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Course Outline - Reminder 

• The physics of semiconductor devices: an introduction
• Quantum Mechanics: an introduction

– Reminder on waves
– Waves as particles and particles as waves (the crisis of 

classical physics); atoms and the Bohr model
– The Schrȍdinger equation and its interpretation
– (1-d) free and confined (infinite well) electron; wave packets, 

uncertainty relations; barriers and wells
– (3-d) Hydrogen atom, angular momentum, spin
– Systems with many particles

• Advanced semiconductor fundamentals (bands, etc…)
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Lectures 14, 15 - outline
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• 1-d applications of Wave Mechanics:
– Plane wave-function for free electrons
– Electron confined in an infinite potential well
– Physical meaning of eigenfunctions and eigenvalues
– More realistic free particle, partially localized in space: wave

packet, uncertainty relations

• For details on some of the calculations:
– Blackboard and exercises
– R.F.Pierret, Advanced Semiconductor Fundamentals, section 2.3 

(p.33-46)
– J.Bernstein et al., Modern Physics, sections 6-5, 7-1, 7-2, 7-3, 7-4, 

7-5, 8-1, 8-2, 8-3, 8-4, 8-5
– D.J.Griffiths, Introduction to Quantum Mechanics



“free particles”

General solution: plane waves
Wave number, phase velocity

Normalization
Momentum and Energy
Summary: problems…



“free particle” – general solution
Free particle (constant potential V(x)=0): the simplest possible case? 
Not really! Surprisingly subtle and tricky…
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The general solution looks like a “plane wave”.
All energy values E are allowed



“free particle” – plane wave
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General solution including time dependence:

Interpretation: compare with classical harmonic waves.
travelling in the ± x direction with phase velocity vf = ω/k
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Wave number k, angular frequency ω and phase velocity vf :
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“free particle” - normalization

• Strictly speaking, the “plane wave” wave function          
is not normalizable! (postulate P.4)
– Take a plane wave propagating to +x (coefficients: A+ ≠ 0, A- = 0): 

extended to ±∞, it is impossible to normalize: one must restrict the 
available space (for instance to within ± L, with L arbitrarily large) to 
have a finite, although small, value for the coefficient A+ .
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“free particle” – momentum and energy
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• Momentum expectation value?

• Energy eigenvalues
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“free particle” – plane wave, summary

• At a first look the plane wave is OK:
– Well defined momentum expectation value
– Well defined energy eigenvalue
– Momentum-wavelength relationship ≡ DeBroglie!

• But:
– Not normalizable: probability interpretation?
– Particle position completely undetermined?
– Wave-function phase velocity different from classical particle 

velocity by factor 2 ?!?

• All 3 problems will be solved by “wave packets”
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Particle in an infinite 
1-d potential well

“Standing wave” solutions
Energy quantization!

Normalization
Some expectation values

Energy “eigenfunctions” and “eigenvalues”
“composite” wavefunctions?



“particle in a box” – general solution

Particle in a 1-d “non-leaking” box (from x = 0 to x = a): 
potential V(x)=0 inside, ∞ outside ⇒ boundary conditions for ψ(x)
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“particle in a box”: standing wave

• The solution is a “standing wave”:
– superposition of two opposite-going plane waves of equal 

amplitude

– The energy E can only assume discrete values En: it is 
“quantized”! This is a general property of bound states in 
wave mechanics!

– Normalization An , energy, momentum? See next
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“standing wave”: normalization
• Easy:
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Infinite well: energy quantization
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Energy
“eigenvalues”

Wavefunctions
(eigenfunctions) 

Corresponding
probability distributions 
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Infinite well: energy quantization
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Expectation values and uncertainties - 1
• We found the energy 

“eigenfunctions” and 
“eigenvalues”: what happens 
if the particle state is 
described by such an 
eigenfunction?

• Rather easy to compute: 
energy “expectation values”
and “uncertainty”

• No uncertainty!                    
En
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Expectation values and uncertainties - 2
• What about momentum, in 

the same state? compute 
similarly the momentum 
“expectation values” and 
“uncertainty”

• Result: the uncertainty on px
is not zero!

• We should have expected it: 
superposition of two plane 
wave states, with opposite 
momenta: a measurement 
can give one of two opposite 
values for px
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“Standing wave” and other solutions - 1
• For a given n, the corresponding standing wave 

solution Ψn
– Corresponds to a “certain”, well defined value of energy En, 

since it is an eigenfunction of the energy operator
– Has also a well defined 

• absolute value of momentum | px |
• square of momentum px

2

– But the momentum px is “uncertain”: we understand this! This 
happens because the “standing waves” are not 
eigenfunctions of the operator corresponding to px, but rather 
superpositions of two plane waves with opposite values of px

• Can the particle be in other states, described by 
different wave functions? What happens of energy in 
these cases? Can one generalize?
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“Standing wave” and other solutions - 2
• Can the particle be in other (non-standing wave) 

states, described by different wave functions? Yes! 
– Any normalized linear combination of solutions is still a 

solution of the time-dependent Schrödinger equation, 
– even if it will no longer be a solution of the time-independent 

equation… For instance
Standing wave (ground state, n = 1)

Superposition of two standing waves (n = 1 and n = 2)
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“Standing wave” and other solutions - 2
Playing with these “combined”

solutions, one can see that:
– Energy is no longer “certain”
– The expectation values and 

“uncertainties” in position 
and momentum change

– One can build solutions 
“bouncing back and forth 
between the two walls”, etc. 

– See here the wave function 
defined in the previous page  
and its square at two 
different times

– On can compute expectation 
values at different times and 
follow their evolution…



The Physical Meaning 
of Eigenfunctions and Eigenvalues

Generalizing
from this specific example…



The Physical Meaning 
of Eigenfunctions and Eigenvalues - 1

• If a particle state Ψα is the eigenfunction of the operator 
corresponding to a dynamical variable, the outcome of a 
measurement of that variable is “certain” and is equal to the 
corresponding eigenvalue α

• One can show that two different dynamical variables can have 
simultaneously “certain” measured values only if their operators 
share the same eigenfunctions; this happens only when the 
corresponding operators commute. If they don’t, we call them 
“incompatible observables” (for instance, x and px)
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The Physical Meaning 
of Eigenfunctions and Eigenvalues - 2

One can also show that a generic state can be represented by a 
linear combination of eigenfunctions of a given observable, and 
deduce useful relations based on the coefficients of the combination 
(probabilities and expectation values)

The quantum theory of measurement says also that:

immediately after a measurement, the wave function is “collapsed” to 
the eigenfunction corresponding to the measured eigenvalue

immediate repetition of the measurement gives the “same” value 

Waiting long enough, the wave function evolves according to the 
Schrödinger equation and will in general change to a different 
superposition of eigenfunctions; the result of the same measurement 
will no longer be “certain”
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Wave Packets 
and the 

Uncertainty Relations

Plane wave: problems
Wave packets

examples
Expectation values, uncertainties

Uncertainty relations



Wave packets (1-d)
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• Plane-wave problems:
– Not normalizable: probability interpretation?
– Particle position completely undetermined?
– Wave-function phase velocity different from classical particle 

velocity by factor 2 ?!?

• Solution: wave-packets
– “superposition” of plane waves, with “weights” depending on k:
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Wave packets (1-d)
• We recognize a Fourier transform and an inverse 

transform:

• Let’s see
– Two examples of  “weights”
– Group velocity and uncertainties in x and px ; (time evolution…)
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Wave packets: Fourier transform pairs
• From Fourier transform tables:

– “square” k “weights”:

– “gaussian” weights: both gaussian!

– In all cases the “spreads” in x and k are 
inversely proportional! 
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Wave packet qualitative illustrations - 1
From: HyperPhysics (©C.R. Nave, 2003)



Wave packet qualitative illustrations - 2
From: HyperPhysics (©C.R. Nave, 2003)
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Wave packet: time variation
• Detailed calculation is 

rather lengthy: result, for 
the “gaussian envelope”: 

• In general: the group 
velocity is OK, and 
corresponds to the 

e.m. wave packet in vacuum:
Velocity c, no dispersion

Schrodinger wave packet propagation
Velocity vgroup =dω/dk, 
dispersion ω(k)
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Uncertainty Relations
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• For the gaussian wave packet, the product of the spreads 
(“uncertainties”) of  position and momentum is minimal: taking 
the usual definitions, one can show that, for any packet:

• In general, for non-commuting (“incompatible”) observables, 
one can show similar “Heisenberg Uncertainty Relations”.

• The well known energy-time uncertainty relation has an entirely 
different origin ! (see discussion in Griffiths, section 3.4.3):
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Lectures 14, 15 - summary
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• We discussed some 1-d problems that can be solved with Wave 
Mechanics, in particular:
– “free” particles (electrons)
– “bound” particles (electrons)

• This allowed us to investigate two fundamental properties of q.m. 
related to the measurement process:
– The meaning of the eigenfunctions and eigenvalues of an     

observable dynamical variable
– Uncertainty Relations for “non-commuting” observables

• To become familiar with the method, you can complete the study 
of some special cases on your own. Several interesting variations 
of these problems have applications in advanced semiconductor 
devices! Our next steps: potential barriers, tunneling and then 
“periodic potential” and “energy bands”



Lecture 14, 15 - exercises
• Exercise 14.1: Consider a particle of mass m, bound in a one-

dimensional “infinite potential well” of width a, and assume that its wave 
function is the ground energy eigenfunction, with n=1. Compute the 
corresponding uncertainties in position ∆x and momentum ∆px. (Hint: 
this problem is discussed in Bernstein, example 6-4, p.166-167)

• Exercise 15.1: Consider a gaussian wave packet specified at t=0
by φ(k)=Cexp(-a2x2) , where C is a suitable normalization constant, k is 
the wave number and a is a parameter with dimensions [a]=[L] . Write 
the wave function Ψ(x,0) at t=0 and find the corresponding 
uncertainties in position ∆x and momentum ∆px. (Hint: this problem is 
discussed in Bernstein, example 7-3, 7-5).

• Exercise 15.2: Study the time evolution of a gaussian wave packet, 
and in particular (a) the velocity and (b) show that the width of the 
packet increases with time. (Hint: see the next “back-up” slides) 
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Back-up slides
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Exercise 14.2 - 1
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Exercise 14.2 - 2



Exercise 14.2 - 3
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