"Complementi di Fisica" Lecture 4

Livio Lanceri Università di Trieste

Trieste, 10-10-2006

Course Outline - Reminder

- The physics of semiconductor devices: an introduction
 - Basic properties; energy bands, density of states
 - Equilibrium carrier concentration ("intrinsic", "extrinsic")
 - Carrier transport phenomena
 - Drift and Diffusion
 - Generation and Recombination
 - Continuity equations
- Quantum Mechanics: an introduction
- Advanced semiconductor fundamentals
- Lecture 2: intrinsic carrier concentrations...

Lecture 4 - outline

- Carrier transport phenomena (introduction)
- Carrier drift
 - Carrier drift velocity in an external electric field:
 - Mobility
 - Scattering on vibrating lattice and on impurities
 - T- dependence of mobility
 - Electric current density in an external electric field:
 - Conductivity
 - Resistivity
 - Measurements:
 - resistivity: 4-point probe
 - Carrier type and concentration: Hall effect

Carrier transport phenomena

- Non-equilibrium conditions may arise because of:
 - External electric field \Rightarrow drift
 - Non-uniform doping (i.e. carrier concentration) \Rightarrow diffusion
 - Injection of "excess carriers" $\Rightarrow np \neq n_i^2$
- Return to equilibrium:
 - Dissipative phenomena (scattering)
 - Generation-recombination processes
- All above phenomena occur simultaneously: summarized in the transport equations:
 - Current density and continuity equations
- We start by studying the *drift of carriers in an external field*

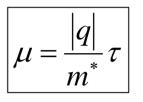
Drift

Random thermal motion Statistical mechanics: equipartition theorem

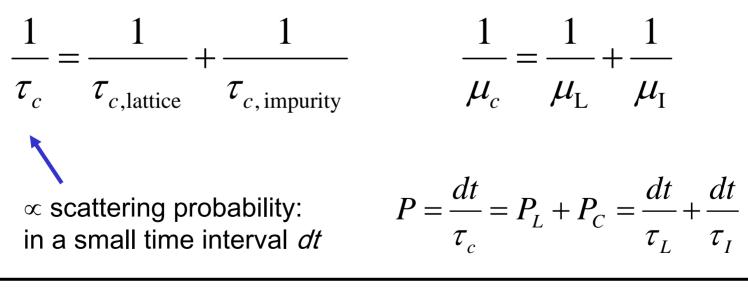
for electrons

$$\frac{1}{2}m_n^* \langle v_{th}^2 \rangle = \frac{3}{2}kT$$
$$T = 300 \text{ K} \Longrightarrow \sqrt{\langle v_{th}^2 \rangle} \approx 10^7 \text{ cm/s}$$

Drift combined with thermal motion "classical electron": charge -|q| effective mass m_n* $-|q|E\tau_{C} = m_{n}^{*}v_{n}$ E = electric field $v_n = -\left(\frac{|q|\tau_c}{m_{\perp}^*}\right)E = -\mu_n E \quad \mu_n \equiv \frac{|q|\tau_c}{m_n^*}$ $v_p = \left(\frac{|q|\tau_c}{m_p^*}\right)E = \mu_p E \qquad \mu_p \equiv \frac{|q|\tau_c}{m_p^*}$


10-10-2006

L.Lanceri - Complementi di Fisica - Lecture 4



Mobility

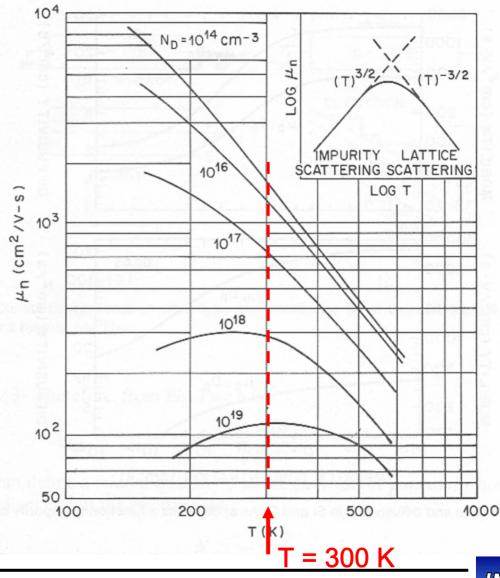
- Two main collision mechanisms for mobility
 - Scattering on lattice deformations: $\mu_L \propto \tau_L \propto T^{-3/2}$
 - Scattering on impurities: $\mu_{l} \propto \tau_{l} \propto T^{3/2}$
 - (more details later on)

• The two mechanisms coexist:

6

10-10-2006

L.Lanceri - Complementi di Fisica - Lecture 4

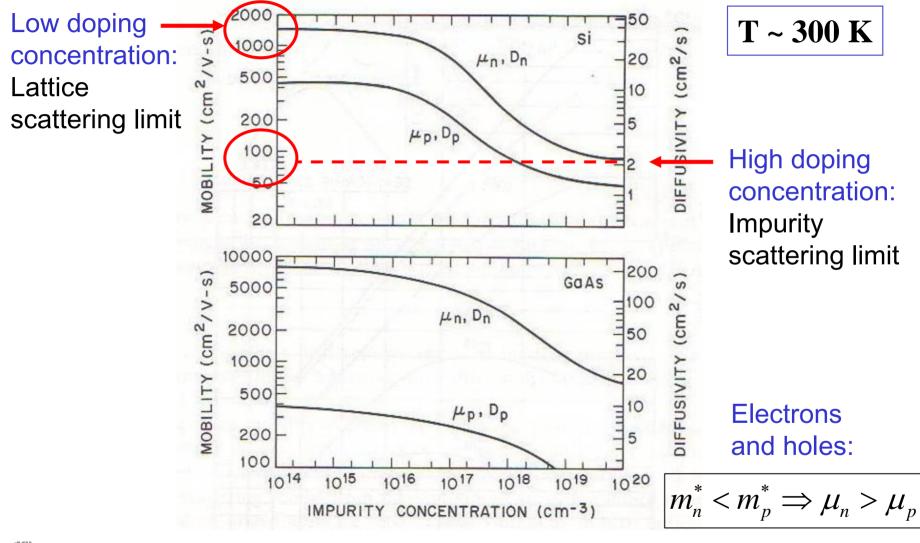

T – dependence of mobility

Two main collision mechanisms for mobility:

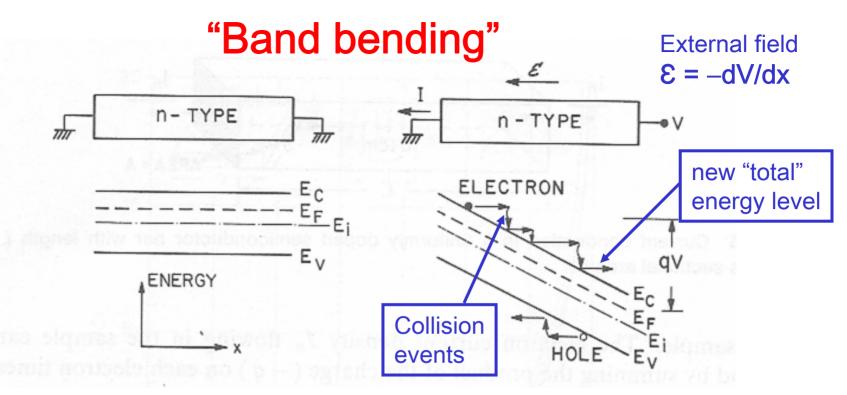
Scattering on lattice deformations: $\mu_L \propto \tau_L \propto T^{-3/2}$

Scattering on impurities:

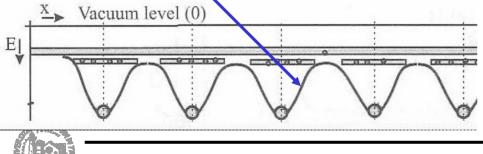
$$\mu_{\rm I} \propto au_{\rm I} \propto {\sf T}^{3/2}$$



L.Lanceri - Complementi di Fisica - Lecture 4


Mobility and impurity concentration

10-10-2006



Interpretation of levels: total energy

$$E = E_{potential} + E_{kinetic}$$

Periodic potential (atoms)

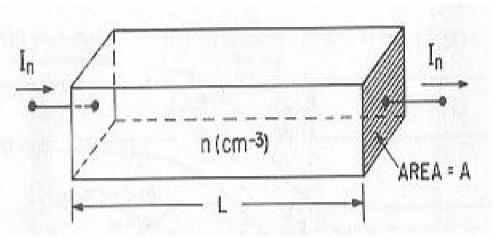
10-10-2006

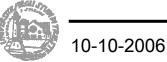
Electric field (potential): additive! Effect of an external potential V(x):

$$E \to E + qV(x)$$

Pay attention! This notation may be misleading: "bent" levels do NOT represent the real "total" energy: just a way to represent in one picture also the SLOWLY varying external field

Band bending: comments


- In this representation the "external" electric field is treated separately from the inter-atomic force fields, and by definition:
 ε = - dV/dx = - (1/q)dE_i/dx = ... (derivative of any "bent" level)
- Think of potential and kinetic energies in a macroscopic classical analog:
 - horizontal plane with bumps or holes, and rolling balls (some constrained by holes or springs, others free to move);
 - Tilt the plane slightly (small inclination) so that the overall change in "external" potential is of the same order of the "internal" potential difference in holes or bumps, but over a much larger distance (several orders of magnitude ⇒ very small change on the scale of distances of holes/bumps)
 - find the analogies in representing energies...

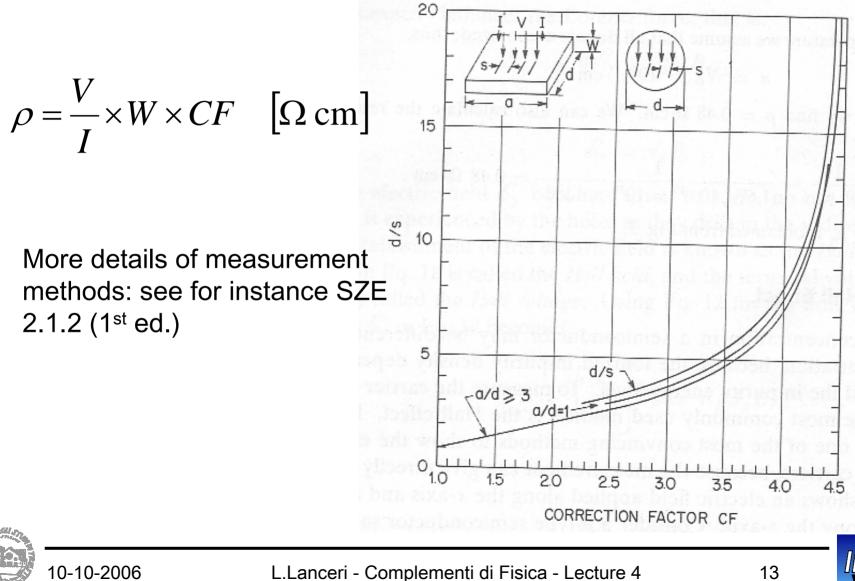

Current density and conductivity

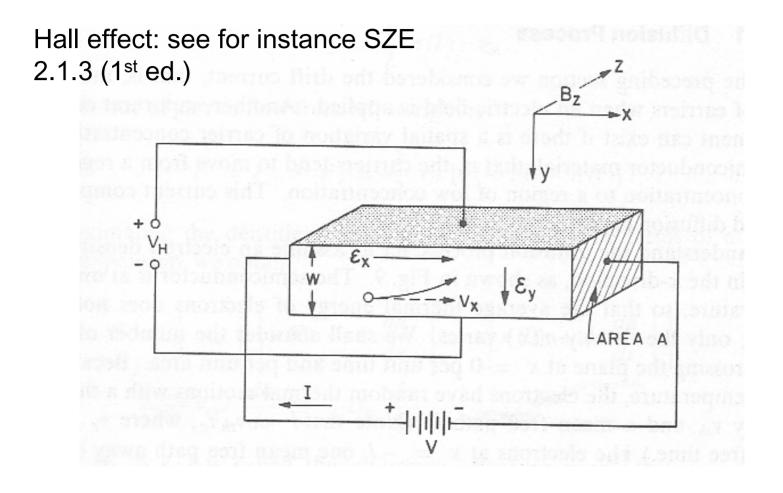
- Up to here, "average" behaviour of *individual* carriers in an external electrical field: *drift velocity*, *mobility*
- Now, *collective* behaviour: *current density*
- See blackboard for detailed calculations... result:

$$J = J_n + J_p = \left(\left| q \right| n \mu_n + \left| q \right| p \mu_p \right) \varepsilon = \sigma \varepsilon$$

$$\uparrow \qquad \uparrow$$
Electric field

Resistivity


$= \frac{1}{qn\mu_n + qp\mu_p} = \frac{1}{q(n\mu_n + p\mu_p)}$ ρ σ



Measurements: resistivity

Carrier type and concentration: Hall effect

Lecture 4 - summary

- We discussed several aspects of carrier drift in a semiconductor when an external electric field is applied:
 - Qualitative microscopic mechanism, proportionality of drift velocity to the electric field, mobility coefficients
 - "band bending": representation of the external field as a potential energy, depending on position, added to the energy levels appearing in band diagrams
 - Variation is small on the scale of atomic distances; energy levels retain their meaning on that scale (~constant total energy);
 - On a larger scale, the band edges, donor and acceptor levels etc are no longer "constant total energy levels" in this representation!
 - Current densities, resistivity etc. resulting from drift motion of carriers

Lecture 4 – Items to be understood...

- Some items that require more thought:
 - Orders of magnitude for mobility, dependence on concentration, temperature, …
 - Measurement of mobility, conductivity, resistivity?
 - Theoretical predictions ? Underlying scattering processes?
 - Hall effect

10-10-2006

Lecture 4 - Glossary

drift				
mobility		1		
scattering		1		
band bending		1		
conductivity		1		
resistivity		1		
Hall effect		1		

Lecture 4 - exercises

- Exercise 4.1: Find the electron and hole concentrations, mobilities and resistivities of silicon samples at 300K, for each of the following impurity concentrations: (a) 5x10¹⁵ boron atoms/cm³; (b) 2x10¹⁶ boron atoms/cm³ together with 1.5x10¹⁶ arsenic atoms/cm³; and (c) 5x10¹⁵ boron atoms/cm³, together with 10¹⁷ arsenic atoms/cm³, and 10¹⁷ gallium atoms/cm³.
- **Exercise 4.2:** For a semiconductor with a constant mobility ratio $b = \mu_n \mu_p > 1$ independent of impurity concentration, find the maximum resistivity ρ_m in terms of the intrinsic resistivity ρ_i and of the mobility ratio.
- **Exercise 4.3:** A semiconductor is doped with $N_D (N_D >>n_i)$ and has a resistance R_1 . The same semiconductor is then doped with an unknown amount of acceptors $_{NA} (N_A >> N_D)$, yielding a resistance of $0.5R_1$. Find N_A in terms of N_D if the ratio of diffusivities for electrons and holes is $D_n/D_p=50$.

10-10-2006

Backup slides