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Course Outline - Reminder

The physics of semiconductor devices: an introduction
Quantum Mechanics: an introduction

(slightly more) Advanced semiconductor fundamentals
— Energy bands, effective mass

— Equilibrium Carrier Statistics: density of states, Fermi function
— Non-equilibrium: transport of charge carriers

 no time left for:

— An example of device simulation; revisiting the Shockley experiment
and its interpretation; discussing a device as an application




Lectures 20, 21 - outline

Electrons in a “perfectly periodic crystal” (reminder)
— Effect of external forces: “Semi-classical Model”

— Motion of electrons in bands and “effective mass”

— Currents in bands: electrons and “holes”

Electrons in a real crystal
— Scattering of electrons by:
» “defects” (elastic)
« “phonons” (inelastic)
* electrons ?
— Boltzmann equation and the “relaxation time” approximation
— Electrical conductivity in metals and in semiconductors
— Integrals of the Boltzmann equation and drift-diffusion equation for
the current density J

Conclusions
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Electrons and holes
in a perfect crystal
(reminder)

Semi-classical model
“Effective mass”
Electrons and “holes”



Bloch Wave Packets in crystals

A packet of Bloch waves with a spread AK in wave vector k, that is small on
the scale of the Brillouin zone (2n/d), must be spread in space over several
primitive cells (d), since (as we already saw) for wave packets Ax ~ 1/ Ak

Re w or |y |
=0 &~ [ 5 _
\/ x@\/ x Group velocity
—Rel
herifeny s 1 dE
t=ty o A : V, =——
27 Y hodk

= T A..‘:*"ﬂf\ﬂn_/\u?ﬁnﬂah Y oh
0 R \/ v pd b

Fig. Y.1. Real space representation of the wave packet describing the motion ol a spatially lo-
calized free electron at times r=0,1y,21y...(Re {y: : lwl: — — —). The center of the wave
packet, i.e., in the particle picture the electron itself, moves with the group velocity v=dw/0k.
The halfwidth of the envelope increases with time. As the wave packet spreads, the wave-
~ length of the oscillations of Re {w} becomes smaller al the [ront and larger at the rear
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The “Semi-Classical Model”

... treats the response of electrons to [Egap (ﬁ)]2
electric and magnetic fields, that vary eEd << B
slowly over the dimensions of a Bloch .

wave packet and therefore exceedingly [Egap( )]2

- ho, <<
slowly over a few primitive cells.

F
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The external field is treated
classically, the periodic field of the
ions quantistically (Bloch packet, el fell e e
“crystal” vector 4 : all distinct wave s e il i
vectors lie in a single Brillouin zone, Wavelength of applied field

since k + 2nn/d describes the same

state ).
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Evolution of position rand wave
vector Ain the presence of external
fields is entirely dependent on the ol Al B
band structure, as expressed by £ hK = G[E( ’ )
(k) in the band
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Group velocity variations: effective mass

 What happens if an “external” force is applied, for instance an
external electric field ? (the lattice forces are already included in

the Bloch wave functions!)

— “force” = “change in particle energy” or absorbed power =
“changes in group velocity” = “acceleration” = “effective mass”:

_1dE
° "1 dk
1 dE _ 1 dEdk _, dk

dE = Fdx = Fvgdt, Vv

v, dt v, dk dt  dt

—

dk |1 d’Ejd(nk)

L (dv)_1d(dE) 1d(dE
Cadt\dk ) 7 dkdk

dt |A% dk?\ dt

Formally similar
to Newton’s law, if...

... if this coefficient
is interpreted as an
“effective mass”

dvg F
A = — =/=——
°dt | [m”
. 1
m = 5
> 1 d°E
7* dk?
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Currents in bands

Empty band: no current ——— Band 4

Pairs of
stationary
Bloch waves
-— -k, +k
correspond to
Band2 | the same energy

Partially filled bands = —p| =~

contribute to current \ ....'/

Y AT Aijymm

E(k) = E(-k)
Full band: no current —— [2900eeee 0eee®®®® 7 Band!
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Currents in full and in partially filled bands

More detailed explanation in terms of group velocities:

contribution of a k-volume element to the electron current density
and total electrical current density from a full band:

a7, =v(k )dk L9 KK
87° 8r’h A fully occupied band

- —e — o Wiee cannot conduct current!

f=— [V,Ek)k

3 insulators
87[ h 1st.Br.z. ( )

cf)-£(R) = oK)~ ek L9, elkk - o)

= J(fullband)=0 A full band has a symmetrlc distribution
of k about k=0 and of electron velocities

. _ _ In a partially filled band electrons
= J(partiallyfilled band) # 0 5, pe shifted by external fields

to states that are no longer symmetric
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"Holes interpretation” of partially filled bands

For partially filled bands, the integral for the current density
IS no longer zero and extends over the occupied states:

- [k ik =

87Z'3h (k occupied)
B e -l ol
= kK - Vik dk =
8 : 1st.Br.z. 87[372 (ken'[ptyg ﬁ
e (o -
v(k ok j(fullband)=0
87 3h (k er{ptyg
Formally:

Total current density = integral over occupied states (electrons) =
= integral over a/l states in the 1st Brillouin zone (electrons : zero, due to the

symmetry in v(k)) — integral over empty states (electrons) =
= current of positive “quasi-particles” (“holes”) assigned to the

., unoccupied states of the band ("empty k")
.‘ & ..E.'?-i-‘:!
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Currents in bands and holes

An example: band 2 partially filled: “holes” interpretation

E
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g 93y
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Holes: effective mass

Electrons adopt the lowest energy states, so that holes are found
at the upper edge of the band, where the parabolic approx. for E(k)
applies, and electrons would have negative effective mass:

* . > hzkz uadratic approx.
Z‘m
. 1 = 1 -
= V= L ER =k = ()= L
/ h dt ‘m I ‘m ‘m
acceleration group See external force
velocity slide #7 effective mass

The resulting equation of the motion in an external electric field
is that of positively charged particles with a positive effective mass:
holes at the fop of a band have positive effective mass
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Electrons in real crystals

Scattering on
defects, phonons, other electrons
Boltzmann equation
Relaxation time approximation
Electrical conductivity
Drift-diffusion equation



Scattering of electrons
« Classical theory (Drude, 1900):

— Scattering expected from positive ions in the lattice
— Predicted mean free path (1-5 A) ...
— Mean free path from data: 2 orders of magnitude higher!

* Bloch waves or Bloch packets:
— Stationary solutions, describe unperturbed electron
propagation if the periodicity is perfect
— Possible origin of perturbations of stationary Bloch waves:

* One-electron approximation (non-interacting electrons):
— Lafttice defects, fixed in time and space
— Time-dependent deviations from periodicity: /aftice vibrations

« Electron-electron collisions
— Usually much less probable!
« We will give a qualitative picture of these processes
— Quantitative treatment: beyond our scope...!
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Scattering: transition probabilities

 Ingredients of the general method to compute
“transition probabilities” from “perturbation theory”:

Potential /#’ representing the additional interaction as a small
perturbation of the periodic potential (Hamiltonian #)

Initial (k) and final (k) stationary Bloch states for electrons

Recipe to compute the probability w,, that the initial state (k)
is scattered into the final state (k”), from perturbation theory:

. .2
W, ~ U dr u.e ™ "H'ue™"

These probabilities can be entered in a statistical description of
of how the population of electrons in available states is
influenced by the scattering process, moving electrons
between stationary states according to probability w,,

13
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Scattering on
lattice defects



Scattering of electrons on lattice defects - 1

« Qualitatively:
— Impurities and defects are fixed. For charged impurities:
— The electron mass is much smaller than the ion’s mass

— Elastic scattering is expected, with electrons retaining their
initial energy L4020

=g7o

b

Only the velocity (or k) direction of the
electron changes:

the scattering angle depends on the initial
velocity of the electron: s/ower electrons
are scattered on average at /arger angles. _bTS"’W =

Figure 4.1 Electron scattering by an ionized donor. Trajectories for fast and slow
electrons are shown. :
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Scattering of electrons on lattice defects - 2

« Quantitative result: scattering angle

— From energy and angular momentum conservation (...):
for a given “impact parameter 6" and “initial speed v,," of the
incident particle (see FELD p.157-162, WANG p.2174):.

2
tan(ﬁjz R
2 ) 4drzem” vib

— The scattering angle is inversely proportional to the square
of the incident particle’s initial speed v, at a given impact
parameter b, and increases with decreasing b
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Scattering of electrons on lattice defects - 3

* Quantitative result: randomization or “relaxation” time:
— After a large number of scattering events:

» the speed (energy) distribution of the electron population does
not change, but
 the direction is randomized, for example:
— Switch on an external electric field E, = average v,, =0
— After switching off E, = average v, is brought back to 0
— Exponential law: average v, = v,, exp(-t/ tg)

— Randomization or “relaxation time” (see FELD p.157-162).

3 bm ~ (1/2)N Y3 b_: max. impact param.eter
Vo q2 N: defects concentration
Iog(1+v§b /a’ ) a= yi
T

— Fastelectrons are redistributed s/ow/y (larger 1t ) and vice-versa
— Speed (scalar): absolute value of velocity (vector)
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Scattering on
phonons



Scattering of electrons on “phonons” - 1

 Whatis a ‘phonon”? qualitatively:

— A “phonon” is a quantum of energy associated fo a latfice vibration
mode, equivalent in many respects to the “photon” as a quantum of
“electromagnetic vibrations”:

— both photons and phonons are bosons, and share similar wave
properties (Planck and DeBroglie relations)

E=ho=hv pzhk:E
A

» Electron (fast) and atom (slow) dynamics:

— Some physical properties of crystals are determined mainly by the
relatively slow movement of atoms about their equilibrium position
(for example: sound velocity and thermal properties like specific
heat, thermal expansion, thermal conductivity)

— Electrical conductivity in metals and semiconductors requires an
understanding of the interaction between atom dynamics and
electron dynamics, via “electron scattering on phonons”
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Scattering of electrons on “phonons” - 2

« To compute the electron-phonon scattering probability:

(1) From the analysis of vibrations of atomic chains:

— derive E-k dispersion relations for phonons, and represent
them in Brillouin zones (similar to what we have done for
electrons!);

— classify phonons (higher energy: “optical”; lower energy:
“acoustic”; polarization: “longitudinal”, “transverse”)

(2) Find the number (or density) of phonons as a function of
temperature, using Bose statistics (phonons = bosons)

(3) Understand the conditions that must be satisfied for electron-
phonon scattering to take place

(4) Evaluate the scattering probability by counting the number of ways
each scattering event could take place

— Since the potential representing the interaction of electrons and
phonons is time-dependent, their scattering is expected to be
eminently /nelastic : the electron changes energy.
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(1) E(k) for phonons - 1

Simplest model: [,f f F\ﬂxﬂmﬂéﬂ)?l j/
1-d lattice of equal atoms £ | o | |/'ﬁ

(mass M) interacting only . J J J J J \\\ y,
I I G injl{=)=2=
with nearest neighbours ET M pigritn, 8 l(.,a) 7
by linear springs of = o
Figure 4.3 T ves that correspond to th inusoidal displ t of th
strength K. bt B ol e

the same physically observable effect, the two waves are equivalent,

In this model: dispersion

E‘%m By —

relation E(k): _ 24
K o
=2—(1-coskd ayE
v ( ) i VE
| |

Flgllrl: 4.4 The E:k plot (also called a dispersion diagram) for one mode of & mono-
atomic lathce
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(1) Lattice model for Ge, Si

Figure 4.5 A one-dimensional monoatomic lattice with two inequivalent sites. This
is a one-dimensional analog of germanium and silicon.

More realistic model, = two relations for E(k):
approaching the properties + “optical branch” (higher energy)
of Ge, Si — “acoustic branch” (lower energy)

2 2
w° = thlez J_r\/KllszK2 + 2K1|2<2 coske
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(1) Phonon classification

“real life” for Ge, Si:
Transverse (T) and
Longitudinal (L)
oscillation modes for
Acoustic branch (A) and
Optical branch (O)

at small k:

Acoustic phonons have

frequencies characteristic

of sound waves

Opftical phonons can

couple via ion dipole

moments to /nfrared

photons:

hv ~ (36x10-16 x1073) eV
~ 4 meV

1018 T

0 |
ﬁ

_sxlo”

1.5x1013

l
0 0.5 1
Ge (111)

i 1013

v (Hz)

5x 10" 5% 1012

0 0.5 1 0
kfkmax ——=

Ge (100) Si (100)

Figure 4.6 E:k plot for Si and Ge. The ordinate is frequency; the abscissa is the frac-
tion of the maximum values of k [different in the (100) and (111) directions]. TO =
= transverse optical branch; TA = transverse acoustical branch; LO = longitudinal
optical branch; and LA = longitudinal acoustical branch. [From B. N. Brockhouse
and P. K. Iyengar, Phys. Rev. 111, 747 (1958).]
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(2) Number of phonons and (3) scattering regimes

 Number of phonons = (number of “modes™) x (number
of phonons in each mode)

— Number of “modes” = number of lattice cells in the crystal
(computation similar to number of “states” for electrons)

— Number of phonons in each mode at temperature T:
Bose-Einstein probability distribution function
(phonons=bosons!)

 From an analysis of energy (E) and momentum (k)
conservation in electron-phonon scattering:

— At moderate T and low electric field: scattering rate dominated
by low-energy acoustic phonons

— Larger 7and/or electric field: also electrons jumping between
band minima (“valleys”) contribute (with large change in k)

— Large electric fields. electron drift velocity saturation due to
spontaneous emission of (higher energy) optical phonons
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(4) electron-phonon scattering rate

 From a detailed analysis (FELD p.181, WANG p.216)

— Dominant contribution from acoustic phonons:
rate = 1/("mean free time” between collisions):

R:i oc KTv,
TC

— The electron-phonon scattering rate is proportional to the
temperature 7 and to the electron speed v,

« Comparing with the rate for electron-impurity
scattering (we found smaller rate for faster electrons):
» Impurity scattering is dominant at /ow temperature 7
* Phonon scafttering is dominant at A/igh temperature 7
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Electron-electron scattering



Electron-electron scattering

« Naively one would expect it to be important, but:
— It is elastic, does not change the energy and total momentum
— Despite their high density, electrons are partially screened by
the lattice, and

— The Pauli principle allows electrons to scatter only if they can
find appropriate empty final states !!!

* As a result:
— Many orders of magnitude less probable than scattering on
defects and phonons
— To a good approximation, in most conditions electron-electron
scattering can be neglected!
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The Boltzmann Equation



Basic idea

* In the statistical approach, all properties of a system (i.e.:
electrons in a semiconductor crystal) can be deduced, once the
probability density function f of its components (electrons) in the
appropriate “phase-space” (position and momentum or wave
number) is known:

— For instance, drift velocity of electrons in a semiconductor: computed
as the average of the (group) velocities of individual electrons,

weighted by the pdf 7; .
_.(_> _ 472'3 j\_ig (?’E)f (F),E,tﬁ:gk
i(r1)= n(F,t)

— Electrical current density: similar method... (see later)

* The first common task is to find the pdf, on- and off-(thermal)
equilibrium
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Carriers distribution off-equilibrium ?

 What happens when...

— ... the distribution of carriers, originally in thermal equilibrium, is altered
by the presence of external forces and by scattering processes ?

Away from equilibrium:
Thermal equilibrium: Boltzmann distribution function =
Fermi distribution = probability of finding an electron
in a small phase space volume

. 1 (dx dy oz dk, dk,, dk,)

fo [E( )]: [E(E)—E 'VkT at position 7, momentum A and time #:
e R | .
f(r K t)

= Set up a differential continuity equation (Boltzmann equation,
describing in general all transport phenomena) for the pdf 7

— Book-keeping of all possible changes with time of the number of
electrons in a given phase space (a°r é°k) volume




The Boltzmann Equation - 1

In the absence of scattering: Example of & changing
R because of an external
Time — 1t r, K field: d(hk) = (—eE)dt
evolution , U - ~
nphase > U=t+dt: P =rF+vdt, K'=K+(-eEdt/h «—71
Space i
P 1 rchanging because of
< velocity: ar = valt
2
H$|¢*,
|
|
|
Fig. 13-2-1 Figure illustrating the motion of a particle in one dimension
in a two-dimensional phase space specified by the particle position = and
its velocity v,.
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The Boltzmann Equation - 2

Conservation of the number of particles (electrons):

f(F k"
4% d°

)d%F d°K" = £{7,K,t)d%F dK
E‘ dF | = f(F K1) f(F,K.t)=0

Phase-space volume-element: it can be distorted in shape, but
(it can be shown that) its volume remains constant !

of . of . of . of - of . of . of
=>|| = X+—Yy+—2|+| —k +—K, +—K, |[+—|=0
ox oy oz ok, oK, ok, ot
of - L . Boltzmann Equation
—+V._f .F+Vlzf k=0 in compact (gradient) notation
ot in the absence of scattering
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The Boltzmann Equation - 3

With the additional scattering contribution:

f = L. ~
a—+VF1‘-r+VE]‘-k = (@j
ot ot s

F=V k=-eE/n
@:—\7 V. f +EE-§qf+(ﬂj
ot noo - ot )

] AN

Net particle flux in-out || Net particle flux in-out Net particle flux in-out
phase-space element || phase-space element phase-space element
due to velocity due to acceleration due to scattering
(change in position) (change in velocity or A) || (change in velocity or k)
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Boltzmann Equation: interpretation

What is the meaning of the terms containing gradients, for

instance: R of of of
-V-V.fq4-v, —f-v -V,
ox| oy oz

Net particle flux (in-out) a phase-space element: consider for example the
X-projection, for the position part: Incoming electrons:
A

| : f(x, Y, Z, E,t)dydz dk v dt

S :
Ly L di i \ Outgoing electrons:
:.:I-i-nl:.l-a;n=r
dt:jI
Similar for the other

f (x+ dx, y, z, k,t)dydz d’k v,dt
Net flux (in-out):

Fig. 13:2:2 Figure illustrating a fived element of volume of phase spac . . Y

a particle moving in one dimension and specified by its position z u,f:f‘e for prOjeCtlonS of pOSItIOﬂ

velocity v.. and 4!
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Scattering term & relaxation-time approx.

Scattering term: in principle computed from scattering probability w,,
and from the pdf 7; the net effect is in general:

K — K K — k

(ﬂ&@} _ (2\7’[)3 [k -t wy £k7) - Q- f(&) w, fK)]
: N

For the scattering to take place (Pauli Principle):
initial state must be filled (7), final state must be empty ( 7-7)

“relaxation time approximation”

Assumptions on the effect of collisions:
of (IZ) f (IZ)— ¢ (IZ) restore the local equilibrium described by £,
— _ 0 changing 7 back to f, exponentially,

L ot j 7k with a relaxation time of the order
of the time between collisions
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Boltzmann Equation solutions



Boltzmann Equation solutions

 To understand how this equation works, and the
meaning of the “relaxation time”, let us consider a
“simple” case with no dependence on the position in
the crystal, and let us find the solutions for the non-
equilibrium pdf 7 in two interesting cases:

1) An applied electric field brings the system to a non-
equilibrium sfationary condition (steady current)

2) The electric field is switched off and the system ‘relaxes
back”to the equilibrium state, in a characteristic time.
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Stationary non-equilibrium solution (1)

Under the influence of an external field, a stationary non-equilibrium
condition can be reached: in a simple case with f not dependent on position:

= . of

V.f =0 (notdep. on position) = 0 (stationary)
The Boltzmann equation is reduced to:
e 5T f f(IZ)— f, (IZ) Approximate solution:
_% V! T T T(lZ) the normal Fermi
function, computed at
—~ e = —~ shifted values of k
( ) ( ) i E-Vi f(k) (see next slide)

Approximate linearized solution for small fields:

(ﬁ)N -~ e (ﬁ) _ Results from the action of the external field E
fik )= fo K +—7{k and includes the effects of scattering (1)
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Non-equilibrium stationary solution

Non-equilibrium
stationary solution o

-'f"-"f"';"'r . =
. % 0
Fig. 9.4a,b. The effect of a constant electric field , on the k-space distribution of quasi-===
electrons: (a) The Fermi sphere of the equilibrium distribution [— — —, centered at ((). 0.1
displaced in the slalionary state by an amounl dk,=—¢t ', /fi. (b) The new Fermi distribu
SUE(k)) only differs significantly from the equilibrium distribution f;y (— — —) in the vicimity

the Fermi energy (Fermi radius)
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Relaxation to the equilibrium distribution (2)

At /=0, when the system is in the stationary non-equilibrium
condition £, the external field is switched off (initial condition).

stab

The Boltzmann equation in the “relaxation approximation”
is then reduced to, for £ > 0

@ _ f -1,

ot T

f (t = O) — fstat
Solution:

f—f, =(f, —f )"

stat

The meaning of 1 is now clear: it is the time needed by the system
to “relax back” to the equilibrium state, under the action of
the scattering processes

b SRS
o7 )
We - N Yo
[= ] i.“.t,_;,ﬁ
e s T T
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Relaxation to equilibrium

~0o

,-""{;y

2 Q

0 0 0y v
g 2
o g L
joa loee
{a a of e o »
1000 LR
i ol
k{:‘ﬂﬂ ;,":

o 0 l_,.--"II-
oo ~b 0 /
““JEE‘L\—:iL’—/’

4

Fig. 9.5a,b, Electron scattering processes in k-space. The dashed circle represents the Ferm
surlace in thermodynamic equilibrium ("= 0). Under the influence of an electric field <, and
for a constant current, the Fermi surlace is displaced as shown by the full circle. (a) Whes
the electric field is switched off, the displaced Fermi surface relaxes back to the equilibriun
distribution by means of electron scattering from occupied states (@) o unoccupied states
(). Since the states A and B are at different distances from the k-space origin (1.e., have dii-
ferent encrgies), the relaxation back to equilibrium must involve inelastic scattering evenis
(e.g.. phonon scattering). (b) For purely elastic scattering (from states A to B), the Fermu
sphere would simply expand. When the field is switched off, equilibrium can only be achieved
by inelastic scattering into states C within the dashed (equilibrium) Fermm sphere
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Conductivity
In metals and semiconductors



Electrical conductivity - old

 In the first part of the course:

— we wrote down a relation between carrier drift velocity and
external electric field, introducing conductivity and mobility

— It was based on simple assumptions about not well identified
scattering processes for electrons

— The original model (Drude, 1900) assumed an ideal electron
gas with all free electrons contributing to conduction (This point
of view is in contradiction with the Pauli principle!)

. m
mv+—v, =—€eE

.
2

. er : ent
V=0 = vp=——E = J=-envy=neuE = E

m m
Drude _J_ene _Vo|_ &7

O=—= = =

model: E m E m
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Electrical conductivity - new

« Let us consider the implications of the new concepts:

— Electrons in crystals are a Fermi gas: due to the Pauli principle
only the electrons close to the Fermi surface can contribute!

— The current density can be computed summing the
contributions of all states in the first Brillouin zone, and
assuming for small fields the approximate linearized solution to
the Boltzmann equation just discussed (assume E=E,)

Tn 87]; “_‘E; ( ) ( )dk Particle current density
T:_% IV(E)f (lZ)dlZz electrical current density
1st.Br.z.
s | o] )£, 2
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Electrical conductivity in metals - 1

* Developing these expressions:

— The integral becomes a surface integral at the Fermi
surface in k-space

— Only the properties at the Fermi surface are important
 Electron velocity, Relaxation time, Effective mass

— The result is (explicit derivation beyond our scope, see
Ibach p.245-249)
er(Ee)

jx ~ eZT(EF)
E - m n, H e

X

O =

112

 Formally equivalent to the Drude model, but now:
— Well defined relaxation time (electrons at the Fermi level)
— Effective mass instead of free electron mass
— n = total concentration of electrons in the “conduction band”
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Electrical conductivity in metals - 2

 From these expressions:

) ~ eZT(*EF)n’ e eT(EF)
E m m

X

O =

« Correct orders of magnitude!

« Correct temperature-dependence of conductivity
— Concentration n of carriers: not dependenton T

— T-dependence entirely from the relaxation time, evaluated
at the Fermi energy E.

1 1 1 1
= % = T — p:pph(T)+pdef
o 4 z-phonons z-defects
¢ ¢
phonons contribution: | | defects contribution: _—
approx. linearin 7 approx. constantin 7| At high” 7




Electrical conductivity in metals - 3

G

n
1
|

Cu +3.32%Ni

[
|

Specific resistance (1075 Ohm - cm)
(%) (9]
\\\
| 1 1

Cu+216%Ni

Cu+112 % Ni

—_—

“pure” Cu Fig. 9.7. Resistivity ¢ ol pure coppe
of copper-nickel alloys of various ¢
tions. (After [9.4])

=]

200 300
Temperature (K)

o
o

1 1 1 1
P=—" % —= + — p:pph(T)+pdef
o 4 Tphonons Tdefects
t t
phonons contribution: || defects contribution: —
approx. linearin 7 approx. constant in 7 At “high™ 7
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Electrical conductivity in semiconductors - 1

 Both electrons in lower conduction band and
holes in upper valence band contribute:

= e <T(E>/2(E)>

)= (nﬂn+ Pu ) H= v <V2(~)>

-

k

The expression for the mobility is obtained (...) averaging
over the appropriate states at the edges of the
conduction (electrons) or valence (holes) band

Qualitatively: continuing this computation one obtains:

honons: (v T, . T
UoCT 1oc<v>2 P <>OC\/_ ph < y 2
/ 1 defects: (V) oc /T, Ty oc (V) ocT-
Average  scattering phonons: g, ocT ~%2
velocity “cross-section —

defects: 1, oc T2
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T — dependence of mobility in semiconductors

104
(See also Lecture 4) X 10t
: AN i BpesLd -3/2
S 5 (T e—2 (T)
Scattering on e
ohonons (lattice): \\ RO v
- : LOG T
-3/2 1. A
Hoh o Tph o T2 o SN
B ==
Scattering on s e o
defects (impurities): G
Haef ° Taef ° 1777 o Be
102 B e ez \\
¥
50
100 200 500 1000
T(K)
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Drift-Diffusion
Continuity Equation



From the Boltzmann Equation...

« The continuity equations for the electrical current density in
semiconductors can be obtained from the Boltzmann equation:

@:_vgﬁrf_iﬁﬁf_f_fo F =—eE

ot h T Force on electrons

« Multiplying by the group velocity and integrating over the
momentum space dk, dk, dk,:

jvgg—';dﬁ [, ,-9, f 4% - jv{ ]dk [v,- °dk

* One obtains the continuity equation discussed in Lectures 6-8...
(detailed derivation: see FELD p.187-194, MOUT p.100-104)
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.- |ntegra|3 (1 ’ 2) .- Do not depend

First term: l_ on time
|V, P gok=2 |V, f d = (4z%in)=4° oun) _,
ot ot 0

Second term:
.[\79(\79 ﬁff)dgizzﬁrjlvg(vgf)dslzz -

Kinetic energy, equipartition theorem:
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..Integrals (3, 4)...

Third term: Ln;i%rﬁ[lgng
v{ﬁﬁ f]d%?:ﬁjv (”qf)d3|Z=Ejh—*(v f a3 = .
o\ K AL ndm

Fourth term:

J‘\_/.g f;fo d3E=%(J-ng d3E_JVM3E): 472'an

average velocity = 0
at equilibrium
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...continuity equation!

Substituting in:

1%, & d° - [v, 5,

O ot

introducing:
F=-—qE F =qE
J,=-gnd, J, =-qpd,
Hy =07, /M p,=dz,/m

and multiplying by qgr:

T

—

oJ,
"ot

3 :qny{alkﬁ L
n ¢ g

For electrons (similar for holes):
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Drift-diffusion continuity equation

For electrons (similar for holes):

—

o, = =~ 1 k. T = K, =
r.—"+J =qnu, | E+—=——-V.n+—=V_T

ot n (g q

] 1 1 ]

| |

; : : |

: Drift Diffusion .

| " |

! The two familiar terms |

| |

| |

| |
relaxation time t is small: Temperature gradient:
This new term can be neglected We did not discuss this before!
if frequency is not too high Also a temperature gradient
(few hunderd MHZz) can drive an electric current




Lectures 20, 21 — summary - 1

« We revisited the properties of electrons, treated as Bloch waves,
and holes, in a “perfect crystal”: effective mass, currents

* The description of electrons in “real” crystals has to take into
account scattering processes on impurities or defects and on
phonons (lattice deformations corresponding to vibration modes)

« The Boltzmann equation governs the probability distribution
function for electrons in “phase-space” (position and momentum),
when the system is brought away from thermal equilibrium (Fermi

pdf)

 We considered two typical non-equilibrium solutions: steady-state
and relaxation towards equilibrium, in the relaxation-time
approximation

R Y
fTHew
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Lectures 20, 21 — summary - 2

* The qualitative and quantitative features of electrical conductivity in
metals and semiconductors (for instance: conductivity, mobility,
temperature dependence) are well described by considering
electrons as Bloch waves and computing the relevant average
quantities (drift velocity, current density etc) over k-space.

* Formally, the expressions found for conductivity and mobility are
similar to those of the classical Drude model; crucial differences
are the properties of relaxation time and the effective mass.

« Finally, averaging over k-space the Boltzmann transport equation,
also for Bloch waves or packets one obtains the “drift-diffusion
equation” for electric current densities: a detailed derivation
predicts additional terms with respect to those we already
discussed, for instance a diffusion term depending on temperature
gradient;this treatment can be further extended.

R Y
§ ey
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Lectures 20, 21 — summary - 3

« The drift-diffusion continuity equation obtained from the Boltzmann
equation explicitly contains the “Einstein relation” between drift and
diffusion coefficients, that we had already discussed in previous
lectures

« The Boltzmann transport equation is the basis for simulations, both
in the “averaged mode” (continuity equation for current densities),
and in a “Monte Carlo” mode (tracing individual wave packets).

» This second mode is relevant for simulating very small devices,
where carriers undergo a small number of collisions.

R
{Rews
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Lectures 20, 21 - exercises

Exercise 20.1: From slide 25, figure 4.6: determine the order of

magnitude of phonon energies in Silicon in the different branches, at
k=K, .- What is the order of magnitude for k., in Silicon (1t Brillouin
zone)?

Exercise 21.1: Write down the expression of conductivity and

mobility in the classical Drude model. What changes in these
expressions in the quantum theory of conductivity for metals? And for
semiconductors?

Exercise 20.2: Write down the Boltzmann transport equation and
the drift-diffusion continuity equation. Discuss qualitatively the meaning

of each term.
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Back-up slides



Effective mass and E-k near band edges

E
A
near the band edges:
R E — E4 = (constant) (k — kege)’
T __— Parabolic
cdge fit d2E: o
FTO N constant ... E near E.4,,
l i >k ... the effective mass is
T_ A _T approximately constant
= (energy-independent)!
|
1 d°E
he dk®
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