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Nome Cognome CdL team
Lorenzo COMEL mat. 1
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Giulio GRASSI eln 2
Giovanni BIANCUZZI eln 2
Francesco PIVETTA eln 2
Luca ZANELLA eln 3
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Matej BUDIN tlc 3
Alberto MARCHESAN tlc 4
Giulia CEROVAZ tlc 4
Mohamad ABBAS tlc 4
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Lecture 1 (conduction, crystals)- exercises
• Exercise 1.1: review dimensions and units for the electric field and 

electric potential; check the dimensions and units given for resistivity, 
conductivity, mobility.

• Exercise 1.2: for a typical conductor at room temperature, (i.e. 
aluminum (Al): σ = 4 × 105 (Ω cm)−1 ), compare the thermal velocity with 
the drift velocity for a typical applied electric field, and find the orders of 
magnitude of µ, τ and λ

• Exercise 1.3: What is the distance between nearest neigbours in 
Si crystals?

• Exercise 1.4: If a plane has intercepts 2a, 3a, 4a along the three 
axes, find its Miller indices.

• Exercise 1.5: Find the number of atoms per cm2 in Si in the (100), 
(110), and (111) planes.
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Lecture 2 (equilibrium concentrations and Fermi 
levels for intrinsic semiconductors) - exercises

• Exercise 2.1: Integrate the product of the density function and 
Fermi function g(E)F(E) to obtain the carrier concentrations n and 
p.

• Exercise 2.2: Estimate orders of magnitude for the conductivity of 
Si (pure and with realistic defects)

• Exercise 2.3: At room temperature (300K) the effective density of 
states in the valence band is 1.04×1019 cm-3 for silicon and 7 
×1019 cm-3 for gallium arsenide; find the corresponding effective 
masses of holes. Compare these masses with the free-electron 
mass.

• Exercise 2.4: Calculate the location of the intrinsic Fermi level Ei
in silicon at liquid nitrogen temperature (77K), at room 
temperature (300K), and at 100oC (let mp=0.5m0 and mn=0.3 m0). 
Is it reasonable to assume that Ei is at the center of the forbidden 
gap?

• (the use of MATLAB or similar programs to perform 
computations, plot functions etc. is encouraged; for instance: plot 
the Fermi function for different values of the temperature T).
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Lecture 3 (equilibrium concentrations and Fermi 
level for extrinsic semiconductors) - exercises

• Exercise 3.1: A silicon sample at T=300K contains an acceptor 
impurity concentration of NA=1016 cm-3. Determine the concentration of 
donor impurity atoms that must be added so that the silicon is n-type and 
the Fermi energy is 0.20 eV below the conduction band edge.

• Exercise 3.2: Find the electron and hole concentrations and Fermi 
level in silicon at 300K (a) for 1x1015 boron atoms/cm3 and (b) for 3x1016

boron atoms /cm3 together with 2.9x1016 arsenic atoms/cm3.

• Exercise 3.3: Calculate the Fermi level of silicon doped with 1015, 
1017 and 1019 phosphorus atoms/cm3, assuming complete ionization. 
From the calculated Fermi level, check if the assumption of complete 
ionization is justified for each doping. Assume that the ionized donors 
density is given by ND

+ = ND(1-F(ED)).
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Lecture 4 (drift of carriers) - exercises
• Exercise 4.1: Find the electron and hole concentrations, mobilities

and resistivities of silicon samples at 300K, for each of the following 
impurity concentrations: (a) 5x1015 boron atoms/cm3; (b) 2x1016 boron 
atoms/cm3 together with 1.5x1016 arsenic atoms/cm3; and (c) 5x1015

boron atoms/cm3, together with 1017 arsenic atoms/cm3, and 1017

gallium atoms/cm3.

• Exercise 4.2: For a semiconductor with a constant mobility ratio b ≡
µnµp > 1 independent of impurity concentration, find the maximum 
resistivity ρm in terms of the intrinsic resistivity ρi and of the mobility ratio.

• Exercise 4.3: A semiconductor is doped with ND (ND>>ni) and has a 
resistance R1. The same semiconductor is then doped with an unknown 
amount of acceptors NA (NA>>ND), yielding a resistance of 0.5R1. Find NA
in terms of ND if the ratio of diffusivities for electrons and holes is 
Dn/Dp=50.
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Lecture 5 (diffusion of carriers) - exercises

• Exercise 5.1: An intrinsic Si sample is doped with donors from one 
side such that ND=N0exp(-ax). (a) Find an expression for the built-in 
electric field E(x) at equilibrium over the range for which ND>>ni. (b) 
Evaluate E(x) when a = 1µm-1.

• Exercise 5.2: An n-type Si slice of thickness L is inhomogeneusly
doped with phosphorous donor whose concentration profile is given by 
ND(x) = N0 +(NL – N0)(x/L). What is the formula for the electric potential 
difference between the front and the back surfaces when the sample is 
at thermal and electric equilibria regardless of how the mobility and 
diffusivity vary with position? What is the formula for the equilibrium 
electric field at a plane x from the front surface for a constant diffusivity 
and mobility?
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Lecture 6 (generation, recombination, continuity) -
exercises

• Exercise 6.1: Calculate the electron and hole concentration under 
steady-state illumination in an n-type silicon with GL=1016cm-3s-1, 
ND=1015cm-3, and τn=τp=10 µs.

• Exercise 6.2: An n-type silicon sample has 2x1016 arsenic 
atoms/cm3, 2x1015 bulk recombination centers/cm3, and 1010 surface 
recombination centers/cm2. (a) Find the bulk minority carrier lifetime, the 
diffusion length, and the surface recombination velocity under low-
injection conditions. The values of σp and σs are 5x10-15 and 2x10-16 cm2, 
respectively. (b) If the sample is illuminated with uniformly absorbed light 
that creates 1017 electron-hole pairs/(cm2s), what is the hole 
concentration at the surface?

• Exercise 6.3: The total current in a semiconductor is constant and is 
composed of electron drift current and hole diffusion current. The 
electron concentration is constant and equal to 1016 cm-3. The hole 
concentration is given by p(x)=1015 exp(-x/L) cm-3 (x>0), where L = 
12µm. The hole diffusion coefficient is Dp=12cm2/s and the electron 
mobility is µn=1000cm2/(Vs). The total current density is J = 4.8 A/cm2. 
Calculate (a) the hole diffusion current density as a function of x, (b) the 
electron current density versus x, and (c) the electric field versus x.
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Lecture 9 - exercises
• Exercise 9.1: In (SZE 2.5.1), nonpenetrating illumination of a 

semiconductor bar was found to cause a steady state, excess-hole 
concentration of ∆pn(x)= ∆pn0 exp(-x/Lp). Given low-level injection 
conditions, and noting that p=p0+ ∆pn, we can say that n≈n0 and            
p ≈ p0+ ∆pn0 exp(-x/Lp). 
(a) Find the quasi-Fermi levels FN(x) and FP(x) as functions of x.
(b) Show that FP(x) is a linear function of x when ∆pn(x) >> p0.
(c) Sketch the energy band diagram under equilibrium (no illumination) 

and in illuminated steady-state conditions, assuming negligible 
electric field.

(d) Is there a hole current in the illuminated bar, under steady state 
conditions? Explain.

(e) Is there an electron current in the illuminated bar, under steady 
state conditions? Explain.
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Lecture 10, 11 - exercises
• Exercise 10.1: Suppose that a 60 W lightbulb radiates primarily at 

a wavelength of about 1000 nm. Find the number of photons emitted 
per second.

• Exercise 10.2: When electromagnetic radiation of wavelength 270 
nm falls on an aluminum surface, photoelectrons are emitted. The most 
energetic are stopped by a potential difference of 0.406 volts. Find the 
work function of aluminum in electron-volts.

• Exercise 11.1: Find the DeBroglie wavelengths of an electron with 
kinetic energy of 1 eV, 1 keV, 10 MeV; of a neutron with kinetic energy 
kT, where T=300K; a neutron with kinetic energy of 10 MeV

• Exercise 11.2: Find the DeBroglie wavelength of an electron with 
kinetic energy of 100 eV. Supposing a beam of such electrons is sent 
on a crystal with spacing between atomic planes a = 1.0 nm, at what 
scattering angle would you expect the first diffraction maximum?
(assume the Bragg condition for constructive interference)
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Lectures 12, 13 - exercises
• Exercise 12.1: The attractive gravitational force between an 

electron and a proton is Gmpme/r2, where me=0.9x10-30 kg, mp=1.67x10-
27 kg, and G=6.67x10-11 m3/kg.s2. What is the lowest Bohr gravitational 
radius?

• Exercise 12.2: Suppose that an hydrogen atom in its ground state 
absorbs a photon whose wavelength is 15 nm. Will the atom be 
ionized? If so, what will be the kinetic energy of the electron when it 
gets far away from its atom of origin?  

• Exercise 12.3: The muon, with mass mµ=209me, acts as a heavy 
electron, and can bind to a proton forming a “muonic atom”. Calculate 
the ionization energy of this atom in its ground state, ignoring reduced-
mass effects. 

• Exercise 13.1: Consider the time-independent wave-function 
Cexp(-x2/2a2). Determine the normalization constant C. Calculate the 
expectation values 〈x〉, 〈x2〉, 〈p〉,〈p2〉 for this wave-function, evaluate the 
corresponding “uncertainties” (uncertainty2 ≡ variance)
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Lecture 14, 15 - exercises
• Exercise 14.1: Consider a particle of mass m, bound in a one-

dimensional “infinite potential well” of width a, and assume that its wave 
function is the ground energy eigenfunction, with n=1. Compute the 
corresponding uncertainties in position ∆x and momentum ∆px. (Hint: 
this problem is discussed in Bernstein, example 6-4, p.166-167)

• Exercise 15.1: Consider a gaussian wave packet specified at t=0
by φ(k)=Cexp(-a2x2) , where C is a suitable normalization constant, k is 
the wave number and a is a parameter with dimensions [a]=[L] . Write 
the wave function Ψ(x,0) at t=0 and find the corresponding 
uncertainties in position ∆x and momentum ∆px. (Hint: this problem is 
discussed in Bernstein, example 7-3, 7-5).

• Exercise 15.2: Study the time evolution of a gaussian wave packet, 
and in particular (a) the velocity and (b) show that the width of the 
packet increases with time. (Hint: see the next “back-up” slides) 
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Lecture 16, 17 - exercises
• Exercise 16.1: Consider the derivation of “bound” solutions for the 

finite well; following the track given in this lecture, fill in the calculations 
leading to the equation for the energy eigenvalues for the “even” 
solutions. Find the numerical energy eigenvalue for the lowest energy 
“even” state, assuming a = 500Å and V0 = 10eV.

• Exercise 16.2: Following the method described in this lecture (see 
also back-up slides for details), derive the transmission amplitude T for 
a “square” potential barrier for E < V0 and the approximate expression 
for the tunneling probability |T |2. Compute the numerical value of the 
transmission (tunneling) probability for a particle with energy E = 9eV, 
incident on a “square” potential barrier (V0 = 10 eV, a = 50Å and 100Å) 

• Exercise 17.1: (a) Check that the two forms given for the Bloch 
wave functions in the Bloch theorem are indeed equivalent. (b) Explain 
in words what is meant by “Brillouin zones”
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Lecture 18 - exercises
• Exercise 18.1: Define in words what is meant by a “Brillouin zone”. 

• Exercise 18.2: Briefly explain why the current associated with the 
motion of electrons in a totally filled energy band (a band in which all 
allowed states are occupied) is identically zero. 

• Exercise 18.3: Compare the values of effective masses for 
electrons in Si that you found on textbooks or in the literature. Are they 
all equal? By how much do they differ? What may be the origin of the 
differences?

• Exercise 18.4: What is the value of the band gap EG that you 
expect for Si at T=500K ? (At 300K it is EG = 1.125 eV). What may be 
the origin of the change with temperature?
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Lecture 19 - exercises
• Exercise 19.1: Consider a simplified model of a conductor with 

non-interacting conduction electrons in a 3-d infinite well. Find the Fermi 
energy and the average inter-electron spacing.  Apply the results to the 
case of aluminum (A=27), assuming: density ρ = 2.7x103 kg/m3, and 
three free electrons per atom (hint: see Bernstein, par.10-5 and 
example 10-5). 

• Exercise 19.2: Write down the results of this lecture on the density 
of states for the conduction and valence bands and on the Fermi 
probability density function. Compare them with those used in previous 
lectures to compute the concentration of carriers in semiconductors at a 
given temperature. OK? Explain the reason for introducing the effective 
mass in the density of states as obtained from the “infinite well” box 
model.
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Lectures 20, 21 - exercises
• Exercise 20.1: From slide 25, figure 4.6: determine the order of 

magnitude of phonon energies in Silicon in the different branches, at 
k=kmax. What is the order of magnitude for kmax in Silicon (1st Brillouin
zone)?

• Exercise 21.1: Write down the expression of conductivity and 
mobility in the classical Drude model. What changes in these 
expressions in the quantum theory of conductivity for metals? And for 
semiconductors? 

• Exercise 20.2: Write down the Boltzmann transport equation and 
the drift-diffusion continuity equation. Discuss qualitatively the meaning
of each term in these equations.
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