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Statistics for HEP
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Statistics in HEP
Particle collisions are recorded in form of data delivered by detectors  
– Measurements of particle position in the detector, energy, time, ... 

Usually a large number of collision events are collected by an experiment, each 
event usually containing large amounts of data 

Collision event data are all different from each other  
(Quantum Mechanics: P ∝ |M|2)  

• 	 Detector response is somewhat random  
• 	 Fluctuations, resolution, efficiency,....

Intrinsic randomness of physics process



Statistics in HEP
Distributions of measured quantities in data: 
– are predicted by a theory model,  
– depend on some theory parameters,  
– e.g.: particle mass, cross section, etc. 

Given our data sample, we want to:  
– measure theory parameters  and answer 
questions about the nature of data 
 

• Is the Higgs boson real? (strong evidence? Quantify!)  
 

• Is Dark Matter real?   (No evidence, so far… Quantify!) 
 

• What is the range of theory parameters compatible 
with the observed data? What parameter range can we 
exclude? 



What is probability?
Probability doesn’t have a unique, Universal definition! 

• The applicability of each definition depends on the kind of claim we are 
considering to applying the concept of probability  

• One subjective approach expresses the degree of belief of the claim, which 
may vary from subject to subject  

• For repeatable experiments, probability may be a measure of how 
frequently the claim is true 



The importance of being repeatable
  
Repeatable experiments  

• What’s the probability to extract one ace in a deck of 
cards?  

• What is the probability to win a lottery?  

• What is the probability that a pion is incorrectly identified 
as a muon in a particle detector?  

  more complicated:      
What is the probability that a fluctuation in the background 
can produce a peak in the γγ spectrum with a magnitude at 
least equal to what has been observed by a given 
experiment?  
Note: different question w.r.t.: what is the probability that the 
peak is due to a background fluctuation? (non repeatable!)  



Unrepeatable claims
Could be about future events: 

– what’s the probability that tomorrow it will 
rain in Trieste? 
– what’s the probability of your favourite team 
will win next championship? 
 But also past events:  

– what’s the probability that dinosaurs went 
extinct because of an asteroid?  

More in general, 
it’s about unknown events:  
– what is the probability that matter is 
made of particles heavier than 1 eV?  
– what is the probability that  
climate changes are mainly due to 
human intervention? 



Maths basics of probability 
• Probability determined by symmetry properties of a 

random device  

• “Equally undecided” about event outcome, 
according to Laplace definition  

P = 1/2

P = 1/6 (each dice) 

P = 1/4 P = 1/10 



Composite cases
• Reduce the (composite) event of interest into 

elementary equiprobable events                       
(sample space)  

  

• Statements about an event can be defined via 
set algebra – and/or/not ⇒ intersection/union/
complement  

E.g:  

2 = {(1,1)} 
3 = {(1,2), (2,1)} 
4 = {(1,3), (2,2), (3,1)} 
5 = {(1,4), (2,3), (3,2), (4,1)} etc. ...  

   

– E.g.:  

“sum of two dices is even and greater than four”  

{(d1,d2):mod(d1 +d2,2)=0}∩{(d1,d2):d1 +d2 >4}  

• Composite cases are 
managed via combinatorial 
analysis 



Events

• Note that in physics and statistics usually the word event have 
different meanings  

• Statistics: a subset in the sample space   

• Physics: the result of a collision, as recorded by our experiment  
– E.g.: a Higgs to two-photon candidate event  

• In several concrete cases, an event in statistics may correspond 
to many possible collision events  

•  E.g.: “the sum of two dices is ≥ 5”

• – E.g.: “pT(γ) > 40 GeV”, 
“The measured mH is > 125 GeV” 



Frequentist Probability

Probability: P =   

Number of favourable cases N = Number of trials  

• Exactly realizable only with an                          
infinite number of trials                                                                   
– Conceptually is unpleasant  
– Pragmatically acceptable by physicists  
- Easy to compute integrals 

• Only applicable to repeatable experiments 

lim
N→∞

Probability P = frequency of occurrence of an event in the limit of 
very large number (N→∞) of repeated trials 



Bayesian Probability
• 	Expresses one’s degree of belief that a claim is true  

	 –  How strong would you bet?  

	 –  Applicable to all unknown events/claims, not only repeatable experiments  

	 –  Each individual may have a different opinion/prejudice  

• 	Quantitative rules exist about how subjective probability should be modified 
after learning about some observation/evidence  

• 	–  Consistent with Bayes Theorem 

• 	–  Prior probability and Posterior probability (following observation)  

• 	–  The more information we receive, the more Bayesian probability is                                                                      
insensitive on prior subjective prejudice (unless pathological cases...) 



Bayesian vs. Frequentist



Bayesian vs. Frequentist



Axioms 
Axiomatic probability definitions 
– Terminology: Ω = sample space, F = event space, P = probability measure 
– Let (Ω, F⊆2Ω, P) be a measure space that satisfies: 

The same formalism applies to                                                                   
either frequentist and Bayesian probability



Probability Distributions
  

Given a discrete random variable, we can assign a probability to each individual value:  

In case of a continuous variable, the probability assigned to an individual value may be 0  

  

• A probability density better quantifies the probability content (unlike P({x}) = 0 !):  

Discrete and continuous distributions can be combined using Dirac’s delta functions.  

   

  

  

50% prob. to have zero (P({0}) = 0.5), 50% distributed according to f(x)  



Gaussian Case 
• Many random variables in real experiments follow a Gaussian distribution  

Central Limit Theorem:  

approximate sum of multiple random contributions, regardless of the individual distributions  

• Frequently used to model detector resolution  

g(x; μ, σ) =
1

2π
e− (x − μ)2

2σ2



Poisson Case 
Distribution of the number of 
occurrences of random event 
uniformly distributed in a 
measurement range whose 
rate is known  

– E.g.: number of rain drops in a 
given area and in a given time 
interval, number of cosmic rays 
crossing a detector in a given time 
interval 

Can be approximated 
with a Gaussian 

distribution for large 
values of ν. 



Binomial Case 



PDFs in higher dimensions

• In more dimensions (n random variables), PDF can be defined as:                

                                 

• The probability associated to an event E is obtained by integrating 
the PDF over the corresponding set in the sample space  

dnP
dx1 . . . dxn

= f(x1 . . . xn)

P(E) = ∫E
f(x1 . . . xn)dxn



Mean & Variance
• Given a random variable x with distribution f(x) we can define:  

• Mean or  


expected value: 


• Variance:  

•• Standard deviation: 

• Covariance and correlation coefficient of two variables x and y:  



Conditional Probability
• Probability of A, given B: P(A | B), i.e.: 

probability that an event known to belong 
to set B also belongs to set A:  
– P(A|B) =P(A∩B)/P(B) – Notice that:  
P(A|Ω) =P(A∩Ω)/P(Ω)  

 
 

• If A is independent of B then P(A ∩ B) = 
P(A) P(B)  

•  If A is independent on B, B is 
independent on A  

• Event A is said to be independent of B if the probability of A given 
B is equal to the probability of A:  
– P(A|B)=P(A) 



Independent Variables 



The Bayes Theorem

P(A) = prior probability P(A|B) = posterior probability 



The Bayes Theorem: the role of the posterior 

• Bayes theorem allows to determine probability about hypotheses or claims H 
that not related random variables, given an observation or evidence E: 

• P(H) = prior probability • P(H | E) = posterior probability, given E 

The Bayes rule allows to define a rational way to modify 
one’s prior belief once some observation is known 



Frequentist approach in practice
Let’s take an example: muon fake rate estimation

• A detector identifies muons with high efficiently, ε = 95% 
• A small fraction δ = 5% of pions are incorrectly identified as  

muons (“fakes”) 

• If a particle is identified as a muon, what is the probability it is really a muon?  

• The answer also depends on the composition of the sample! 

• i.e.:the fraction of muons and pions in the overall sample  

This example is usually presented as an epidemiology case.  
Naïve answers about fake positive probability are often wrong! 



Bayesian resolution
• Using Bayes theorem:  

– P(μ|+)=P(+|μ)P(μ)/P(+)  
Where our inputs are:  
– P(+|μ)=ε=0.95,P(+|π)=δ=0.05 


• We can decompose P(+) as:  
– P(+)=P(+|μ)P(μ)+P(+|π)P(π) 


• Putting all together:  
– P(μ|+)=εP(μ)/(εP(μ)+δP(π))     


• Assume we have a sample made of P(μ)=4% muons and P(π)=96% pions, we 
have: 

– P(μ|+) = 0.95 × 0.04 / (0.95 × 0.04 + 0.05 × 0.96)≅0.44 
• Even if the selection efficiency is very high, the low 

sample purity makes P(μ|+) lower than 50%. 




Bayesian resolution



Bayesian resolution



The Likelihood Function
• 	In many cases, the outcome of our experiment can be modelled as a set of 

random variables x1, ..., xn whose distribution takes into account:  

• 	 intrinsic sample randomness (quantum physics is intrinsically random),  

• 	detector effects (resolution, efficiency, ...).  

• 	Theory and detector effects can be described according to some 
parameters θ1, ..., θm, whose values are, in most of the cases, unknown  

• 	The overall PDF, evaluated at our observation x1, ..., xn, is called likelihood 
function: 

• In case our sample consists of N independent measurements (collision events) the 
likelihood function can be written as: 

L = f(x1 . . . xn; θ1 . . . θm)

L = ΠN
i=1 f(x1 . . . xn; θ1 . . . θm)



Bayes and the Likelihood Function
Given a set of measurements x1, ..., xn, Bayesian posterior PDF of the unknown 
parameters θ1, ..., θm can be determined as:  

• Where π(θ1, ..., θm) is the subjective prior probability  

• The denominator ∫ L(x, θ ) π(θ ) dmθ is a normalization factor  

• The observation of x1, ..., xn modifies the prior knowledge of the unknown 
parameters θ1, ..., θm  

• If π(θ1, ..., θm) is sufficiently smooth and L is sharply peaked around the true 
values θ1, ..., θm, the resulting posterior will not be strongly dependent on the 
prior’s choice  



Iterating Bayes 
Bayes theorem can be applied sequentially for repeated independent 

observations (posterior PDF = learning from experiments)  



Inference 
Determining information about unknown parameters 

using probability theory  



Bayesian Inference 
The posterior PDF provides all the information about the unknown parameters 
(let’s assume here it’s just a single parameter θ for simplicity)  

• Given P(θ|x), we can determine:                    
– The most probable value (best estimate)  
– Intervals corresponding to a specified 
probability  

• Notice that if π(θ) is a constant, the most 
probable value of θ correspond to the 
maximum of the likelihood function 



Frequentist Inference 
Assigning a probability level of an unknown parameter 

makes no sense in the frequentist approach  
– Parameters are not random variables! 

• A frequentist inference procedure determines a central value and an 
uncertainty interval that depend on the observed measurements 

• The central value and interval extremes are random variables 

• No subjective element is introduced in the determination 

• The function that returns the central value given an observed  
measurement is called estimator 

• Different estimator choices are possible, the most frequently adopted 
is the maximum likelihood estimator because of its statistical 
properties discussed in the following 



Frequentist Coverage 
• Repeating the experiment will result each 

time in a different data sample  

• For each data sample, the estimator 
returns a different central value 𝜃"  

• An uncertainty interval [𝜃" − δ, 𝜃" + δ] can 
be associated to the estimator’s value 𝜃"  

• Some of the confidence intervals contain 
the fixed and unknown true value of θ, 
corresponding to a fraction equal to 68% 
of the times, in the limit of very large 
number of experiments (coverage) 



Choice of 68% Intervals
Different interval choices are possible, corresponding to the same 
probability level (usually 68%, as 1σ for a Gaussian)  
– Equal are as in the right and left tails  
– Symmetric interval 
– Shortest interval 
–... 

All equivalent for a 
symmetric distribution 

(e.g.Gaussian) 

Reported as 𝜃 = 𝜃up ± 𝛿 (sym.) or 𝜃 = 𝜃up (asym.) 



Upper and Lower Limits
• A fully asymmetric interval choice is obtained setting one extreme of 

the interval to the lowest or highest allowed range  

• The other extreme indicates an upper or lower limits to the “allowed” 
range  

• For upper or lower limits, usually a probability of 90% or 95% is 
preferred to the usual 68% adopted for central intervals  

• Reported as: θ<θup (90%CL)orθ>θlo (90%CL) 



Frequentist Inference - 2
An estimator is a function of a given set of measurements that 
provides an approximate value of a parameter of interest which 

appears in our PDF model (best fit) 

• Simplest example: 
• 	Assume a Gaussian PDF with a known σ and an unknown μ  

• 	–  A single experiment provides a measurement x  

• 	–  We estimate μ as 𝜇=x  

• 	–  The distribution of 𝜇 (repeating the experiment many times) is the original 
Gaussian  

• 	–  68.3% of the experiments (in the limit of large number of repetitions) will 
provide an estimate within: μ − σ < 𝜇 < μ + σ 

μ=x±σ 



The Maximum Likelihood Method

• The maximum-likelihood estimator is 
the most adopted parameter estimator 

• The best fit parameters 
correspond to the set of values 
that maximizes the likelihood 
function

• The maximization can be 
performed analytically only in 
the simplest cases, and 
numerically for most of realistic 
cases 



Meaning of parameter estimate

• We are interested in some physical unknown 
parameters


• Experiments provide samplings of some PDF 
which has among its parameters the physical 
unknowns we are interested in


• Experiment’s results are statistically “related” to 
the unknown PDF


– PDF parameters can be determined from the 
sample within some approximation or uncertainty


• Knowing a parameter within some error may mean 
different things:



Meaning of parameter estimate

– Frequentist: a large fraction (68% or 95%, 
usually) of the experiments will contain, in the limit 
of large number of experiments, the (fixed) 
unknown true value within the quoted confidence 
interval, usually [µ − σ,µ + σ] (coverage)                                        

– Bayesian: we determine a degree of belief that 
the unknown parameter is contained in a specified 
interval can be quantified as 68% or 95%                           

• We will see that there is still some more degree of 
arbitrariness in the definition of confidence 
intervals…



Statistical inference vs Hypothesis testing

Theory 
Model Data

Data fluctuate according  
to process randomness

Theory 
Model Data

Inference

Probability

Model uncertainty due to 
fluctuations of the data sample

Theory 
Model 1

Data

Theory 
Model 2

Which hypothesis is the most 
consistent with the experimental 
data?

Statistical 
inference

Hypothesis 
testing



Parameter estimators
• An estimator is a function of a given sample whose statistical 

properties are known and related to some PDF parameters 
–“Best fit” 

• Simplest example: 
–Assume we have a Gaussian PDF with a known  σ and an 
unknown µ 

                   - A single experiment will provide a measurement x 
                   - We estimate µ as µest = x 
                   - The distribution of µest                                                                                                               
(repeating the experiment many times) is the original Gaussian 
                68.27%, on average, of the experiments will provide 
an estimate within: µ − σ < µest < µ + σ 

• We can determine: µ = µest ± σ



Likelihood function
• Given a sample of N events each with variables (x1, …, xn), the 

likelihood function expresses the probability density of the 
sample, as a function of the unknown parameters: 

  

• Sometimes the used notation for parameters is the same as for 
conditional probability: 

• If the size N of the sample is also a random variable, the 
extended likelihood function is also used: 

– Where p is most of the times a Poisson distribution whose 
average is a function of the unknown parameters 

• In many cases it is convenient to use –ln L or –2ln L: 



Maximum likelihood estimates

• ML is the widest used parameter estimator  
• The “best fit” parameters are the set that maximizes 
the likelihood function 

–“Very good” statistical properties, as will be seen in the 
following 

• The maximization can be performed analytically, for 
the simplest cases, and numerically for most of the 
cases 

• Minuit is historically the most used minimization 
engine in High Energy Physics 
–F. James, 1970’s; rewritten in C++ recently



Extended likelihood function
• For Poissonian signal and background processes: 

• We can fit simultaneously s, b and θ minimizing: 

• Sometimes s is replaced by µ s0, where s0 is the theory 
estimate and µ is called signal strength 



Gaussian Case
• If we have n independent measurements all modeled with 

(or approximated to) the same Gaussian PDF, we have: 

• An analytical minimization of −2ln L w.r.t  µ (assuming σ2 is 
known) gives the arithmetic mean as ML estimate of µ: 

• If σ2 is also unknown, the ML estimate of σ2 is: 

• The above estimate can be demonstrated to have an 
unpleasant feature, called bias (! next slide)



Estimators: Efficiency
• The variance of any consistent estimator is subject to a lower 

bound (Cramér-Rao bound): 

• Efficiency can be defined as the ratio of Cramér-Rao bound and 
the estimator’s variance: 

– Efficiency for ML estimators tends to 1 for large number of 
measurements 

– I.e.: ML estimates have, asymptotically, the smallest possible 
variance

Fisher information

bias of θ



Estimators: Bias

• The bias of a parameter is the average value of its 
deviation from the true value 

–ML estimators may have a bias, but the bias 
decreases with large number of measurements (if 
the fit model is correct…!) 

–E.g.: in the case of the estimate of a Gaussian’s σ2, 
the unbiased estimate is the well known: 

ML method 
underestimates 
 the variance σ2



Estimators: Robustness
• If the sample distribution has (slight?) deviations from the 

theoretical PDF model, some estimators may deviate more or less 
than others from the true value 
– E.g.: unexpected tails (“outliers”) 

• The median is a robust estimate of a distribution average, while the 
mean is not 

• Trimmed estimators: removing n extreme values 

• Evaluation of estimator robustness: 
– Breakdown point: max. fraction of incorrect measurements above 

which the estimate may be arbitrary large 
• Trimmed observations at x% have a break point of x 
• The median has a break point of 0.5 

– Influence function: 
• Deviation of estimator if one measurement is replaced by an 

arbitrary (incorrect measurement)



Neyman’s Confidence Intervals

• Scan the allowed range of an unknown 
parameter θ  

• Given a value of θ compute the interval 
[x1, x2] that contain x with a probability 1 
− α equal to 68% (or 90%, 95%)  

• Choice of interval needed! 

• Invert the confidence belt: for an 
observed value of x, find the interval [θ1, 
θ2] 

• A fraction of the experiments equal to 1 
− α will measure x such that the 
corresponding [θ1, θ2] contains (“covers”) 
the true value of θ (“coverage”) 

• Note: the random variables are [θ1, θ2], 
not θ !

Procedure to determine frequentist confidence intervals

α = significance level



Neyman’s Confidence Intervals: Gaussian case

• Assume a Gaussian 
distribution with 
unknown average µ 
and known σ = 1 

• The belt inversion is 
trivial and gives the 
expected result: 
Central value  = x , 
[µ1, µ2] = [x − σ, x + σ] 

• So we can quote:

�̂�
1 − α = 68%

= x ±  σ𝜇 



ML Errors 
• A parabolic approximation of −2ln L around the 

minimum is equivalent to a Gaussian 
approximation 
–Sufficiently accurate in many but not all cases 

• Estimate of the covariance matrix from 2nd order 
partial derivatives w.r.t. fit parameters at the 
minimum: 

• Implemented in Minuit as MIGRAD/HESSE 
function



Asymmetric Errors 
• Another approximation alternative to the parabolic one may be to 

evaluate the excursion range of −2ln L. 
• Error (nσ) determined by the range around the maximum for which 
−2ln L increases by +1 (+n2 for nσ intervals)

θ

−2lnL

−2lnLmax

−2lnLmax+ 1

�̂�  + δ+�̂� – δ−�̂�

• Errors can be 
asymmetric 

• For a Gaussian 
PDF the result 
is identical to 
the 2nd order 
derivative 
matrix 

• Implemented in 
Minuit as 
MINOS function 

•

1



Asymmetric Errors (Gaussian case)

• We have the previous log-likelihood function: 

• The error on µ is given by: 

• I.e.: the error on the average is:



• Assume we estimate from a fit the parameter set: 
θ = (θ1, …, θn) and we know their covariance matrix Θij 

• We want to determine a new set of parameters that are functions of θ:  
η = (η1, …, ηm). 

• For small uncertainties, a linear approximation maybe sufficient 
• A Taylor expansion around the central values of θ gives, using the error matrix 
Θij: 

• Few examples in case of no correlation: 

θ

η

ση

σθ

Error Propagation



Asymmetric Errors: warnings

• Much better to know the original PDF and 
propagate/combine the information properly! 
–Be careful about interpreting the meaning of the 
result 

• Average value and Variance propagate linearly, 
while most probable value (mode) does not add 
linearly 

• Whenever possible, use a single fit rather than 
multiple cascade fits, and quote the final 
asymmetric errors only



Asymmetric Errors: warnings
• Be careful about: 

–Asymmetric error propagation 
–Combining measurements with asymmetric errors 
–Difference of “most likely value” w.r.t. “average value” 

• Naïve quadrature sum of σ+ and σ− lead to wrong 
answer 

–Violates the central limit theorem: the combined 
result should be more symmetric than the original 
sources! 

–A model of the non-linear dependence may be 
needed for quantitative calculations 

–Biases are very easy to achieve (depending on σ+ − 
σ−, and on the non-linear model)



Binned Likelihood 
• Sometimes data are available as binned histogram 

– Most often each bin obeys Poissonian statistics (event counting) 

• The likelihood function is the product of Poisson PDFs corresponding to each bin 
having entries ni  

• The expected number of entries ni depends on some unknown parameters: µi = 
µi(θ1, …, θm) 

• The function to minimize is the following −2 ln L: 

• The expected number of entries µi is often approximated by a continuous function 
µ(x) evaluated at the center xi of the bin 

• Alternatively, µi  can be a combination of other histograms (“templates”) 
– E.g.: sum of different simulated processes with floating yields as fit parameters



Binned Likelihood 
• Bin entries can be approximated by Gaussian variables for 

sufficiently large number of entries with standard deviation 
equal to ni (Neyman’s χ2) 

• Maximizing L is equivalent to minimize: 

• Sometimes, the denominator ni is replaced (Pearson’s χ2) by: 
 
                             µi = µ (xi; θ1, …, θm)  
 
in order to avoid cases with zero or small ni 

• Analytic solution exists for linear and other simple problems 
– E.g.: linear fit model 

• Most of the cases are treated numerically, as for unbinned 
ML fits



Binned fit: example  
• Binned fits are convenient w.r.t. 

unbinned fits because the number 
of input variables decreases from 
the number of entries to the number 
of bins 

–Usually simpler and faster 
numerically 

–Unbinned fits become unpractical 
for very large number of entries 

• A fraction of the information is lost, 
hence a possible loss of precision 
may occur for small number of 
entries 

• Treat correctly bins with small 
number of entries! 

Gaussian fit (determine yield, µ and σ)



Binned fit quality: the p-value 

• The maximum value of the likelihood function obtained from the fit doesn’t 
usually give information about the goodness of the fit 

• The 𝜒2 of a fit with a Gaussian underlying model is distributed according 
to a known PDF 

– The cumulative distribution of P(χ2; n) follows a uniform distribution 
between 0 and 1 (p-value) 

– If the model deviates from the assumed distribution, the distribution of 
the p-value will be more peaked around zero 

• Note! p-values are not the “probability of the fit hypothesis” 
– This would be a Bayesian probability, with a different meaning, and 

should be computed in a different way

n is the number of 
degrees of freedom 
(n. of bins − n. of params.)



Likelihood Ratio
• A better alternative to the (Gaussian-inspired, Neyman and 

Pearson’s) 𝜒2 has been proposed by Baker and Cousins using the 
following likelihood ratio: 

• Same minimum value as from Poisson likelihood function, since a 
constant term has been added to the log-likelihood function 

• In addition, it provides goodness-of-fit information, and asymptotically 
obeys chi-squared distribution with n − m degrees of freedom 
(Wilks’ theorem, see following slides)



Combinations
• Assume two measurements with different 

uncorrelated (Gaussian) errors: 

• Build the 𝜒2: 

• Minimize the 𝜒2: 

• Estimate m as: 

• Error estimate:

Weighted 
average, 
wi = σi−2



Higher dimensions: 2D-intervals

In more dimensions one can determine 1σ and 2σ contours  
Note: different probability content in 2D compared to one dimension 

68% and 95% contours are usually preferable

x

y

1σ

2σ

1σ2σ

Width P1D P2D

1σ 0.6827 0.3934

2σ 0.9545 0.8647

3σ 0.9973 0.9889

1.515σ 0.6827

2.486σ 0.9545

3.439σ 0.9973



Higher dimensions: 2D-intervals

In more dimensions one can determine 1σ and 2σ contours  
Note: different probability content in 2D compared to one dimension 

68% and 95% contours are usually preferable

s
400

410
420

430
440

450
460

470
480

b1500

1520

1540

1560

1580

1600

1620

Exponential decay parameter, Gaussian 
mean and standard deviation are fit 
together with s and b yields. 

The contour shows for this case a mild 
correlation between s and b

m (GeV)
2.5

2.6
2.7

2.8
2.9

3
3.1

3.2
3.3

3.4
3.5

Events / ( 0.01 )0 20 40 60 80 100

• From previous fit example: 
– Ps(m): Gaussian peak 
– Pb(m): exponential shape



• A Global 𝜒2 fit to electroweak measurements predicts the W mass 
allowing a comparison with direct measurements

Details on: 
http://gfitter.desy.de/Standard_Model/

Global Electroweak Fit



Higher dimensions: 2D-intervals
W mass vs top-quark mass from global 

electroweak fit



Example: Fitting B(B+ →J/ψπ+) / B(B+ →J/ψK+)  
• Four variables: 

– m = B reconstructed mass as J/ψ + charged hadron invariant 
mass 

–ΔEπ = Beam – B energy in the π+ mass hypothesis 
–ΔEK = Beam – B energy in the K+ mass hypothesis 
– q = B meson charge 

• Two samples: 
–J/ψ →µ+µ−, J/ψ →e+e− 

• Simultaneous fit of: 
–Total yield of B+ →J/ψπ+, B+ →J/ψK+ and background 
–Resolutions separately for J/ψ →µ+µ−, J/ψ →e+e− 
–Charge asymmetry (direct CP violation)



Example: Fitting B(B+ →J/ψπ+) / B(B+ →J/ψK+)  

• To extract the ratio of BR: 

• Likelihood can be written separately, or combined for ee 
and µµ events 

• Fit contains parameters of interest (mainly nπ, nK) plus 
uninteresting nuisance parameters 

• Separating q = +1 / −1 can be done adding ACP as extra 
parameter



Example: Fitting B(B+ →J/ψπ+) / B(B+ →J/ψK+)  

J/ψ → ee events

J/ψ → µµ events

B+ →J/ψπ+

B+ →J/ψK+

Background

Likelihood 
projection



Example 2: top mass @ CDF








