"Complementi di Fisica" Lecture 3

Livio Lanceri Università di Trieste

Trieste, 03/06-10-2006

Course Outline - Reminder

- The physics of semiconductor devices: an introduction
 - Basic properties; energy bands, density of states
 - Equilibrium carrier concentration ("intrinsic", "extrinsic")
 - Carrier transport phenomena
 - Drift and Diffusion
 - Generation and Recombination
 - Continuity equations
- Quantum Mechanics: an introduction
- Advanced semiconductor fundamentals
- Lecture 2: intrinsic carrier concentrations...

2

Outline – Lecture 3

- "Intrinsic" (= pure) semiconductor at equilibrium
 - Equilibrium: computation of "carriers concentration": Concentration (carriers per unit volume) =
 - = sum (integral) over energy of:
 - (Available energy levels, per unit volume and per energy interval) \times (probability of filling the levels, per energy interval)

"Extrinsic" (= doped) semiconductor at equilibrium

- "donors" and "acceptors": bond model
- "donors" and "acceptors": energy band model:
 - band diagrams
 - density of states
 - carriers concentration,
 - Fermi level

Intrinsic semiconductors

Fermi-Dirac distribution function Intrinsic carriers concentration, Fermi level

Fermi probability distribution function

- Electrons fill up available states following the Pauli principle (two electrons with opposite spin for each level)
- **Probability distribution** function (Fermi-Dirac, more details in the second part of the course):

$$F(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$

$$F(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$

$$E = E_F \Rightarrow F(E) = 1/2$$

$$E \to \infty \Rightarrow F(E) \to 0$$

$$F \to -\infty \Rightarrow F(E) \to 1$$
Fig. 14 Ferr

mi distribution function F(E) versus $(E - E_F)$ for various temperatures.

 $k = 8.617 \times 10^{-5} eV/K$ Boltzmann constant, T temperature (K)

Fermi pdf: approximate expressions

approximate expressions for energies far enough from E_F:

$$E - E_F > 3kT \Longrightarrow F(E) \approx e^{-(E - E_F)/kT} \qquad \left(\begin{array}{c} x > 3 \end{array} \right) \Rightarrow \frac{1}{1 + e^x} \approx e^{-x} \right)$$
$$E - E_F < -3kT \Longrightarrow F(E) \approx 1 - e^{-(E_F - E)/kT} \qquad \left(\begin{array}{c} x < -3 \end{array} \right) \Rightarrow \frac{1}{1 + e^x} \approx 1 - e^x$$

L.Lanceri - Complementi di Fisica - Lecture 3

6

Fermi pdf: approximate expressions

• Simpler expressions for energies far enough from E_F:

$$F(E) \cong e^{-(E-E_F)/kT} \quad \text{for} \quad E - E_F > 3kT$$

$$F(E) \cong 1 - e^{-(E_F - E)/kT} \quad \text{for} \quad E - E_F < -3kT$$

7

Intrinsic carrier concentrations

Intrinsic electron concentration *n*

• Explicit computation for electrons:

$$n = \int_{E_C}^{\infty} g_C(E) F(E) dE =$$

$$=4\pi \left(\frac{2m_n^*}{h^2}\right)^{3/2} \int_{E_C}^{\infty} (E - E_C)^{1/2} e^{-(E - E_F)/kT} dE =$$

$$=4\pi \left(\frac{2m_n^*}{h^2}\right)^{3/2} \int_0^\infty E'^{1/2} e^{-(E'+E_C-E_F)/kT} dE'=$$

$$g_{C}(E)$$
 state density
Fermi f. for $E - E_{F} > 3kT$
 $F(E) \approx e^{-(E - E_{F})/kT}$
change variables :
 $E' = E - E_{C}$ $dE' = dE$
 $x = \frac{E'}{kT}$ $dE' = kTdx$

$$=4\pi \left(\frac{2m_n^*}{h^2}\right)^{3/2} \left(kT\right)^{3/2} \exp\left(-\frac{E_C - E_F}{kT}\right) \int_0^\infty x^{1/2} e^{-x} dx =$$

$$= 2 \left(\frac{2\pi m_n^* kT}{h^2}\right)^{3/2} \exp\left(-\frac{E_C - E_F}{kT}\right)$$

L.Lanceri - Complementi di Fisica - Lecture 3

9

 $\int_0^\infty x^{1/2} e^{-x} dx = 0$

 π

Intrinsic hole concentration p

Explicit computation for holes: $g_V(E)$ state density 1 - F(E) for $E - E_F < -3kT$ $1 - F(E) \approx e^{-(E_F - E)/kT}$ $p = \int_{-\infty}^{-\infty} g_V(E)(1 - F(E))dE =$ $=4\pi \left(\frac{2m_{p}^{*}}{h^{2}}\right)^{3/2} \int_{0}^{2\pi} (E_{V}-E)^{1/2} e^{-(E_{F}-E)/kT} dE =$ change variables: $E' = E_V - E \quad dE' = -dE$ $x = \frac{E'}{kT} \qquad dE' = kTdx$ $=4\pi \left(\frac{2m_{p}^{*}}{h^{2}}\right)^{3/2} \int_{0}^{\infty} E'^{1/2} e^{-(E'+E_{F}-E_{V})/kT} dE' =$ $=4\pi \left(\frac{2m_{p}^{*}}{h^{2}}\right)^{3/2} \left(kT\right)^{3/2} \exp\left(-\frac{E_{F}-E_{V}}{kT}\right) \int_{0}^{\infty} x^{1/2} e^{-x} dx =$

 $=2\left(\frac{2\pi m_p^*(kT)}{h^2}\right)^{3/2}\exp\left(-\frac{E_F-E_V}{kT}\right)$

L.Lanceri - Complementi di Fisica - Lecture 3

Intrinsic Fermi level and carrier density

"Effective density of states" In the conduction band

"Effective density of states" In the valence band

$$N_{C} = 2 \left(\frac{2\pi m_{n}^{*} kT}{h^{2}} \right)^{3/2} \approx 2.8 \times 10^{19} \, cm^{-3} \, \text{(Si)} \, ,$$

$$[T \approx 300 K] \approx 4.7 \times 10^{17} \, cm^{-3} \, \text{(GaAs)}$$

$$N_{V} = 2 \left(\frac{2\pi m_{p}^{*} kT}{h^{2}} \right)^{3/2} \approx 1.04 \times 10^{19} \, cm^{-3} \, \text{(Si)}$$

$$[T \approx 300 K] \approx 7.0 \times 10^{18} \, cm^{-3} \, \text{(GaAs)}$$

$$n \cong N_C e^{-(E_F - E_C)/kT}$$
$$p \cong N_V e^{-(E_V - E_F)/kT}$$

For an intrinsic semiconductor:

$$n = p = n_i$$

Intrinsic carrier density

$$n = p \Longrightarrow E_i = E_F = \frac{E_C + E_V}{2} + \frac{kT}{2} \ln\left(\frac{N_V}{N_C}\right) = \frac{E_C + E_V}{2} + \frac{3kT}{4} \ln\left(\frac{m_p}{m_n}\right) \Longrightarrow E_i \cong \frac{E_C + E_V}{2}$$

"mass action law": at thermal equilibrium:

$$np = n_i^2 = N_C N_V e^{-E_g/kT} \implies n_i = \sqrt{N_C N_V} e^{-E_g/2kT}$$

Intrinsic Fermi level

L.Lanceri - Complementi di Fisica - Lecture 3

Intrinsic carrier densities

- Temperature dependence
 - increase with temperature
 - smaller with larger E_g
- Caveats:
 - Pure Si: very low conductivity: σ≈10⁻⁶(Ω cm)⁻¹ at T≈300K
 - However, in practice dominated by defects (Kowalski method: typically $10^{11}/\text{cm}^2$) $\Rightarrow \sigma \approx 10^{-5} (\Omega \text{ cm})^{-1}$
 - Doping is needed in practice, to control conductivity!

Exercise 2.2 Estimate orders of magnitude for the conductivity of Si (pure and with realistic defects)

"extrinsic" (doped) semiconductors

Donors and acceptors

Bond model:

n-type Si with "donor" impurities (As: 5 valence electrons) The fifth electron is "*donated*" to the conduction band; the remaining positive ion is *fixed*

p-type Si with "acceptor" impurities (B: 3 valence electrons) An additional electron is "accepted" from the valence band, creating a hole The resulting negative ion is *fixed*

Donors and acceptors

Energy band model

n-type Si with "*donor*" energy levels very close to the conduction band; ionization energy is very small, most donor atoms are ionized already at room temperature ! p-type Si with "*acceptor*" energy levels very close to the valence band; most acceptor atoms capture an electron, leaving a free hole already at room temperature !

L.Lanceri - Complementi di Fisica - Lecture 3

- Doping with donors (n-type)
 - For instance: P or As in Si
 - Level close to ${\rm E}_{\rm C}$
- Doping with acceptors (p-type)
 - For instance: B in Si
 - Level close to E_{V}
- Unwanted impurities
 - Many impurities (unavoidable, to some extent) contribute levels close to the center of the gap
 - Also these levels are important, as "traps" or "recombinationgeneration centers" (more on this later)

• Donor ionization energies (eV): can we understand or at least guess the order of magnitude in simple terms? Bohr model...

isolated H atom, lowest level: Bohr model, n=1

$$E_n = -\frac{m_0 q^4}{8\varepsilon_0^2 h^2} \frac{1}{n^2} = -13.6 \frac{1}{n^2} \,\text{eV}$$

 $E_1 = -13.6 \,\mathrm{eV}$ ionization energy

Donor atom in Si crystal: Lowest level for the external electron

$$E_{D,n} = -\frac{m_n^* q^4}{8\varepsilon^2 h^2} \frac{1}{n^2} = \left(\frac{\varepsilon_0}{\varepsilon}\right)^2 \left(\frac{m_n^*}{m_0}\right) E_{H,n}$$

 $E_{D,1} \approx 13.6 \text{ eV} \times \frac{1}{12^2} \times 0.9 \approx 0.085 \text{ eV}$ ionization energy

• Acceptor ionization energies (eV): similar reasoning

isolated H atom, lowest level: Bohr model, n=1

$$E_n = -\frac{m_0 q^4}{8\varepsilon_0^2 h^2} \frac{1}{n^2} = -13.6 \frac{1}{n^2} \,\mathrm{eV}$$

 $E_1 = -13.6 \,\mathrm{eV}$ ionization energy

Acceptor atom in Si crystal: Lowest level for the hole

$$E_{D,n} = -\frac{m_p^* q^4}{8\varepsilon^2 h^2} \frac{1}{n^2} = \left(\frac{\varepsilon_0}{\varepsilon}\right)^2 \left(\frac{m_p^*}{m_0}\right) E_{H,n}$$

 $E_{D,1} \approx 13.6 \text{ eV} \times \frac{1}{12^2} \times 0.19 \approx 0.018 \text{ eV}$ ionization energy

- The simple Bohr model for donor and acceptor ionization energies:
 - Describes the impurities in an oversimplified way (pseudohydrogen atoms with outer electron or hole orbiting through the semiconductor material):
 - Effective mass m_n*, m_p*
 - Dielectric constant $\boldsymbol{\epsilon}$
 - Gives the correct orders of magnitude for ionization energies (E₁ < 0.1eV): OK because many semiconductor atoms are included in the Bohr orbit corresponding to the lowest level (easily checked by computing the Bohr radius)
 - Is not supposed to be able to reproduce the details !
- Small ionization energy ⇒ most donor/acceptor atoms are ionized at room temperature

Intrinsic carrier concentration

Extrinsic carrier concentration

L.Lanceri - Complementi di Fisica - Lecture 3

22

Carrier concentrations: intrinsic

• (approximate) equations valid for both intrinsic and extrinsic:

$$n \cong N_{C} e^{-(E_{C} - E_{F})/kT} \qquad N_{C} \equiv 2 \left(\frac{2\pi m_{n}^{*} kT}{h^{2}}\right)^{3/2} \qquad \qquad N_{C} = n_{i} e^{(E_{C} - E_{i})/kT}$$
$$p \cong N_{V} e^{-(E_{F} - E_{V})/kT} \qquad N_{V} \equiv 2 \left(\frac{2\pi m_{p}^{*} kT}{h^{2}}\right)^{3/2} \qquad \qquad N_{V} = n_{i} e^{(E_{i} - E_{V})/kT}$$

Intrinsic case (E_F = E_i)

$$n = p = n_i = N_C e^{-(E_C - E_i)/kT} = N_V e^{-(E_i - E_V)/kT}$$
$$E_F = E_i = \dots \approx \frac{E_C + E_V}{2}$$
$$np = n_i^2 = N_C N_V e^{-(E_C - E_V)/kT} \implies n_i = \sqrt{N_C N_V} e^{-E_g/2kT}$$

Carrier concentrations: extrinsic

• (approximate) equations valid for both intrinsic and extrinsic:

$$n \cong N_{C} e^{-(E_{C} - E_{F})/kT} \qquad N_{C} \equiv 2 \left(\frac{2\pi n_{n}^{*}kT}{h^{2}}\right)^{3/2} \qquad N_{C} = n_{i} e^{(E_{C} - E_{i})/kT}$$
$$p \cong N_{V} e^{-(E_{F} - E_{V})/kT} \qquad N_{V} \equiv 2 \left(\frac{2\pi n_{p}^{*}kT}{h^{2}}\right)^{3/2} \qquad N_{V} = n_{i} e^{(E_{i} - E_{V})/kT}$$

• Extrinsic case: $n \neq p \Leftrightarrow E_F \neq E_i$

$$n = n_{i}e^{(E_{C}-E_{i})/kT}e^{-(E_{C}-E_{F})/kT} = n_{i}e^{(E_{F}-E_{i})/kT} \qquad \begin{array}{l} \mathsf{E}_{\mathsf{F}} \text{ moves away} \\ \mathbf{from } \mathsf{E}_{\mathsf{i}} \end{array}$$

$$p = n_{i}e^{(E_{i}-E_{V})/kT}e^{-(E_{F}-E_{V})/kT} = n_{i}e^{(E_{i}-E_{F})/kT} \qquad \begin{array}{l} \mathsf{e}_{\mathsf{F}} \text{ moves away} \\ \text{from } \mathsf{E}_{\mathsf{i}} \end{array}$$

$$np = n_{i}^{2} \qquad n - \text{type:} \quad n \approx N_{D} \quad p \approx n_{i}^{2}/N_{D} \qquad \begin{array}{l} \text{approximate} \\ \text{for } \\ \text{complete} \end{array}$$

$$p$$
-type: $p \approx N_A$ $n \approx n_i^2/N_A$

ionization

L.Lanceri - Complementi di Fisica - Lecture 3

Fermi level for complete ionization

Complete ionization of donors:

$$n = N_C e^{-(E_C - E_F)/kT} \approx N_D \quad \Rightarrow \frac{N_C}{N_D} = e^{(E_C - E_F)/kT}$$
$$\Rightarrow E_C - E_F = kT \ln\left(\frac{N_C}{N_D}\right)$$

• Complete ionization of acceptors:

$$p = N_V e^{-(E_F - E_V)/kT} \approx N_A \quad \Rightarrow \frac{N_V}{N_A} = e^{(E_C - E_F)/kT}$$
$$\Rightarrow E_F - E_V = kT \ln\left(\frac{N_V}{N_A}\right)$$

25

Concentrations and E_{F} : an example

A silicon ingot is doped with As ($N_D \approx 10^{16}$ atoms/cm³). Find the carrier • concentration and the Fermi level at room temperature (T=300K) Assuming complete ionization of donors:

Band diagram showing Fermi level E_F and intrinsic Fermi level E_i . Fig. 21

$$E_{C} - E_{F} = kT \ln\left(\frac{N_{C}}{N_{D}}\right) = 0.0259 \ln\left(\frac{2.8 \times 10^{19}}{10^{16}}\right) =$$

$$= 0.206 \text{ eV}$$

$$R = n_{i}e^{(E_{F} - E_{i})/kT} \Longrightarrow E_{F} - E_{i} = kT \ln\left(\frac{n}{n_{i}}\right)$$

$$E_{F} - E_{i} = 0.0259 \ln\left(\frac{10^{16}}{1.45 \times 10^{10}}\right) = 0.354 \text{ eV}$$

L.Lanceri - Complementi di Fisica - Lecture 3

Fermi level: general case

- Both donor and acceptor impurities present simultaneously
 - Concentrations: N_{D} and N_{A} respectively
- starting point: overall *charge neutrality* and *mass action law*

$$n + N_A = p + N_D \qquad np = n_i^2$$

n-type:
$$N_D > N_A$$

 $p_{-}type: N_A > N_D$
 $n_n = \frac{1}{2} \left[N_D - N_A + \sqrt{(N_D - N_A)^2 + 4n_i^2} \right]$
 $p_n = n_i^2 / n_n$
if $|N_D - N_A| >> n_i$
 $n_n \approx N_D - N_A$
if $|N_D - N_A| >> n_i$
 $p_p \approx N_A - N_D$

Extrinsic Fermi level vs temperature

- Fermi level computation in the general case, taking T into account:
 - from N_D and N_A compute
 n, p
 - from n, p extract E_F

$$n = n_i e^{(E_F - E_i)/kT} \Longrightarrow E_F = \dots$$
$$p = n_i e^{(E_i - E_F)/kT} \Longrightarrow E_F = \dots$$

- n_i increases with T !
 - Low T: extrinsic behaviour
 - High T: intrinsic behaviour

Electron density vs temperature

- Another point of view: carrier density in n-type semiconductor
 - Very low T:
 - "freeze-out" region
 - donors not ionized
 - Medium T:
 - "extrinsic" region
 - $n \approx N_D$
 - High T:
 - "intrinsic" region
 - $n \approx n_i$

Lecture 3 - summary

- The "mass action law" ($np = n_i^2$) is always valid
- The intrinsic concentration n_i increases with T
- We found relations between n, p, n_i and E_F
- In the intrinsic case $n = p = n_i$
- We have learned how to compute *n*, *p*, and E_F in the general extrinsic case (depending on N_D , N_A)
- Intrinsic/extrinsic behaviour depends on 7!

Lecture 3 – Items to be understood...

- Some items that require a deeper explanation:
 - Bohr model
 - Density of states
 - Fermi distribution function
 - Energy band model
 - Donors and acceptor energy levels

Lecture 3 - Glossary

Fermi probability c	lensity function	
Fermi level		
intrinsic semicond	uctor	
exstrinsic semicor	nductors	
donor		
acceptor		
energy band mode	2	
bond model		
electrons		
holes		
carriers		
intrinsic carrier con	ncentrations	
extrinsic carrier co	oncentrations	
charge neutrality		
mass action law		

Lecture 3 - exercises

- Exercise 3.1: A silicon sample at T=300K contains an acceptor impurity concentration of N_A=10¹⁶ cm⁻³. Determine the concentration of donor impurity atoms that must be added so that the silicon is n-type and the Fermi energy is 0.20 eV below the conduction band edge.
- Exercise 3.2: Find the electron and hole concentrations and Fermi level in silicon at 300K (a) for 1x10¹⁵ boron atoms/cm³ and (b) for 3x10¹⁶ boron atoms /cm³ together with 2.9x10¹⁶ arsenic atoms/cm³.
- **Exercise 3.3:** Calculate the Fermi level of silicon doped with 10^{15} , 10^{17} and 10^{19} phosphorus atoms/cm³, assuming complete ionization. From the calculated Fermi level, check if the assumption of complete ionization is justified for each doping. Assume that the ionized donors density is given by $N_D^+ = N_D(1-F(E_D))$.

Backup slides