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Course Outline - Reminder 

• The physics of semiconductor devices: an introduction
• Quantum Mechanics: an introduction

– Reminder on waves
– Waves as particles and particles as waves (the crisis of 

classical physics); atoms and the Bohr model
– The Schrȍdinger equation and its interpretation
– (1-d) free and confined (infinite well) electron; wave packets, 

uncertainty relations; barriers and wells; periodic potential
– (3-d) Hydrogen atom, angular momentum, spin
– Systems with many particles

• Advanced semiconductor fundamentals (bands, etc…)
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Lectures 16, 17 - outline
• 1-d applications of Wave Mechanics:

– Reminder of the analysis method:
• Solutions of the S. time-independent equation; 
• Continuity conditions (wave function and its derivative)
• Wave functions, energy eigenvalues

– Finite potential well: 
• “bound” states
• (“free” states: transmission and reflection coefficients)

– Finite potential barrier:
• “bound”, “free” states: reflection, transmission coefficients
• “Tunnel” effect

– Periodic potential:
• Bloch theorem
• Kronig-Penney model
• Energy bands, effective mass
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Analysis method
• Solutions of the time-independent Schrödinger 

equation
– The energy eigenvalue must be the same everywhere; it may 

correspond to
• A “bound” particle state
• A “free” particle state

– the energy value E determines the type of solution in each 
region (interval) 

– Continuity of the wave function and its derivative, at the 
boundaries between different intervals, determine the 
coefficients of the different terms

• transmission and reflection coefficients for a given 
finite barrier or well can be defined for “free” particle 
states
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Solution types
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• If in some region the potential V(x)=V is constant, there are three 
possible stationary solution types:
– If  E > V:

– If  E < V:

– If  E = V:
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Finite potential well

“bound” particle
“free” particle

transmission coefficient



Finite potential well: (a) bound solutions
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Bound stationary solutions (-V0 < E < 0)
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“Bound” solutions: (b) continuity
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Ratios:Compatible only if:
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“bound” solutions: (c) eigenvalues - 1
Equations: Incompatible unless:
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These equations express conditions on the energy eigenvalues Ei:
Recall the definitions of α and k in terms of E :
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“bound” solutions: (c) eigenvalues - 2
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.6522 =+ηξη

ξ

Example of graphical 
(numerical) solution, for      
a = 500Å and V0=10eV:
6 bound state solutions; 
ground state at x = 1.4, 
corresponding to:            
E−V0 = 0.61 eV

The number of solutions 
depends on a and V0 !



“bound” solutions: (d) eigenfunctions
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Examples of the lowest even and odd solutions, showing the effect
of the request that the derivative should be continuous: 
the particle spends some time outside the “classically allowed” interval !



Finite potential well: (a) “free” solutions

x
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free stationary solutions (E > 0); particles coming from the left, towards positive x
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“free” solutions: transmission coefficient
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As before, from continuity relations one can extract the coefficients
(in particular A and F) and then define the “transmission coefficient”:
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Finite potential barrier

“bound” particle
“free” particle

Reflection and transmission 
coefficients

Tunnel effect



Finite potential barrier - introduction
• E > V0 : wavelength always 

real;
– But: there is usually 

reflection in addition to 
transmission!

• E < V0: wavelength becomes 
imaginary (analog to 
classical: “evanescent 
waves”); 
– the wave function falls off 

exponentially in the barrier
– There is a “transmitted” wave 

with reduced amplitude
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Finite barrier: (a) solutions
( )xV

0V

aa−I II III
Similar to finite well, but we use
slightly different notations: 
to describe both “bound” and “free”
solutions with the same equations,
here q may be real or imaginary
depending on the sign of E-V0
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Reflection and transmission
Continuity conditions:
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4 equations for 4 unknowns: A, B, R, T; we are interested mainly in
reflection and transmission probabilities, represented by |R|2 and |T|2, 
where R and T are given by (see details in back-up slides):
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“free” solution for E > V0

• By inspection of the equations for R and T , their 
features for E > V0 :
– R and T  are complex numbers (“probability amplitudes”)
– R is not zero, even for E > V0
– R → 0   for  V0 → 0 
– |R | ≤ 1
– |R |2 + |T |2 = 1
– |R |2 and |T |2 can be interpreted respectively as probabilities 

for reflection and transmission of the particle by the potential 
barrier

• A similar method is used in more complicated 3-d 
problems found in the physics of semiconductors !
– For instance, scattering of an electron by an impurity or defect

in a crystal lattice…
– computation of “scattering amplitudes” and “probabilities” !
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“tunneling” solution for E < V0
• When E < V0 :

– Classically, the particle can only bounce back (perfect reflection)
– Here: non-zero transmission probability
– Convenient to show explicitely that q becomes purely imaginary
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“tunneling” solution for E < V0
Exponentially decreasing “tunneling” (transmission) probability,
depending both on η (barrier “height”) and on a (barrier “width”):
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a = barrier “width”
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aη

2T
Qualitatively similar behavior 
for arbitrary barrier shape, 
with more complicated 
coefficients in the 
exponential, obtained by 
integrating over many “thin 
square barriers”



Electrons in a “perfect crystal”:
“Periodic potential”

Bloch Theorem
Kronig-Penney model

Energy bands and Brillouin zones
Particle motion and effective mass
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Assumptions
• Approximate the forces felt by each 

“loosely bound”, “external” electron 
as the sum of Coulomb potentials: 

– Individual charges Z’q (nuclei + 
tightly bound electrons)

– Separated (in 1-d) by the lattice 
constant a

• For a first-order approximation, 
neglect interactions between 
“external” electrons

– They become important at very low 
temperatures (“Cooper pairs”, 
superconductivity)

• Find the available stationary states 
and energy eigenvalues

– To understand how they are 
occupied we need to come back to 
multi-particle system and the “Pauli

We expect also the 
“loosely bound” 
outer electrons 
to be able to 
“tunnel through”
potential barriers” !

“free”

“loosely bound”
principle”



The Bloch Theorem
IF

THEN

(Proof: not too complicated, based on the fact that the “translation” 
operator x → x + a commutes with the hamiltonian…)

NB: The solution ψ(x) is not periodic itself: it has the form of a plane 
wave exp(ikx) modulated by a function u(x) that reflects the 
periodicity of the crystal. One can show that k is real, so that the 
probability density |ψ(x) |2 is periodic, as one would expect
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Allowed values of k ?
• Independently of the specific shape of V(x) , some general properties 

of k :
– For a 1-d system: 2 distinct values of k exist for each allowed value of E
– For a given E : values of k differing by 2π/a give the same wavefunction

solution (⇒ range restricted to - π/a < k < π/a )
– For “infinite” crystals, one can show that k must be real and that it can 

assume a continuum of values
– To describe electrons inside crystals of finite extent, it is customary to 

assume “periodic boundary conditions” (equivalent to a “closed N-atom 
ring”): this implies that k can only assume a set of discrete values; since 
N is large, this is a “quasi-continuum”.

• Bloch’s theorem allows us to solve the Schrödinger equation on a 
single cell and generate recursively the wavefunction everywhere else 
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The Kronig-Penney model
• Approximation:
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Kronig-Penney (1): S.equation in one cell

26-11/1 -12-2004 L.Lanceri - Complementi di Fisica - Lectures 16, 17 26

• Schrödinger equation and solutions: similar to what we saw for 
wells and barriers:



Kronig-Penney (2): boundary conditions
• No surprise… they produce constraints on α, β-, β+ ⇒ on k, E
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Kronig-Penney (3): equations for α, β (k, E)
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System of 2 linear equations:
determinant must be zero
to give non-trivial solution

Another old trick:
hange of variables:
Express α, β in terms of 
an a-dimensional variable

( ) =ξf



Kronig-Penney: allowed k, E
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“ENERGY BANDS” !
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Kronig-Penney: E-k relation
“extended zone representation”

of allowed E-k states
“reduced zone representation”

of allowed E-k states

“Brillouin zones”
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Lectures 16, 17 - summary
• Potential wells + barriers and the Bloch theorem for periodic potentials led 

us to understand the allowed energy band structure for electrons in a 
simplified 1-d crystal model

• In particular we understood how the E-k relation is obtained

• Two k values correspond to each allowed E value; multiples of ±2π/(cell 
length) can be added to k without modifying the periodic potential solution.

• For a free particle, k is the wave-number and  hk/2π = <p> is the particle 
momentum. In a crystal, hk/2π is the “crystal” momentum: it is not the 
actual momentum of the electron, but rather a constant of the motion that 
incorporates the interaction with the periodic crystal!

• Next: let us revisit electron effective mass, etc…
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Lecture 16, 17 - exercises
• Exercise 16.1: Consider the derivation of “bound” solutions for the 

finite well; following the track given in this lecture, fill in the calculations 
leading to the equation for the energy eigenvalues for the “even” 
solutions. Find the numerical energy eigenvalue for the lowest energy 
“even” state, assuming a = 500Å and V0 = 10eV.

• Exercise 16.2: Following the method described in this lecture (see 
also back-up slides for details), derive the transmission amplitude T for 
a “square” potential barrier for E < V0 and the approximate expression 
for the tunneling probability |T |2. Compute the numerical value of the 
transmission (tunneling) probability for a particle with energy E = 9eV, 
incident on a “square” potential barrier (V0 = 10 eV, a = 50Å and 100Å) 

• Exercise 17.1: (a) Check that the two forms given for the Bloch 
wave functions in the Bloch theorem are indeed equivalent. (b) Explain 
in in words what is meant by “Brillouin zones”
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Back-up slides



26-11/1 -12-2004 L.Lanceri - Complementi di Fisica - Lectures 16, 17 34

Reflection and Transmission
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