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Course Outline - Reminder 

• The physics of semiconductor devices: an introduction
• Quantum Mechanics: an introduction

– …just a few more comments on:
– (3-d) Hydrogen atom, angular momentum, spin
– Systems with many particles: fermions and Pauli principle

• (slightly more) Advanced semiconductor fundamentals
– Energy bands, effective mass
– Equilibrium Carrier Statistics: density of states, Fermi function
– Non-equilibrium transport of charge carriers and the motion of 

electrons in real crystals

• Too late for…
– Simulations; revisiting Shockley; discussing a device as an example
– Measurements of semiconductor properties
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Lecture 19 - outline
• A very brief summary on:

– (3-d) Hydrogen atom, angular momentum, spin
– Systems with many particles: fermions and Pauli principle
– Multi-electron atoms, periodic table, and crystals

• Back to semiconductors: equilibrium carrier statistics
– Thermal equilibrium and detailed balancing
– Density of states
– Fermi probability distribution function
– consequences? … see 1st part of the course

• Boltzmann approximation
• Number of carriers at band edges
• Etc… (intrinsic, extrinsic semiconductors, …)
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3-d wave mechanics
(just a hint…)
Hydrogen atom

Angular momentum
Spin



Hydrogen atom
• “simple”: time-independent Schrödinger equation for 

the electron:
– central “Coulomb” potential V (r ) = q2/(4πε0 r )
– spherical coordinates (r, θ, φ )
– Separation of variables (3) 
– 3 integer quantum numbers identify each solution                
ψ n,l,m (r, θ, φ ) = R nl (r) Y lm (θ, φ )

Energy (= Bohr !)

Angular
momentum

( ) nlmnlmznlmnlmnlmnnlm mLllLEH ψψψψψψ hh =+== ˆ1ˆˆ 22
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Radial pdf
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Radial 
probability distribution function

( )[ ]22 rRr nl

Peaks occur 
at Bohr orbits radii
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Spherical 
harmonics

Angular
Probability distribution functions

2
lmY

Probability of finding the electron
In the solid angle (sinθ dθ dφ)



Angular momentum
• Also angular momentum is quantized !

– One can only measure simultaneously the magnitude square 
and one component (the components don’t commute !)

– Cartesian and spherical coordinates:

– Eigenvalues and eigenfunctions
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Magnetic effects
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• On dimensional grounds, for a charged particle with angular 
momentum we expect a magnetic moment and a contribution to 
potential energy when interacting with an external B field:

• “Zeeman effect” (splitting of degenerate levels) and Stern-Gerlach
experiment (“space quantization”: splitting of an atomic beam)

BUL
m
qg

rrrr
⋅−== µµ

2

Zeeman
splitting Stern-Gerlach



Spin
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• Elementary particles carry also an “intrinsic” angular momentum 
(“spin” S) besides the “orbital” angular momentum (L)
– The eigenstates are not the spherical harmonics: not functions of θ, φ

at all!
– The quantum numbers s, m can be half-integer 
– The magnitude s is specific and fixed for each elementary particle, 

and is called “spin”
– Electrons have spin s = ½, with two possible eigenstates: “up” and 

“down”
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Spin: observable effects
• For example:

– “Anomalous Zeeman effect”: further level splitting in strong B fields
– “Fine Structure” level splitting due to “spin-orbit coupling”
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Anomalous Zeeman
effect

Spin-orbit coupling



This is not the end…
• Hydrogen has been a very interesting laboratory:

– Orders of magnitude of different effects, treated as 
“perturbations”, in terms of the a-dimensional “fine structure 
constant” α, expressing the strength of the electromagnetic 
coupling:

036.137
1

4 0

2

≅≡
c

e
hπε

α

Relativity, spin-orbit
Coulomb field quantization

Electron-proton
magnetic moments
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Many-particle systems
(just a hint…)
Identical particles

Bosons and fermions
Pauli Principle
Periodic table



Identical particles
• Many-particle systems? Let’s start with two:

– Wave function, probability distribution, hamiltonian; S.equation

– For time-independent potentials: time-indep. S.eq. and 
stationary states
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Bosons and fermions
• For distinguishable particles (for instance, an electron and a 

positron):
– particle 1 is in the (one-particle) state ψa(r1)
– particle 2 in state ψb(r2)

• But: identical particles (for instance, two electrons) are truly
indistinguishable in quantum mechanics:
– There are two possible ways to construct the wave-function:

– All particles with integer spin are bosons
– All particles with half-integer spin are fermions

( ) ( ) ( )2121 ,, rrtrr ba
rrrr ψψψ =

( ) ( ) ( ) ( ) ( )[ ]212121, rrrrArr abba
rrrrrr ψψψψψ ±=±

+ “symmetric”: bosons

- “anti-symmetric”: fermions
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Fermions and Pauli principle
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• Connection between spin and “statistics” (or wave-function 
exchange symmetry) 
– can be proven in relativistic QM 
– must be taken as an axiom in non-relativistic QM

• Pauli exclusion principle:
– Two fermions (anti-symmetric w.f.) cannot occupy the same 

state! Indeed:

• It can be shown that:
– The exchange operator P is a “compatible observable” commuting 

with H ⇒ one can find solutions that are either symmetric or 
antisymmetric

– For identical particles, the wave function is required to be symmetric 
(for bosons) or anti-symmetric (for fermions)

( ) ( ) ( ) ( ) ( )[ ] 0, 212121 =−=⇒= − rrrrArr aaaaba
rrrrrr ψψψψψψψ



Pauli Principle: consequences for electrons
• For electrons the total wave-function (including spin) must be 

anti-symmetric, and they cannot occupy the same state (two per 
level allowed, with opposite spin.

• The anti-symmetry requirement allows some wave-function 
configurations, prohibits others: equivalent to an “exchange force”

• Filling of available levels by electrons in a box (neglecting 
interactions among electrons!): Fermi level= highest energy level 
occupied at T = 0K (see exercises)

• “degeneracy pressure”: even neglecting electric interactions 
between electrons, the Pauli principle implies that “the closest 
that two electrons can get to each other is roughly a half a 
DeBroglie wavelength corresponding to the Fermi energy (see 
exercises)
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Pauli principle: Periodic table of elements

• Multi-electron atoms are treated by approximate 
methods: 
– wave functions are modified (and called “orbitals”), but:
– they are labeled by the same quantum numbers n, l, m, and:
– Orbitals are filled by electrons following the Pauli exclusion 

principle: two electrons cannot have the same quantum 
numbers (state)
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Periodic table of the elements
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Back to semiconductors

Thermal equilibrium
Density of states

Fermi probability distribution function
Carrier concentrations (Boltzmann

approx.)



Thermal equilibrium
• Thermal equilibrium = ? 

– Between two bodies or systems in “thermal equilibrium” there 
can be no net transfer of any sort (law of detailed balancing).

• Thermal equilibrium: static, endless, useless… why do 
we care?
– Systems near thermal equilibrium tend to come to equilibrium 

in predictable ways
– The predictable behavior of systems not quite in equilibrium 

allows us to design and construct useful devices!

• From the statistical point of view:
– Thermal equilibrium represents the distribution of maximum 

probability, achieved when the detailed balancing between the 
possible processes is reached. 

10 -12-2004 L.Lanceri - Complementi di Fisica - Lecture 19 21



Finding the maximum probability
• First part: specify all possible “states” (solutions to a wave 

equation) and a set of appropriate boundary conditions
– Possible eigenstates of the system (in our case E-k plot!)
– Total internal energy of the system
– Rules about filling states (in our case the Pauli principle)
– Rules about conservation of particles

• Second part: procedure to find the most likely distribution of 
particles among the states, that does not violate any of the rules
– Finding a maximum subject to constraints (“rules”): 

Lagrange’s method of undetermined multipliers

• Let’s start with the “density of states” (step 1)
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Step 1: density of states



Density of states …
• Density of states g(E)

– g(E) = number of allowed states for electrons in the energy range 
(E, E+dE ), per unit volume of the crystal

– For a general solution (any E ) we should use the full machinery of 
band theory… (possible, but complicated!)

– but we are mainly interested in the band edges, normally populated 
by carriers: much simpler! Shortcut: 

• Equivalent problem: density of states for electrons in a 3-d box, 
provided we finally modify the solution, taking into account the
“effective mass” m* and the band structure

“Equivalent” problem:
electrons in a box
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Electrons in a box
• Infinitely deep 3-d potential 

well:
Time-independent Schrödinger 

equation

Separation of variables
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Energy eigenstates and eigenvalues
Each solution is associated with a 3-d k-space vector:
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Counting the solutions in E intervals
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Only the 1st octant in k-space 
corresponds to independent 
solutions

Each state can be occupied 
by two electrons with opposite spin
(Pauli principle)
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… density of states …
• Density of states, simplified model (box with infinitely deep walls)

• But: bands? Interaction with the crystal periodic potential? No 
problem:
– the “average effective mass” m* and the “crystal wave number” k 

describe the interactions with the crystal
– for E close to EC :

– Similarly for holes:
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… with “average” effective masses
• The effective masses appearing in the density of states for some

useful semiconductors (Si, Ge, GaAs) are averaged over crystal 
directions

– only GaAs is approximately isotropic
– See R.F.Pierret, section 4.1.2, p.94, for details on Si and Ge
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Step 2: probability distribution 
function (Fermi-Dirac)



F.-D. probability distribution function
• From thermodynamics: 

– The most likely “macroscopic” state is the one corresponding to the 
largest number W of equivalent “microscopic” states, compatible with a 
given total number N of electrons and a fixed total energy ETOT

– W = “thermodynamical probability”; “entropy” = ln (W )

Si available states
at energy Ei
(partially) filled by Ni electrons
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Maximization procedure
• Take the logarithm, use Stirling’s approximation, and set the 

differential to zero (Si are constant, Ni variable):
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Constraints: Lagrange multipliers
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Introducing the undetermined Lagrange multipliers -α and -β :
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Physical meaning of α and β
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• α and β: from thermo-dynamical arguments ⇒ for fermions,     
Fermi distribution:
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T = absolute temperature

EF “electrochemical potential”
or “Fermi energy”



Fermions, bosons and classical limit
• Fermions: Fermi-Dirac distribution (at most one fermion per state):

• Bosons: Bose-Einstein distribution (any number of bosons per state)

• Classical: Maxwell-Boltzmann (good limit of quantum statistics 
when: few particles / high temperature, small filling probability per 
state)
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Number of carriers at band edges 
(Boltzmann approximation)

• From here:
– We have now “understood” all the ingredients used in 

Lecture_3 to obtain carrier concentrations in intrinsic and 
extrinsic semiconductors at equilibrium

• allowed and forbidden energy bands
• density of available states
• Fermi probability density function

– In particular, remember that the “Boltzmann approximation” to 
the Fermi function near band edges for “non-degenerate 
semiconductors” allowed us to compute concentrations 
explicitly!

– Go back to Lecture 3 and appreciate the consequences…
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Lecture 19 - summary
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• We had a quick look at 3-d wave mechanics, including angular momentum 
and spin.

• Many-particle systems brought us to consider also identical particles and 
their wave-functions, that must have a definite exchange (anti)-symmetry.

• Electrons are fermions and are described by anti-symmetric (overall, 
including spin) wave functions, with interesting consequences (“exchange 
forces”, “degeneracy pressure”, “Fermi energy”).

• Back to semiconductors, we considered equilibrium statistics and obtained 
both the density of states and the Fermi-Dirac probability distribution 
functions, essential ingredients to predict equilibrium carrier 
concentrations.

• Next step: re-consider non-equilibrium transport of charge carriers (drift, 
diffusion; generation/recombination) and its explanation.



Lecture 19 - exercises
• Exercise 19.1: Consider a simplified model of a conductor with 

non-interacting conduction electrons in a 3-d infinite well. Find the Fermi 
energy and the average inter-electron spacing.  Apply the results to the 
case of aluminum (A=27), assuming: density ρ = 2.7x103 kg/m3, and 
three free atoms per electron (hint: see Bernstein, par.10-5 and 
example 10-5). 

• Exercise 19.2: Write down the results of this lecture on the density 
of states for the conduction and valence bands and on the Fermi 
probability density function. Compare them with those used in previous 
lectures to compute the concentration of carriers in semiconductors at a 
given temperature. OK? Explain the reason for introducing the effective 
mass in the density of states as obtained from the “infinite well” box 
model.
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