‘Complementi di Fisica”
Lectures 16, 17

Livio Lanceri
Universita di Trieste

Trieste, 26-11-04 / 01-12-04


http://www.univ.trieste.it/

Course Outline - Reminder

* The physics of semiconductor devices: an introduction
* Quantum Mechanics: an introduction

Reminder on waves

Waves as particles and particles as waves (the crisis of
classical physics); atoms and the Bohr model

The Schrodinger equation and its interpretation

(1-d) free and confined (infinite well) electron; wave packets,
uncertainty relations; barriers and wells; periodic potential

(3-d) Hydrogen atom, angular momentum, spin
Systems with many particles

« Advanced semiconductor fundamentals (bands, etc...)
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Lectures 16, 17 - outline

1-d applications of Wave Mechanics:
— Reminder of the analysis method:
» Solutions of the S. time-independent equation;
» Continuity conditions (wave function and its derivative)
« Wave functions, energy eigenvalues
— Finite potential well:
* “bound” states
» (“free” states: transmission and reflection coefficients)
— Finite potential barrier:
* “bound”, “free” states: reflection, transmission coefficients
* “Tunnel” effect
— Periodic potential:
» Bloch theorem
» Kronig-Penney model
« Energy bands, effective mass
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Analysis method

« Solutions of the time-independent Schrodinger
equation

— The energy eigenvalue must be the same everywhere; it may
correspond to
* A “bound” particle state

» A “free” particle state

— the energy value E determines the type of solution in each
region (interval)

— Continuity of the wave function and its derivative, at the
boundaries between different intervals, determine the
coefficients of the different terms

« transmission and reflection coefficients for a given

finite barrier or well can be defined for “free” particle
states
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Solution types

* If in some region the potential V(x)=V is constant, there are three
possible stationary solution types:

- If E>V:

2 2 2

= w(x)=Ae™ +Be™, Aand B arbitrary complex constants, or
w(x)=Csinkx+Dcoskx (equivalent)

2m(E-V)

hZ

>0

> dy dy 2m(V—E)
—— +Vy=Ey = —a’y =0, a’= >0
omdx? dx’ v h*
= w(x)=Ae™ +Be ™™, Aand B arbitrary complex constants
- fE=V: |
d%y d%y
—— +Vy =E = =0
omd Y dx’
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Finite potential well

“bound” particle
“free” particle
transmission coefficient



Finite potential well: (a) bound solutions
tV(x)

I ‘ [ ‘ 1 X

Bound stationary solutions (-V, < E < 0)

I: y, =Ae*———0  a=,/(-E)2m/n?
II: w, =Bsinkx+Ccoskx k =./(E -V, )2m/n’
.y, =De*————0  a=,/(-E)2m/n?
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“Bound” solutions: (b) continuity

LW,
| ‘ [ ‘ [ X
—Vo Sums and differences:
x=-a: Ae“=-Bsin(ka)+Ccoska) = (A-D) ™ =-2Bsin(ka)
x=a: De ™ =Bsin(ka)+C cos(ka) = (A+D)e™ =2Ccos(ka)

~a: oAe ™ =kBcos(ka)+kCsin(ka) = a(A+D)e™™ =2kCsin(ka)
x=a: —aDe ™ =kBcos(ka)-kCsin(ka) = a(A-D)e ™ =2kBcos(ka)
Compatible only if: < Ratios: <—|
oddsolutions: A=-D, C=0 <« a=-kcot(ka)
evensolutions: A=D, B=0 o =k tan(ka)

X

I
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“pound” solutions: (c) eigenvalues - 1

Equations: Incompatible unless:
o =—k cot(ka) odd solutions: A=-D, C=0
o =k tan(ka) evensolutions: A=D, B=0

These equations express conditions on the energy eigenvalues E::
Recall the definitions of o and &in terms of £:

E. —V_)2m —E. )2m 2m
kz\/( i hzo) a:\/( hlz) a2+k2:(_vo)?

To find the solutions for £, it is convenient to consider the
normalized a-dimensional variables:

1‘
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“bound” solutions: (c) eigenvalues - 2

“7 26-11/1 -12-2004

The equations to be solved take the reduced form:

2m 2m
0!2+k2=(—vo)h—2 52‘*'772:(_\/0);_1—28‘2
o =—k cot(ka) n=-&Ecot(é)
—
o =k tan(ka) n=¢&tan(&)
n E2 +n° =65.
Example of graphical Bk
(numerical) solution, for h ¢
a = 500A and V,=10eV: ,' Ok
6 bound state solutions; ! /N
ground state at x = 1.4, I Ir, !
corresponding to: | ! ,r
E-V, =0.61eV : ; i
;" .f f|'
The number of solutions / ; xf
depends ona and V, ! L 1
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“bound” solutions: (d) eigenfunctions

Classically Classically
“forbidden region” “forbidden region”
e

o — B e ————

Examples of the lowest even and odd solutions, showing the effect
of the request that the derivative should be continuous:
the particle spends some time outfside the “classically allowed” interval !

A" . —BleV
X . —86eV ;

|
|
|
I
|
I
I
I
|
|
|
|
t
I
|
I
I
1
L
I
1
|
|
|
|

|
|
|
|
|
J
I
I
|
|
|
|
E=-76eV |
// S.ne :
|
1
1
I
I
|
|
|
|
|
|
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Finite potential well: (a) “free” solutions

I ‘ | ‘ 1 X

free stationary solutions (E > 0); particles coming from the left, towards positive x

|: w, = Ae™ +Be ™ k = /2mE/n?

II: w, =Csinlx+Dcoslx 1=./(E+V,)2m/n?

oy, =Fe' k = /2mE/h?
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“free” solutions: transmission coefficient
1V (x)

_VO

As before, from continuity relations one can extract the coefficients
(in particular A and F) and then define the “transmission coefficient”:

L 1
A e
1+4E(E+V0)5m . J2m(E +V,)

T

T A
The following energies correspond
to “perfect transmission” T=1 over the well:

n°h?

2m(2a)’

E +V,=

26-11/1 -12-2004 L.Lanceri - Complementi di Fisica - Lectures 16, 17 13



Finite potential barrier

“bound” particle
“free” particle

Reflection and transmission
coefficients

Tunnel effect



Finite potential barrier - introduction

 E >V,: wavelength always
real,

— But: there is usually
reflection in addition to
transmission!

« E <V, wavelength becomes
imaginary (analog to
classical: “evanescent
waves’);

— the wave function falls off
exponentially in the barrier

— There is a “transmitted” wave
with reduced amplitude

1 ‘~
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Finite barrier: (a) solutions

V(%)
B
| —a a

Similar to finite well, but we use Incident wave
slightly different notations: :
to describe both “bound” and “free” T
solutions with the same equations, ‘[\\P._yfﬁt_a ot @_fﬂf
here q may be real or imaginary [ : e
depending on the sign of E-V,, {Be, B

: ikx —ikx >

11y, =" +Re k =+/2mE/h
Iy, = Ae'™ +Be ™ 4= \/(E -V, )Zm/hz
1 : oy, =Te® k = 2mE/#?
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Reflection and transmission

Continuity conditions:
X=-a. e"*+Re" =Ae™ 4 Be™
ike ™ + —ik Re"® = igAe ™ —igbBe'®
x=a: Ae®4+Be ™™ =Te"
igAe'® —igBe™* = ikTe"

4 equations for 4 unknowns: A, B, R, T; we are interested mainly in
reflection and transmission probabilities, represented by |R|2 and |T|?,
where R and T are given by (see details in back-up slides):

i(q2 _ kz)sin(an) ~2ika
R = AL o M—
2kq cos(2qa)—ilk? +g?Jsin(2qa)
2kq ~2ika

€

T=
2kq cos(2qa)—i(k? +g?Jsin(2qa)
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“free” solution for £ > V/,

By inspection of the equations for Rand 7, their
features for £ > VV,:
— Rand 7 are complex numbers (“probability amplitudes”)
— Ris not zero, even for £ >V,
- R—>0 for V,»0
- |R|<1
- |RIP+|T|P=1
— |R|? and | T|? can be interpreted respectively as probabilities
for reflection and transmission of the particle by the potential
barrier
A similar method is used in more complicated 3-d
problems found in the physics of semiconductors !

— For instance, scattering of an electron by an impurity or defect
in a crystal lattice...

— computation of “scattering amplitudes” and “probabilities” !
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“tunneling” solution for £ < l/,

When £ < V:
— Classically, the particle can only bounce back (perfect reflection)
— Here: non-zero transmission probability
— Convenient to show explicitely that g becomes purely imaginary

o2 = 2m (E ~V,)<0 = expressitas q=in purelyimaginary
’72—2T ,-E)>0
h T= 4ikn e~ o-2ika
z “zikfire (- fime )
e +e x
COS(an)—> > e o] — ‘T‘Z . 126k ,72 2 e
_ i(ezna_e—zna) (k 7 )
sm(2qa)_>
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“tunneling” solution for £ < l/,

Exponentially decreasing “tunneling” (transmission) probability,
depending both on 7 (barrier “height”) and on a (barrier “width”):

- "= barrier “height”

‘2 16k2772 _4na

e <<l = [|'x——e N
(k +7 ) a = barrier “width”

Qualitatively similar behavior
for arbitrary barrier shape,
with more complicated
coefficients in the
exponential, obtained by
integrating over many “thin
square barriers”

[
|

Hna
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Electrons in a “perfect crystal”
“Periodic potential”

Bloch Theorem
Kronig-Penney model
Energy bands and Brillouin zones
Particle motion and effective mass



Assumptions | PP

Atomic core (+Z'q)

Approximate the forces felt by each 532
“loosely bound”, “external” electron
as the sum of Coulomb potentials:
— Individual charges Z’q (nuclei +
tightly bound electrons) )
— Separated (in 1-d) by the lattice e
Cor.]Stant ) L We expect also the
For a first-order approximation, “ioosel ot ad?
neglect interactions between { 3|/ {
“external” electrons fuber ebelc :ons
— They become important at very low “O B AR %
temperatures (“Cooper pairs”, © tunnel through

superconductivity)
Find the available stationary states
and energy eigenvalues

— To understand how they are R R B A
occupied we need to come back to : ”
multi-particle system and the “Pauli loosely bound” |

principle” i e vl oo \,//\

(@

potential barriers” !

Ulx)

Figure 3.1 (a) One-dimensional crystalline lattice. (b-d) Potential energy of an electron inside
the lattice considering (b) only the atomic core at x = 0, (c) the atomic cores at both x = 0 and
x = a, and (d) the entire lattice chain.
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The Bloch Theorem
IF V(x) periodic: V(x+a)=V(x)

THEN the solutions of S. equation can be taken
to satisfy the condition, for some constant k :

w(x+a)=e"w(x) or, equivalently:
w(x)=e"u(x), u(x+a)=u(x)

(Proof: not too complicated, based on the fact that the “translation”
operator x — x + a commutes with the hamiltonian...)

NB: The solution w(x) is not periodic itself: it has the form of a plane
wave exp(tkx) modulated by a function y(x) that reflects the
periodicity of the crystal. One can show that A is real, so that the
probability density |y(x) |? is periodic, as one would expect
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Allowed values of A7

* Independently of the specific shape of V/[x), some general properties
of k:

— For a 1-d system: 2 distinct values of & exist for each allowed value of £

— For a given E: values of k differing by 2z/a give the same wavefunction
solution (= range restricted to - 7/a < k < n/a)

— For “infinite” crystals, one can show that & must be real and that it can
assume a continuum of values

— To describe electrons inside crystals of finite extent, it is customary to
assume “periodic boundary conditions” (equivalent to a “closed N-atom
ring”): this implies that A can only assume a set of discrete values; since
N is large, this is a “quasi-continuum?”.

Na _ 1 k:2_7zn n:O,il,iZ,---iN/z

w(x)=w(x+Na)=e"y(x) = e ™

» Bloch’s theorem allows us to solve the Schrodinger equation on a
single cell and generate recursively the wavefunction everywhere else
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The Kronig-Penney model

* Approximation:

NN
TN

—-b 0a
(b)

e INEN
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VR
P B,

Kronig-Penney (1): S.equation in one cell

« Schrodinger equation and solutions: similar to what we saw for

wells an :
iid+a2%=0 D<x<a
o = \/2mE/#?
i;“rﬁ%ph:ﬂ ~b<x<0
iB_; B.=V2mU, - E)2  0<E<U,
i B.. B. = V2m(E - U)i#?  E>U,

\

W.(x) = A,sinax + B,cosax

o Up(x) = ApsinBx + BycosBx

e )
SEOLE
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Kronig-Penney (2): boundary conditions

* No surprise... they produce constraints on o, B, B, = on Kk, E

Ya(0) = ¢,(0) B, = B,

% = % ioﬁilf;friltgnts

dx |, dx |, g ' ad, = BA,

Pa(a) = ™oy (—b) A sinaa + B,cosaa = ¢*TP[— A sinBb + B,cosBb]

Periodicity

dis o d s : s :

d_ﬂ =4 eifct-ﬁb!d_b requirements aAcosaa — aB,sinaa = "B A cospb + BB,sinBb]
X b

A [sinaa + (a/B)e*“*Psingb] + B,[cosaa — e*“*Pcospb] = 0

A Jacosea — ae™*PlcosBb] + B,[—asinaa — Be™“Psingb] = 0
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Kronig-Penney (3): equations for a, B (k, E)

System of 2 linear equations:
determinant must be zero -
to give non-trivial solution

o + B?

20p

sinaa sinBb + cosaa cospb = cosk(a + b) (3.15)

Finally, reintroducing g =if_ for 0 < E < U, and B = B. for E > U, noting
sin(ix) = isinhx and cos(ix) = coshx, and defining
Another old trick:
hange of variables: = V2mUy/#* (3.16)
Express a, B in terms of
an a-dimensional variable

such thaja = ao\/g_:, B_.=ayV1 —fand B, = ¢V E — 1, +e arrive at the result

¢ = ElU, (3.17)

f (5) = Lo bmaga\/g Sinhaﬂb\a’l =& cosaua\/g coshepybV1 —
2VE(L - £)

= cosk(a + b) e s <l (3.18a)

e sinaga\/é sinagbVE — 1 + C(}Sa[,a\/g cosagbVE — 1
Lyele =

= cosk(a + b) i el (3.18b)
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Kronig-Penney: allowed k, E

f(¢)
b E=EMl,  f(&)=..=cosk(a+b)

31 left side: right side:
E-dependence only k-dependence only

gl

el cosk(a+b)=+1

k(a+b)=0

01+—%

i cosk(a+b)=-1
sogfaile k(a+b)=i7f
-2+

Allowed and forbidden E intervals:
o ‘ENERGY BANDS” !

Figure 3.3 Graphical determination of allowed clectron energies. The left-hand side of the
Egs. (3.18) Kronig-Penney model solution is plotted as a funct = The shaded
.. regions where —1 = f(£) = 1 identify the allowed energy states| (e = agb = 7).| Specific example
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Kronig-Penney: E-k relation

“extended zone representation” “reduced zone representation”
of allowed E-k states of allowed E-k states

N

Band 4

Band 3

Band 2

5
\\.
AR AR &

-_'_""‘---._._.-—-""'_':"'/ T " EZA Band1
- == : [ -k . k
—4m T =27 S Al T 2w 3T 4 Bl el
= +b b
B G Eb. oalh D 0 Fdb b dh g b ¢ :

| Zone2 | Zone 1 | Zone2 | Figure 3.5 Reduced-zone representation of allowed E-k states in a one-dimensional crystal
! ! [ (Kronig-Penney model with aga = agb = 7).

Figure 3.6 Extended-zone representation of allowed E-k states in a one-dimensiona al
(Kronig-Penney model with aya = ayb = 7). Shown for comparison purposes are the free-
particle E-k solution (dashed line) and selected bands from the reduced-zone representation
(dotted lines). Arrows on the reduced-zone band segments indicate the directions in which these
band segments are to be iranslated to achieve coincidence with the extended-zone
representation. Brillouin zones 1 and 2 are also labeled on the diagram.

“Brillouin zones”
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Lectures 16, 17 - summary

« Potential wells + barriers and the Bloch theorem for periodic potentials led
us to understand the allowed energy band structure for electrons in a
simplified 1-d crystal model

» In particular we understood how the E-k relation is obtained

« Two k values correspond to each allowed E value; multiples of +2x/(cell
length) can be added to k without modifying the periodic potential solution.

« For a free particle, k is the wave-number and hk/2x = <p> is the particle
momentum. In a crystal, hk/2n is the “crystal” momentum: it is not the
actual momentum of the electron, but rather a constant of the motion that
incorporates the interaction with the periodic crystal!

 Next: let us revisit electron effective mass, etc...

R Y
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Lecture 16, 17 - exercises

 Exercise 16.1: Consider the derivation of “bound” solutions for the
finite well; following the track given in this lecture, fill in the calculations
leading to the equation for the energy eigenvalues for the “even”
solutions. Find the numerical energy eigenvalue for the lowest energy
“even” state, assuming a = 500A and V,= 10eV.

 Exercise 16.2: Following the method described in this lecture (see
also back-up slides for details), derive the transmission amplitude 7 for
a “square” potential barrier for E <V, and the approximate expression
for the tunneling probability | 7|2. Compute the numerical value of the
transmission (tunneling) probability for a particle with energy E = 9eV,
incident on a “square” potential barrier (V, = 10 eV, a = 50A and 100A)

 Exercise 17.1: (a) Check that the two forms given for the Bloch
wave functions in the Bloch theorem are indeed equivalent. (b) Explain
in in words what is meant by “Brillouin zones”
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Back-up slides



Reflection and Transmission

We are interested in finding R and T, given the four linear equations (8-8)
through (8-11) for A, B, R, and T. We start by defining X = A exp (iga) and
Y = Bexp(—iga). Then Egs. (8-10) and (8-11) become, respectively,

X +Y =Texpl(ika) (A-1)

and
R e R
Kesa Y= (E)T exp (ika). (A-2)

We can solve for X and Y by taking the sum and difference, respectively, of
these equations. Once we have X and Y, we have, in turn, A = X exp(—iga)
and B = Y exp(+iga). These can be substituted into Eqs. (8-8) and (8-9), re-
spectively giving

e : 1k s : :
exp(—ika) + Rexp(ika) = 2 Texpli(k — 29)a]
ot (A-3)
+ qz—qTexp[z'(k + 29)a]
and
o Ao G i 3
exp(—ika) — Rexp(ika) = R T exp[i(k — 2q)a]
(A-4)
EaT Texplilk + 29)a].

If we now take the sum of these two equations, we get a linear equation for T
alone, which we can easily solve, giving Eq. (8-13). In turn, we substitute our
result for T into either Eq. (A-3) or Eq. (A-4), which then becomes a linear equa-
tion for R, and this immediately gives Eq. (8-12).
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