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Course Outline - Reminder 

• The physics of semiconductor devices: an introduction
• Quantum Mechanics: an introduction
• (slightly more) Advanced semiconductor fundamentals

– Energy bands, effective mass
– Equilibrium Carrier Statistics: density of states, Fermi function
– Non-equilibrium: transport of charge carriers

• no time left for:
– An example of device simulation; revisiting the Shockley experiment 

and its interpretation; discussing a device as an application
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Lectures 20, 21 - outline
• Electrons in a “perfectly periodic crystal” (reminder)

– Effect of external forces: “Semi-classical Model”
– Motion of electrons in bands and “effective mass”
– Currents in bands: electrons and “holes”

• Electrons in a real crystal
– Scattering of electrons by:

• “defects” (elastic)
• “phonons” (inelastic)
• electrons ?

– Boltzmann equation and the “relaxation time” approximation
– Electrical conductivity in metals and in semiconductors
– Integrals of the Boltzmann equation and drift-diffusion equation for 

the current density J
• Conclusions
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Electrons and holes 
in a perfect crystal

(reminder)

Semi-classical model
“Effective mass”

Electrons and “holes”



Bloch Wave Packets in crystals
A packet of Bloch waves with a spread ∆k in wave vector k, that is small on 
the scale of the Brillouin zone (2π/d), must be spread in space  over several 
primitive cells (d), since (as we already saw) for wave packets ∆x ≈ 1/ ∆k
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The “Semi-Classical Model”
… treats the response of electrons to 
electric and magnetic fields, that vary 
slowly over the dimensions of a Bloch 
wave packet and therefore exceedingly 
slowly over a few primitive cells. 

The external field is treated 
classically, the periodic field of the 
ions quantistically (Bloch packet, 
“crystal” vector k : all distinct wave 
vectors lie in a single Brillouin zone, 
since k + 2nπ/d describes the same 
state ).

Evolution of position r and wave 
vector k in the presence of external 
fields is entirely dependent on the 
band structure, as expressed by E 
(k ) in the band
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Group velocity variations: effective mass
• What happens if an “external” force is applied, for instance an 

external electric field ? (the lattice forces are already included in 
the Bloch wave functions!)
– “force” ⇒ “change in particle energy” or absorbed power  ⇒

“changes in group velocity” ⇒ “acceleration” ⇒ “effective mass”:
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Formally similar 
to Newton’s law, if…

13 -12-2004 L.Lanceri - Complementi di Fisica - Lectures 20, 21 7

… if this coefficient
is interpreted as an

“effective mass” 
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Currents in bands

Empty band: no current

Full band: no current

Partially filled bands
contribute to current

Pairs of 
stationary 

Bloch waves
−k, +k

correspond to
the same energy 

E(k) = E(−k)



Currents in full and in partially filled bands
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More detailed explanation in terms of group velocities:
contribution of a k-volume element to the electron current density
and total electrical current density from a full band:
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A full band has a symmetric distribution
of  k about k=0 and of electron velocities

In a partially filled band electrons 
can be shifted by external fields
to states that are no longer symmetric

A fully occupied band 
cannot conduct current!
(insulators)



“Holes interpretation” of partially filled bands
For partially filled bands, the integral for the current density
is no longer zero and extends over the occupied states:
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Formally:
Total current density = integral over occupied states (electrons) =
= integral over all states in the 1st Brillouin zone (electrons : zero, due to the 
symmetry in v(k)) – integral over empty states (electrons) =
= current of positive “quasi-particles” (“holes”) assigned to the 
unoccupied states of the band (“empty k”)



Currents in bands and holes
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An example: band 2 partially filled: “holes” interpretation
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Holes: effective mass
Electrons adopt the lowest energy states, so that holes are found
at the upper edge of the band, where the parabolic approx. for E(k) 
applies, and electrons would have negative effective mass:
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for E(k)

acceleration group
velocity

see 
slide #7

external force
effective mass

The resulting equation of the motion in an external electric field 
is that of positively charged particles with a positive effective mass:
holes at the top of a band have positive effective mass !
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Electrons in real crystals

Scattering on
defects, phonons, other electrons

Boltzmann equation
Relaxation time approximation

Electrical conductivity
Drift-diffusion equation 



Scattering of electrons
• Classical theory (Drude, 1900):

– Scattering expected from positive ions in the lattice
– Predicted mean free path (1-5 Å) …
– Mean free path from data: 2 orders of magnitude higher!

• Bloch waves or Bloch packets: 
– Stationary solutions, describe unperturbed electron 

propagation if the periodicity is perfect
– Possible origin of perturbations of stationary Bloch waves:

• One-electron approximation (non-interacting electrons):
– Lattice defects, fixed in time and space
– Time-dependent deviations from periodicity: lattice vibrations

• Electron-electron collisions
– Usually much less probable!

• We will give a qualitative picture of these processes 
– Quantitative treatment: beyond our scope…!
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Scattering: transition probabilities
• ingredients of the general method to compute 

“transition probabilities” from “perturbation theory”:
– Potential H’ representing the additional interaction as a small 

perturbation of the periodic potential (Hamiltonian H )
– Initial (k ) and final (k’ ) stationary Bloch states for electrons 
– Recipe to compute the probability wk’k that the initial state (k ) 

is scattered into the final state (k’ ), from perturbation theory:

– These probabilities can be entered in a statistical description of 
of how the population of electrons in available states is 
influenced by the scattering process, moving electrons 
between stationary states according to probability wk’k
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Scattering on 
lattice defects



Scattering of electrons on lattice defects - 1

• Qualitatively: 
– Impurities and defects are fixed. For charged impurities:
– The electron mass is much smaller than the ion’s mass
– Elastic scattering is expected, with electrons retaining their 

initial energy

Only the velocity (or k) direction of the 
electron changes: 
the scattering angle depends on the initial 
velocity of the electron: slower electrons
are scattered on average at larger angles.
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Scattering of electrons on lattice defects - 2

• Quantitative result: scattering angle
– From energy and angular momentum conservation (…):     

for a given “impact parameter b ” and “initial speed v0” of the 
incident particle (see FELD p.157-162, WANG p.214):

– The scattering angle is inversely proportional to the square
of the incident particle’s initial speed v0 , at a given impact 
parameter b, and increases with decreasing b
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Scattering of electrons on lattice defects - 3
• Quantitative result: randomization or “relaxation” time:

– After a large number of scattering events: 
• the speed (energy) distribution of the electron population does 

not change, but
• the direction is randomized, for example:

– Switch on an external electric field Ex ⇒ average v0x ≠ 0
– After switching off Ex ⇒ average vx is brought back to 0
– Exponential law: average vx = v0x exp(-t / τR)

– Randomization or “relaxation time” (see FELD p.157-162):

– Fast electrons are redistributed slowly (larger τR ) and vice-versa
– Speed (scalar): absolute value of velocity (vector) 
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Scattering on
phonons



Scattering of electrons on “phonons” - 1
• What is a “phonon” ? qualitatively: 

– A “phonon” is a quantum of energy associated to a lattice vibration 
mode, equivalent in many respects to the “photon” as a quantum of 
“electromagnetic vibrations”: 

– both photons and phonons are bosons, and share similar wave 
properties (Planck and DeBroglie relations)

• Electron (fast) and atom (slow) dynamics:
– Some physical properties of crystals are determined mainly by the 

relatively slow movement of atoms about their equilibrium position 
(for example: sound velocity and thermal properties like specific 
heat, thermal expansion, thermal conductivity)

– Electrical conductivity in metals and semiconductors requires an
understanding of the interaction between atom dynamics and 
electron dynamics, via “electron scattering on phonons”

λ
νω hkphE ==== hh
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Scattering of electrons on “phonons” - 2
• To compute the electron-phonon scattering probability:

(1) From the analysis of vibrations of atomic chains: 
– derive E-k dispersion relations for phonons, and represent 

them in Brillouin zones (similar to what we have done for 
electrons!);

– classify phonons (higher energy: “optical”; lower energy: 
“acoustic”; polarization: “longitudinal”, “transverse”)

(2) Find the number (or density) of phonons as a function of 
temperature, using Bose statistics (phonons = bosons)

(3) Understand the conditions that must be satisfied for electron-
phonon scattering to take place

(4) Evaluate the scattering probability by counting the number of ways 
each scattering event could take place

– Since the potential representing the interaction of electrons and 
phonons is time-dependent, their scattering is expected to be 
eminently inelastic : the electron changes energy.
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(1) E(k) for phonons - 1
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Simplest model: 
1-d lattice of equal atoms 
(mass M) interacting only 
with nearest neighbours
by linear springs of 
strength K.

In this model: dispersion 
relation E(k):

( )kd
M
K cos122 −=ω



(1) Lattice model for Ge, Si

More realistic model, 
approaching the properties 
of Ge, Si
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⇒ two relations for E(k):
+ “optical branch” (higher energy)
− “acoustic branch” (lower energy)
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(1) Phonon classification
“real life” for Ge, Si:
Transverse (T) and 
Longitudinal (L) 
oscillation modes for
Acoustic branch (A) and 
Optical branch (O) 

at small k:
Acoustic phonons have 
frequencies characteristic 
of sound waves
Optical phonons can 
couple via ion dipole 
moments to infrared 
photons:
hν ≈ (36×10−16 ×1013) eV

≈ 4 meV



(2) Number of phonons and (3) scattering regimes

• Number of phonons = (number of “modes”) × (number 
of phonons in each mode)
– Number of “modes” = number of lattice cells in the crystal      

(computation similar to number of “states” for electrons)
– Number of phonons in each mode at temperature T:        

Bose-Einstein probability distribution function 
(phonons=bosons!)

• From an analysis of energy (E) and momentum (k) 
conservation in electron-phonon scattering:
– At moderate T and low electric field: scattering rate dominated 

by low-energy acoustic phonons
– Larger T and/or electric field: also electrons jumping between 

band minima (“valleys”) contribute (with large change in k)
– Large electric fields: electron drift velocity saturation due to 

spontaneous emission of (higher energy) optical phonons
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(4) electron-phonon scattering rate
• From a detailed analysis (FELD p.181, WANG p.216)

– Dominant contribution from acoustic phonons:                   
rate = 1/(“mean free time” between collisions):

– The electron-phonon scattering rate is proportional to the 
temperature T and to the electron speed ve

• Comparing with the rate for electron-impurity 
scattering (we found smaller rate for faster electrons):

• Impurity scattering is dominant at low temperature T
• Phonon scattering is dominant at high temperature T

e
c

kTvR ∝=
τ
1
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Electron-electron scattering



Electron-electron scattering
• Naively one would expect it to be important, but:

– It is elastic, does not change the energy and total momentum
– Despite their high density, electrons are partially screened by 

the lattice, and
– The Pauli principle allows electrons to scatter only if they can 

find appropriate empty final states !!!

• As a result:
– Many orders of magnitude less probable than scattering on 

defects and phonons
– To a good approximation, in most conditions electron-electron 

scattering can be neglected! 
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The Boltzmann Equation



Basic idea
• In the statistical approach, all properties of a system (i.e.: 

electrons in a semiconductor crystal) can be deduced, once the 
probability density function f of its components (electrons) in the 
appropriate “phase-space” (position and momentum or wave 
number) is known:
– For instance, drift velocity of electrons in a semiconductor: computed 

as the average of the (group) velocities of individual electrons, 
weighted by the pdf f ;

– Electrical current density: similar method… (see later)

• The first common task is to find the pdf, on- and off-(thermal) 
equilibrium
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Carriers distribution off-equilibrium ?
• What happens when… 

– … the distribution of carriers, originally in thermal equilibrium, is altered 
by the presence of external forces and by scattering processes ?

Away from equilibrium:
Boltzmann distribution function = 
= probability of finding an electron 

in a small phase space volume
(dx dy dz dkx dky dkz) 

at position r, momentum k and time t :

( )tkrf ,,
rr

Thermal equilibrium:
Fermi distribution
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⇒ Set up a differential continuity equation (Boltzmann equation, 
describing in general all transport phenomena) for the pdf f  
⇒ Book-keeping of all possible changes with time of the number of 
electrons in a given phase space (d3r d3k ) volume 



The Boltzmann Equation - 1
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In the absence of scattering:



The Boltzmann Equation - 2
Conservation of the number of particles (electrons):
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The Boltzmann Equation - 3
With the additional scattering contribution:
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due to scattering 
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Boltzmann Equation: interpretation
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What is the meaning of the terms containing gradients, for 
instance:
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Net particle flux (in-out) a phase-space element: consider for example the 
x-projection, for the position part: Incoming electrons:

Outgoing electrons:

Net flux (in-out):
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Scattering term & relaxation-time approx.
Scattering term: in principle computed from scattering probability wkk’
and from the pdf f ; the net effect is in general:
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For the scattering to take place (Pauli Principle): 
initial state must be filled (f ), final state must be empty (1−f )

“relaxation time approximation”
Assumptions on the effect of collisions: 
restore the local equilibrium described by f0, 
changing f back to f0 exponentially,         
with a relaxation time of the order                
of the time between collisions
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Boltzmann Equation solutions



Boltzmann Equation solutions
• To understand how this equation works, and the 

meaning of the “relaxation time”, let us consider a 
“simple” case with no dependence on the position in 
the crystal, and let us find the solutions for the non-
equilibrium pdf f in two interesting cases:

1) An applied electric field brings the system to a non-
equilibrium stationary condition (steady current)

2) The electric field is switched off and the system “relaxes 
back” to the equilibrium state, in a characteristic time. 
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Stationary non-equilibrium solution (1)
Under the influence of an external field, a stationary non-equilibrium 
condition can be reached: in a simple case with f not dependent on position:

0=∇ frr
r

0=
∂
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t
f(not dep. on position) (stationary)

The Boltzmann equation is reduced to:
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Approximate solution:
the normal Fermi 
function, computed at 
shifted values of k 
(see next slide)

Approximate linearized solution for small fields:
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Non-equilibrium stationary solution
Non-equilibrium

stationary solution
fstat
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Relaxation to the equilibrium distribution (2)
At t=0, when the system is in the stationary non-equilibrium 
condition fstat, the external field is switched off (initial condition).

The Boltzmann equation in the “relaxation approximation”
is then reduced to, for t > 0:
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The meaning of τ is now clear: it is the time needed by the system
to “relax back” to the equilibrium state, under the action of 
the scattering processes 



Relaxation to equilibrium
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Conductivity 
in metals and semiconductors



Electrical conductivity - old
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• In the first part of the course: 
– we wrote down a relation between carrier drift velocity and 

external electric field, introducing conductivity and mobility
– It was based on simple assumptions about not well identified 

scattering processes for electrons
– The original model (Drude, 1900) assumed an ideal electron 

gas with all free electrons contributing to conduction (This point 
of view is in contradiction with the Pauli principle!)
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Electrical conductivity - new
• Let us consider the implications of the new concepts: 

– Electrons in crystals are a Fermi gas: due to the Pauli principle 
only the electrons close to the Fermi surface can contribute!

– The current density can be computed summing the 
contributions of all states in the first Brillouin zone, and 
assuming for small fields the approximate linearized solution to 
the Boltzmann equation just discussed (assume E=Ex)
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Electrical conductivity in metals - 1
• Developing these expressions:

– The integral becomes a surface integral at the Fermi 
surface in k-space

– Only the properties at the Fermi surface are important
• Electron velocity, Relaxation time, Effective mass

– The result is (explicit derivation beyond our scope, see 
Ibach p.245-249)

• Formally equivalent to the Drude model, but now:
– Well defined relaxation time (electrons at the Fermi level)
– Effective mass instead of free electron mass
– n = total concentration of electrons in the “conduction band”
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Electrical conductivity in metals - 2
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• From these expressions:

• Correct orders of magnitude!
• Correct temperature-dependence of conductivity

– Concentration n of carriers: not dependent on T
– T-dependence entirely from the relaxation time, evaluated 

at the Fermi energy EF
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phonons contribution:
approx. linear in T

defects contribution:
approx. constant in T At “high” T



Electrical conductivity in metals - 3

( ) defph
defectsphonons

1111 ρρρ
τττσ

ρ +=⇒+=∝≡ T
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phonons contribution:
approx. linear in T

defects contribution:
approx. constant in T At “high” T



Electrical conductivity in semiconductors - 1
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• Both electrons in lower conduction band and 
holes in upper valence band contribute:

The expression for the mobility is obtained (…) averaging 
over the appropriate states at the edges of the 
conduction (electrons) or valence (holes) band

Qualitatively: continuing this computation one obtains:
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T – dependence of mobility in semiconductors
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(See also Lecture 4)

Scattering on 
phonons (lattice): 
µph ∝ τph ∝ T−3/2

Scattering on 
defects (impurities): 
µdef ∝ τdef ∝ T3/2



Drift-Diffusion
Continuity Equation



From the Boltzmann Equation…
• The continuity equations for the electrical current density in 

semiconductors can be obtained from the Boltzmann equation:

• Multiplying by the group velocity and integrating over the 
momentum space dkx dky dkz:

• One obtains the continuity equation discussed in Lectures 6-8… 
(detailed derivation: see FELD p.187-194, MOUT p.100-104)
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…integrals (1, 2)…
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…integrals (3, 4)…
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…continuity equation!
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Drift-diffusion continuity equation
For electrons (similar for holes):
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Drift Diffusion
The two familiar terms

relaxation time τ is small:
This new term can be neglected
if frequency is not too high
(few hunderd MHz)

Temperature gradient:
We did not discuss this before!
Also a temperature gradient 
can drive an electric current
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Lectures 20, 21 – summary - 1
• We revisited the properties of electrons, treated as Bloch waves, 

and holes, in a “perfect crystal”: effective mass, currents

• The description of electrons in “real” crystals has to take into 
account scattering processes on impurities or defects and on 
phonons (lattice deformations corresponding to vibration modes)

• The Boltzmann equation governs the probability distribution 
function for electrons in “phase-space” (position and momentum), 
when the system is brought away from thermal equilibrium (Fermi 
pdf)

• We considered two typical non-equilibrium solutions: steady-state 
and relaxation towards equilibrium, in the relaxation-time 
approximation
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Lectures 20, 21 – summary - 2
• The qualitative and quantitative features of electrical conductivity in 

metals and semiconductors (for instance: conductivity, mobility,
temperature dependence) are well described by considering 
electrons as Bloch waves and computing the relevant average 
quantities (drift velocity, current density etc) over k-space.

• Formally, the expressions found for conductivity and mobility are 
similar to those of the classical Drude model; crucial differences 
are the properties of relaxation time and the effective mass.

• Finally, averaging over k-space the Boltzmann transport equation, 
also for Bloch waves or packets one obtains the “drift-diffusion 
equation” for electric current densities: a detailed derivation 
predicts additional terms with respect to those we already 
discussed, for instance a diffusion term depending on temperature 
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gradient;this treatment can be further extended.



Lectures 20, 21 – summary - 3
• The drift-diffusion continuity equation obtained from the Boltzmann

equation explicitly contains the “Einstein relation” between drift and 
diffusion coefficients, that we had already discussed in previous 
lectures

• The Boltzmann transport equation is the basis for simulations, both 
in the “averaged mode” (continuity equation for current densities), 
and in a “Monte Carlo” mode (tracing individual wave packets).

• This second mode is relevant for simulating very small devices, 
where carriers undergo a small number of collisions.
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Lectures 20, 21 - exercises
• Exercise 20.1: From slide 25, figure 4.6: determine the order of 

magnitude of phonon energies in Silicon in the different branches, at 
k=kmax. What is the order of magnitude for kmax in Silicon (1st Brillouin
zone)?

• Exercise 21.1: Write down the expression of conductivity and 
mobility in the classical Drude model. What changes in these 
expressions in the quantum theory of conductivity for metals? And for 
semiconductors? 

• Exercise 20.2: Write down the Boltzmann transport equation and 
the drift-diffusion continuity equation. Discuss qualitatively the meaning
of each term.
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Back-up slides



Effective mass and E-k near band edges

near the band edges:

… the effective mass is 
approximately constant 
(energy-independent)!
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