. of bins — n. of params.)
2

— The cumulative distribution of P(y2; n) follows a uniform distribution
between 0 and 1 (p-value)

— If the model deviates from the assumed distribution, the distribution of
the p-value will be more peaked around zero

* Note! p-values are not the “probability of the fit hypothesis”

— This would be a Bayesian probability, with a different meaning, and
should be computed in a different way



Likelihood Ratio

* A better alternative to the (Gaussian-inspired, Neyman and
Pearson’s) y? has been proposed by Baker and Cousins using the
following likelihood ratio:

2 _ (7l i
X)\ — 2111 H’L L(

) _ e ,U@ nl'
neng) 2In]], =y
0

(2

— 2} i i(0iy m)—7'“+mhl(m(el,inf- ,Hm)>_

« Same minimum value as from Poisson likelihood function, since a
constant term has been added to the log-likelihood function

* |n addition, it provides goodness-of-fit information, and asymptotically
obeys chi-squared distribution with » — m degrees of freedom

(Wilks’ theorem, see following slides)



Combinations

« Assume two measurements with different
uncorrelated (Gaussian) errors: m; £ oy,

. Build the »2:

« Minimize the 2

 Estimate m as:

 Error estimate:

2 2
o (m—my)”  (m—my)
X = > | >
91 92
ox* (m —my) (m — my
0=—-—=2 2 | 2
om o o5
m1i mo
0% J% Wwymy —+— wWallng
m = 2 2
o2 T 52 Wi W2
1 ?’InL 10%\* 11
o2 om 2 0m o7 05

Mo 0'2_

Weighted
average,
w, = 0,2



Higher dimensions: 2D-intervals

In more dimensions one can determine 1¢ and 2o contours
Note: different probability content in 2D compared to one dimension
68% and 95% contours are usually preferable

2 (" a2
Pip(no) = \/;/ e 2 dx = erf(
0

lo

20

30

1.515¢0

2.4860

3.439¢

0.6827

0.9545

0.9973

0.3934

0.8647

0.9889

0.6827

0.9545

0.9973

%) ng(na):/O e

=

2

T

2rdr=1—e

_n?
2



Higher dimensions: 2D-intervals

In more dimensions one can determine 1¢ and 2¢ contours
Note: different probability content in 2D compared to one dimension
68% and 95% contours are usually preferable

* From previous fit example:
— P(m): Gaussian peak

(og) w

— P,(m): exponential shape

09

Events /7 ( 0.01 )

8
=004

I ,II IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

¢f ¢ €6 76 1T € 6¢ 87 [T 97 9'8

Exponential decay parameter, Gaussian
mean and standard deviation are fit
together with s and 5 yields.

The contour shows for this case a mild
correlation between s and b

026l
0¥l
091
081
0091

0701 ©

B O 0% 0% Owb OBy Qcv Ol 0030 i
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(Global Electroweak Fit

« A Global y2fit to electroweak measurements predicts the W mass
allowing a comparison with direct measurements

N 1 0 : L I | | LI I L L | L I UL L | | L I L :
< o F fitter|su): 2
9 _— ———————————————————————————————————————————————— E SM > — 36
8 - [ SM fit measurement -
- SMfitw , and M, measurement -
7 E—— SM fit wit imal input —
6 - H@®H M,, world qverage [arXiv:1204.0042] /-
5 =
4 N i — 20
3 =
2 —
1 R N — -~ — 16
- 1 1 1 | [ N | I 1 1 1 I I 1 L1 1 | I I | I 1 1 1 | I I | | 1 1 1 -

80.32 80.33 80.34 80.35 80.36 80.37 80.38 80.39 804 80.41
M, [GeV]

Details on:
http://gfitter.desy.de/Standard_Model/



Higher dimensions: 2D-intervals

W mass vs top-quark mass from global
electroweak fit

;‘ | | | 1 I | I | 1 I | I | 1 I 1 | 1 I 1 I | | I 1 LR
O —  68% and 95% CL contours m, world comb. + 15 —
G B .- m, = 173.34 GeV ) -
— 80.5 — I fitw/o M, and m, measurements -- 6 =0.76 GeV —
= | fit w/o M, m and M_ measurements — 6 =0.76 ©0.50,, ,GeV d

= w? Ty H
B direct M,, and m, measurements o ]
80.45 [— —]
80.4 j
- M, world comb. + 15 -
80.35 — M, =80.385 + 0.015 GeV —
80.3 — P —
B - rll' - ’ D —
80.25 - g \‘?f’f\ ¢
. u -.-_.‘_,,_:a,’. . &,‘;‘/ 3—;, |
_, | | | | | | I—

140 150




Example: Fitting B(B+ —=J/pm+) / B(B+ —=J/1pK+)

 Four variables:

—m = B reconstructed mass as J/p + charged hadron invariant

Mass

—AE_= Beam — B energy in the i+ mass hypothesis
— AEx = Beam — B energy in the K+ mass hypothesis

—q = B meson charge

015 |-— B>/

e BPU/YK?

* Two samples:
—Jp —=utu-, Jhp —e+e-

L
-0.1 -0.05

 Simultaneous fit of:

—Total yield of B+ —=J/pm+, B+ —=JpK+ and background

0.15 -— B 2>J/yn §"';

e BPU/YKT S

dnele T . L - 0 | P
0 0.05 0.1 -0.1 -0.05

AE (GeV)

—Resolutions separately for JAp —=u+u-, Jhp —e+e-

—Charge asymmetry (direct CP violation)

0

oeadeeny Lo
0.05 0.1

AE(GeV)

) . 2 2
mges — \/Ebeam — PpB



Example: Fitting B(B+ —=J/pm+) / B(B+ —=J/1pK+)

 To extract the ratio of BR:

—In L

Nx + NEK + Npkyg
— > . In| N P.(AFE.;, AEK;, m;)
TZKPK(AEW;, AEKi; mz)
nbkngkg(AEm, AEKi, 77’17;) ]

* Likelihood can be written separately, or combined for ee
and uu events

» Fit contains parameters of interest (mainly n_, n,) plus
uninteresting nuisance parameters

« Separating ¢ =+1 /-1 can be done adding 4, as extra
parameter



Example: Fitting B(B+ —=J/pm+) / B(B+ —=J/1pK+)

> 30 1T I [

8 : EE

) 2 ]

2 200 | g 11 _ B+ eJ/IPJ'IJJr
B+ =JpK+ S - g 1:
T~ e
= i G 1
100
i A
Background-.i..
0 Peiesns ....l.'.'.'.-i---. T T B N RS "'l-.
01 005 0.05 0.1

AE_(GeV)

>_ 3m -l I 1 | I 1 I | | I 1 I | | | 1 I | | | 1 I |

(05 i » 60 —

a & .

e _ voj/qﬂ—o ]
S 200 - . 1-

Likelihood £ — g :
projection = & ° 011
2 100 5
i3 AE _(GeV) -

O LE e Ll et Tt ot Bt S '

0.1 005 0.05 0.1

AE_(GeV)



Example 2: top mass @ CDF

Il quark top al Tevatron

 Non riesce ad adronizzare: T= 10-%%s
* Decade nel canale t—=W+b (BR=100%)

* Produzione di top al Tevatron dalle collisioni pp a ¥ s=1,96 TeV:

/ + -

A Tre tipologie di analisi dei
ey prodotti di ttbar in base al
, > \ Vv _ )
proton decadimento del W:
ki < b » Ivqqbt pton+
q f l '\\__‘__n_b / * qqbb “all hadronic”
antiprofon NSNS e llvy “pure leptonic”

Top Pair Branching Fractions

46%

t+jets 15%

b-tagging fondamentale g ‘

per ridurre il fondo W B

ol ,\u]%

"dileptons™




Template method nel canale lepton+jets

Modeling degli eventi ttbar e del fondo
tramite simulazioni MC

Si genera un set di simulazioni MC a

valori definiti della massa del top e della
JES

Si ottiene una buona stima della massa
ricostruita del top e dei prodotti del W

Per ogni campione un fit del x2 estrae la
massa ricostruita del top

Questa distribuzione di m,.., (femplate)
viene confrontata poi con la distribuzione
dei dati tramite un likelihood fit

Parametrizzazione del segnale

MC solo a valori discreti di Mtop: si
ottengono delle forme funzionali dalle
distribuzioni m__, in funzione di Mtop
(pdf's), costituite da due gaussiane e una
gamma-dis.

0.14-

Fraction/(5 GeV/c’)
o
o

= (=)
© O 4
- - ST )

.06

© ©
o O
S -

150

M,

B 145 Gevic?
B 165 Gevic?
185 GeV/c®

205 GeV/c’

250

300

m{eco(GeV/c")

.2—tag
W 1-tag(T)
W i-tag(L)
[ ]o-tag

Y | ey L
100 150 200 250

m;*<® (GeV/cz)



Likelihood Fit

« La massa ricostruita dai dati viene confrontata con le simulazioni e col fondo
tramite un likelihood fit, in cui, per ogni sample:

L=L, xL .xL xL

ltagT ltagL Otag

xL JES

2tag

L " ape X L gape X L, x L, ( *MtoplJES
sample — J-ev: bs parametri
/ / / v/ liberi del fit
Sensibile a M, Correl.#eventi . .
Sensibile a JES Mtop/JES Normalizzazione del fondo
L ’errore statistico del Method Muco fit result JES fit result
fit & dato dai punti M*- TGV .
per cui AlogL=-1/2 Defauls > ,./ 173.5 *37 (stat. + JES \l 0.10 *07
No JES consts "'\1_";. & 4.5 (stat. 4 .lf;s_j/" 0.25 + 1.22
*Per una serie di M, Myoq-only 173.2 T e =T (JES N/A
fissati, la curvadiL e + JPB 173.0 “27 (stat.) & 3.0 (JES N/A

massimizzata rispetto
a tutti i suoi parametri 20



La Massa del Quark Top

JES (0,)

3 B AlnL=40.5
2 AlnL=24.5

: AinL=12.5
1 - ‘. AlnL=4.5
0 :; AlnL=0.5

i N AInL=2.0 ~_

- -

1 | . AlnL=8.0 .

. N AlInL=18.0

AINL=32.0

~160 165 170 175 180 185 190
M, (GeV/c))

04/03/2006
CDF Il detector
@ Fermilab:

J s=1,96 TeV
JL =318 pb-1

W boson in situ

M, = 173.5%)] (stat + JES) =1.3(other syst) GeV/c’

=173.52°GeV / ¢?
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