

Measurement of the $\tau^- \rightarrow \pi^- v_{\tau} e^+ e^$ branching fraction by Belle

Yifan Jin¹, Denis Epifanov², Hiroaki Aihara¹, Belle Collaboration 1. The University of Tokyo, 2. Budker Institute of Nuclear Physics Email: jin@hep.phys.s.u-tokyo.ac.jp

1, Introduction

The Belle detector, located at the interaction point of the electron positron asymmetric energy collider (KEKB), has been working not only as a B-factory but also as a Tau-factory. The world's largest statistics of tau, $9 \times 10^8 \tau^+ \tau^-$ pair events have been collected at BELLE. Several searches for NP as well

 μ / K_I detection

14/15 lyr. RPC+Fe

4, Background

MC samples for processes that can occur at Y(4S), such as generic $\tau^+\tau^-$, Bhabha, di-muon, two-photon and qq processes are exploited. The amounts of MC samples for all the processes are at least three times larger than the experimental data. Full set of EXP/MC corrections (from the sideband studies) were applied to the signal and background detection efficiencies. The number of BKG events is predicted as 458 \pm 22.

Constituents of background events: $(55.2\%) \tau^- \rightarrow \rho^- \nu_{\tau} \rightarrow \pi^- \pi^0 \nu_{\tau} \rightarrow \pi^- e^- e^+ \gamma \nu_{\tau}$ $(24.0\%) \tau^- \rightarrow \rho^- \nu_{\tau} \rightarrow \pi^- \pi^0 \nu_{\tau} \rightarrow \pi^- \gamma \gamma \nu_{\tau}$ (14.4%) Other τ^- decays (2.7%) Continuum processes (2.7%) Two-photon processes (0.8%) Bhabha process (0.04%) B decays

^{*} lepton-flavor violating decays and CPV in the charged lepton sector are searched.

(c)

2, Motivation

Si vtx. det.

3/4 lyr. DSSD

(a) γS_{τ^-}

 M^{-} π^{-} π^{-}

Feynman Diagrams of the decay modes under consideration[1]. Diagrams (a), (b) and (c) indicate the internal bremsstrahlung due to the radiative γ off the τ , π and vertex. (d) and (e) represent the contribution of γ emitted off the vector and axial-vector current that mediating the hadronization. Due to the $\gamma^* W^* \pi$ vertex, a measurement of $Br(\tau^\pm \rightarrow \pi^\pm v_\tau e^+ e^-)$ not only provides information on the relevant form factors that can be extrapolated by Resonance Chiral Theory, but also plays a role in evaluating the hadronic light-by-light contribution to muon g-2 and in computing the radiative corrections to $\pi \rightarrow \ell v$ and $\tau \rightarrow \pi v_\tau$ decays. The Br is predicted^[2] as 1.7 ^{+1.1}-0.3 x 10⁻⁵.

5, Opening the box

After opening the box, we observed 676 events inside the signal box of $\tau^- \rightarrow \pi^- e^- e^+ \nu_{\tau}$, and 689 events in the charge-conjugated mode. While the expected background are 458 ± 22 events for τ^- and 455 ± 21 events for τ^+ , so clear signal events are observed. The resultant branching fraction $Br(\tau^{\pm} \rightarrow \pi^{\pm} e^- e^+ \nu_{\tau})$ is measured to be (2.33 ± 0.19 ± 0.19) x 10⁻⁵, where the first error is statistical and the second is systematic. The result is consistent with theoretical prediction^[2].

3, Selection criteria

First, standard pre-selection for $\tau^+\tau^-$ pair is applied, followed by additional selections for the mode of concern.

1	2 < Number of charged tracks < 8
2	$ Sum of charge \le 2$
3	Sum of momenta of charged tracks in the CM frame $(P^{\rm CM}) < 10 \; {\rm GeV}/c$
4	Sum of energy deposit in the ECL $E_{ECL} < 10 \text{ GeV}$
5	Maximum Pt of charged track $(Pt_{max}) > 0.5 \text{ GeV}/c$
6	Event vertex $ r < 0.5$ cm, $ z < 3.0$ cm
7	For 2 track events, 7-1,7-2, and 7-3 must be satisfied:
7-1	Sum of $P^{\rm CM} < 9 \ {\rm GeV}/c$
7-2	Sum of $E_{ECL} < 9 \text{ GeV}$
7-3	$5^{\circ} < \theta_{\text{missing momentum}} < 175^{\circ}$
8	$E_{\rm rec} = [\text{Sum of } P^{\rm CM} + \text{Sum of } E_{\gamma}^{\rm CM} \text{ (energy of } \gamma \text{ in the CM frame)}] > 3 \text{ GeV}$
	.or. $Pt_{\rm max} > 1.0 \ {\rm GeV}/c$
9	For 2-4 track events, 9-1 and 9-2 must be satisfied:
9-1	$E_{\rm tot} = [E_{\rm rec} + P_{\rm miss}^{\rm CM}] < 9 {\rm GeV}$.or. maximum opening angle $< 175^{\circ}$
9-2	[Number of tracks within $30^{\circ} < \theta < 130^{\circ}$] ≥ 2
	.or. [Sum of E_{ECL} - Sum of E_{γ}^{CM}] < 5.3 GeV
10	Maximum opening angle $> 20^{\circ}$

Descriptions	Relevant cuts
Energy-Momentum	$P_{\star}^{LAB} > 0.1 GeV/c, P_{\pi}^{CMS/LAB} > 0.2 GeV/c$
PID	$eID(e^{\pm}) > 0.5, \ \mu ID(\pi) < 0.95, \ eID(\pi) < 0.2, \ \pi ID(\pi) > 0.4$
Secondary vertex	$ r_{xy} < 1.2 \text{ cm}, -1 < z < 1.5 \text{ cm}$
Angular distribution	$ cos(\tau - 3prong) \le 1$
Invariant mass	$1.05 < M_{2mman} < 1.8 \text{ GeV}/c^2$

Systematics that have been taken into account: luminosity, tracking efficiency, trigger correction, PID correction, BRs of BKG modes, BKG/signal detection efficiency, π^0 veto.

6, Conclusion

A first measurement of branching fraction for the rare tau decay $\tau^{\pm} \rightarrow \pi^{\pm} e^{-} e^{+} v_{\tau}$ is presented, using a 562 fb⁻¹ dataset collected at the Y(4S) resonance with Belle detector (SVD2) at the KEKB asymmetric-energy $e^{+}e^{-}$ collider. The branching fraction is measured to be $Br(\tau^{\pm} \rightarrow \pi^{\pm} e^{-} e^{+} v_{\tau}) = (2.33 \pm 0.19 \pm 0.19) \times 10^{-5}$, which is the first measurement on this decay mode.

Reference:

[1], J. Brodzicka, et al., Physics achievements from the Belle experiment[J]. Progress of Theoretical and Experimental Physics, 2012, 2012(1):04D001.

[2], P. Roig, A. Guevara, G. L. Castro, Weak radiative pion vertex in $\tau^- \rightarrow \pi^-$

 $v_{\tau} \ell^{+} \ell^{-}$ decays [J]. Physical Review D, 2013, 88(3): 033007.