CP Violation and Flavour

Lectures 1, 2

Dottorato in Fisica – XX Ciclo

Livio Lanceri Università di Trieste and INFN

Lectures: outline

- 1. Introduction: C, P, T symmetries and historical perspective
- 2. CP Violation (CPV) and mixing in K, B, D mesons; the Standard Model and the Cabibbo-Kobayashi-Maskawa (CKM) mechanism
- 3. Status of CPV in B mesons
 - 1. Mixing; direct CPV in B decays
 - 2. Unitarity Triangle (UT): measurements of sin2 β , sin2 α , γ
 - 3. Overall UT fits
- 4. Status of CPV in K mesons
- 5. Searches for CPV in D mesons and in Electric Dipole Moments
- 6. Conclusions and outlook

Contents

- Theory and formalism: a brief reminder only
 - After the initial discovery in K mesons...
 - ... B mesons are specially suited for stringent experimental tests of a detailed pattern of theoretical expectations, including large asymmetries in some channels;
 - D mesons are promising for New Physics searches, since the Standard Model predicts small CP effects
- Emphasis on present experiments and B mesons
 - Observables, experimental facilities and methods
 - Standard Model expectations (CKM mechanism) as organizing principle of a very rich phenomenology
 - Summary of experimental results, with emphasis on:
 - understanding their limits in precision and accuracy
 - possible windows for New Physics

Introduction

Why is CP Violation (CPV) interesting? C, P, T symmetries Historical perspective on CPV and Flavour

Why CPV ?

The anti-matter "puzzle"

The present Universe is dominated by - matter (particles) and - radiation (photons); Anti-matter (anti-particles) became very rare ! Why?

> Evolution of Universe In the Big Bang theory: expansion, cooling

 10^{-5} s $T \cong 10^{13} \text{K}$ $E \cong 1 \text{ GeV}$

Soup of particles, antiparticles, radiation in thermal equilibrium

L.Lanceri - CP Violation and Flavour - 1+2

 $F = mc^2$

Anti-matter: where did it go?

 \approx 10 ⁸⁸ + 10 ⁸⁰ ○ ≈ *10 ⁸⁸*

 $\approx 10^{80}$

At present:

matter (baryons)/photons

 $\frac{n_B}{2} \approx 10^{-9\pm1}$

 n_{ν}

Quark-antiquark "primordial" asymmetry: $\frac{n_B}{m_B} \approx \frac{n_q - n_{\overline{q}}}{m_{\overline{q}}} \approx 10^{-9}$

Quark-antiquark asymmetry: when and why? "baryogenesis", t $\approx 10^{-35}$ s (1) non-equilibrium

(2) B: not conserved

(3) CP symmetry: violated

Big Bang: strong evidence

SCOVERY OF COSMIC BACKGROUND

Black-body radiation: The universe is filled with (T = 3K) photons

Expanding universe: speed is measured! (red shift)

> Light elements: Nucleosynthesis OK

The transition to Baryon asymmetry requires an explanation at the level of fundamental interactions!

MAP99004

L.Lanceri - CP Violation and Flavour - 1+2

Baryogenesis: Sakharov conditions

• CPT: expectations

particle $X \Leftrightarrow$ anti - particle \overline{X} , $m_X = m_{\overline{X}}$, $\Gamma_X = \Gamma_{\overline{X}}$, $Q_X = -Q_{\overline{X}}$ \Rightarrow expect $n_X = n_{\overline{X}}$ at thermal equilibrium (but : initial conditions...?)

Sakharov conditions

1) B violation	initially: $B = 0$, finally: $B \neq 0$		
2) C, CP violation	C -invariance $\Rightarrow P(i \rightarrow f) = P(\bar{i} \rightarrow \bar{f})$		
, .	$ T \text{-invariance} \Rightarrow P(i(\vec{r}_i, \vec{p}_i, \vec{s}_i) \rightarrow f(\vec{r}_j, \vec{p}_j, \vec{s}_j)) = $		
3) Off-equilibrium !	$= P(f(\vec{r}_i, -\vec{p}_i, -\vec{s}_i) \rightarrow i(\vec{r}_j, -\vec{p}_j, -\vec{s}_j))$		

• Standard Model of elementary particles and GUT extensions?

... Have the basic ingredients, but fail to explain baryogenesis by many orders of magnitude \Rightarrow "new physics" is required

See: A.Riotto, Theories of Baryogenesis, hep-ph/9807454

Baryogenesis (SM, GUT)

 $\bullet \quad X \to u + u \quad X \to \overline{d} + e^+ \quad Y \to \overline{d} + \overline{\nu}_e \quad Y \to \overline{u} + e^+$ $CPV \Rightarrow$ different rates for < $\overline{X} \to \overline{u} + \overline{u} \quad \overline{X} \to d + e^- \quad \overline{Y} \to d + \nu_e \quad \overline{Y} \to u + e^-$ (off thermal equilibrium) 'Diameter' Time Energy Temp. E = kTof Universe t [s] [GeV] T [K] R [cm] 10^{-44} 1019 10^{-3} Planck-time tpl 1032 10^{-36} 10^{15} GUT SU(5) breaking, m_X 1028 10 10^{-10} $SU(2)_L \otimes U(1)$ breaking, m_W 10^{2} 10^{14} 1015 10-6 Ouark confinement. 1013 1016 1 pp-annihilation 10^{-3} 10^{10} 1019 form hadrons v decouple, e^+e^- -annihilation (baryons) 10^{20} Formation of light nuclei 10^{2} 10^{-4} 10^{9} 1012 γ decouple, transition from 10^{-9} 10^{4} 1025 radiation-dominated universe $(\approx 10^{5} a)$ to matter-dominated. formation of atoms, is too small ! formation of stars and galaxies $\approx 5 \times 10^{17}$ 3×10^{-13} 10^{28} Today, to 3 $(\approx 2 \times 10^{10} \text{ a})$

(1) GUT bosons X, Y decay and "decouple": a net quark-antiquark asymmetry remains

(2) Excess quarks

The predicted asymmetry

$$\frac{n_B}{n_{\gamma}} \approx \frac{n_q - n_{\overline{q}}}{n_q + n_{\overline{q}}} \approx 10^{-18}$$

CP Violation!

- CP violation has been observed in weak interactions (K and B mesons: mixing and decay)
- The Standard Model (SM) has a recipe for CPV ("CKM mechanism"), but no fundamental understanding of its origin
- Baryogenesis requires additional sources of CPV, beyond SM + GUT, that alone would predict $n_B/n_\gamma \approx 10^{-18}$ rather than the observed $n_B/n_\gamma \approx 10^{-9}$
- CPV is a very interesting probe of fundamental properties both of basic interactions among particles and of the universe evolution

C, P, T: "discrete" symmetries

P and T in classical physics

Table 1.1 P and \hat{T} transformations in classical physics.

Name	Symbol	Р	Ϋ́,
Time	t	+	
Position	\vec{r}	80.0 <u>-</u> 9	+
Energy	E	+	+
Momentum	\vec{p}	21 <u>4</u>	11910
Spin	\vec{s}	+	<u>-</u>
Helicity	h	4 <u>00</u>	+
Electric-field strength	\vec{E}	-	+
Magnetic-field strength	\vec{B}	+	
Magnetic dipole moment	d_m	+	+
Electric dipole moment	d_e	1.7	

All the equations of classical physics are invariant for P, T transformations

What about the "time arrow"?

2nd Law of Thermodynamics: non-equilibrium macroscopic systems evolve towards states with higher entropy (configurations microscopically more probable)

This is explained by statistical mechanics and does not imply in any way a time-reversal asymmetry in the fundamental laws of microscopic physics

14

Charge Conjugation C

- Charge conjugation C: particle \leftrightarrow antiparticle
 - No analogue in classical physics
 - Relativistic quantum theory:
 - · for every particle there is an anti-particle
 - particle and antiparticle have identical mass and lifetime
 - particle and antiparticle have opposite charges
 - Electric charge, baryon and lepton number, flavour quantum numbers such as strangeness, etc.
- *C* symmetry (if realized) implies that:
 - A system where all the particles are substituted with the corresponding antiparticles behaves as the original system
 - It is a matter of convention which of them we call "particles" and which we call "antiparticles"

C, P and CP

- Electromagnetic and strong interactions:
 - both *C* and *P*-symmetric
- Weak interactions
 - violate *maximally* both the *C* and *P* symmetry
 - are *approximately* symmetric for the combined *CP* transformation

Quantum Mechanics: C, P

C, P operators applied twice reproduce the initial state (up to a phase)

$$P^{2} = 1$$

$$P^{\dagger}P = 1 \implies P^{\dagger} = P$$

$$C^{\dagger}C = 1 \implies C^{\dagger} = C$$

Eigenstates of P(C) are characterized by the eigenvalue "parity" ("C-parity"), a multiplicative quantum number

if
$$|\psi\rangle$$
 is an eigenstate:
 $P|\psi\rangle = \eta_P |\psi\rangle = (\pm 1)|\psi\rangle$ is an eigenstate:
 $C|\psi\rangle = \eta_C |\psi\rangle = (\pm 1)|\psi\rangle$

NB: not all single particle states are C eigenstates! Can you guess which?

"intrinsic" parities

- When single particle states are eigenstates:
 - *P* operator:
 "intrinsic parity" η_P = ±1
 - *C* operator: "intrinsic C-parity" $\eta_c = \pm 1$
- Assignments: conventional for some particles; for the others: parity conservation, angular momentum etc.
- C-parity is only defined for particles that are *"totally neutral"* (all charges = 0, not only the electrical charge)

	Spin	Helicity	Parity
Quarks u, d, s, c, b, t	$\frac{1}{2}$	$\pm \frac{1}{2}$	+
Octet baryons n, p, Λ , Σ , Ξ	$\frac{1}{2}$	$\pm \frac{1}{2}$	+
Decuplet baryons Δ , Σ^* , Ξ^* , Ω^-	32	$\pm \frac{1}{2}, \pm \frac{3}{2}$	+
Charged leptons e^-, μ^-, τ^-	$\frac{1}{2}$	$\pm \frac{1}{2}$	+
The antiparticle of a fermion always has opposite parity.	as the same sp	in as the fermion	and the
Neutrinos ver ver ve		$-\frac{1}{2}$	
Antineutrinos $\bar{v}_e, \bar{v}_\mu, \bar{v}_\tau$		$+\frac{1}{2}$	
Graviton		± 2	+
Photon		±1	-
W^{\pm}, Z^{0}	1	$0, \pm 1$	5171.0 <u>0</u> 5101
Gluons	1	± 1	2010 <u>- 1</u> 10 - 12
Octet mesons π , K, \overline{K} , η	0	0	

Table 4.2. Charge conjugation parity

Particle	Photon	Z ⁰	π^0	η
η _c	-1	-1	+1	+ 1

Quantum Mechanics: 7 is "anti-unitary"

Time reversal in Quantum Mechanics:

 $t \rightarrow -t$ and $i \rightarrow -i$ (complex conjugation)

 a simplified argument based on the invariance of the Schrodinger equation justifies the definition of the time reversal operator T as:

$$T = UK$$

U: Unitary
$$t \rightarrow -t$$

K: complex conjugation of all c-numbers standing on its right

CPT Theorem

A quantum field theory that

- 1. satisfies Lorentz and space-time translation invariance,
- 2. posesses a lowest "vacuum" state in its energy spectrum,
- 3. obeys "microcausality" (commutation or anticommutation relations between all distinct fields),

will be *CPT*-invariant: [CPT, H] = 0

Direct consequence:

every particle has the same mass and lifetime as its antiparticle magnetic moments are equal in size, opposite direction

CPT invariance and *CP* violation \Rightarrow *T* violation

20

CP(T) Violation: "cherchez la phase"!

If a process is described by *two* amplitudes *with a relative phase*

$$M = A_1 + e^{i\delta}A_2$$

Time reversal *T* in QM: $t \rightarrow -t$ and $i \rightarrow -i$ (complex conj.) $M' = (CP)M = A_1 + e^{-i\delta}A_2$

CP Violation is a consequence of the interference term:

$$\left|M\right|^{2} = \left|A_{1} + e^{i\delta}A_{2}\right|^{2} \xrightarrow{T} \left|M'\right|^{2} = \left|A_{1} + e^{-i\delta}A_{2}\right|^{2} \neq \left|M\right|^{2}$$

CPV and Flavour

Historical (experimental) perspective

"strange" K mesons in cosmic rays

- 1944, L.Leprince-Ringuet & M.Lheritier
- 1947, G.D.Rochester & C.C.Butler [Nature, 160, 855 (1947)]

Cloud chamber exposed to cosmic rays

"V particles": first evidence of "strange" matter, not present on earth, unstable

Charged particle, mass

500 MeV/ c^2 to m_p

Neutral particle, mass 393 to 818 MeV/c²

L.Lanceri - CP Violation and Flavour - 1+2

23

Strangeness: K^0 (S = +1), Λ (S = -1)

Experiments at accelerators:

associate "strong" production (strangeness conserving) $\sigma (\pi^- p \rightarrow K^0 \Lambda) \approx 1 \text{ mb} \approx \sigma_{tot} / 40$

"weak" decay (strangeness violating) $\tau (\Lambda \rightarrow \pi^- p) \approx 10^{-10} \text{ s} >> 10^{-23} \text{ s}$ as slow as $\pi^- p \rightarrow \pi^0 \Lambda$, strangeness-violating

Strangeness: K^0 (S = +1), \overline{K}^0 (S = -1)

1955, Gell-Mann & Pais:

predicted oscillations and long-lived neutral K

Also $\overline{\mathsf{K}^0}$ is produced, for instance in $\mathsf{K}^-\mathsf{p} \to \Lambda \ \mathsf{K}^0 \ \overline{\mathsf{K}^0}$

Equal *m* (CPT), undefined τ : not "physical" states $K^0 \neq \overline{K}^0$ strong interaction (S) eigenstates, not weak or CP eigenstates $K^0 \rightarrow \pi^+ \pi^-$, $\overline{K}^0 \rightarrow \pi^+ \pi^-$ common weak decays \Rightarrow coupled! $K^0 \rightarrow \pi^- e^+ \nu$, $\overline{K}^0 \rightarrow \pi^+ e^- \overline{\nu}$ different weak "semileptonic" decays \Rightarrow a superposition can be analyzed!

 K_1^0, K_2^0 "physical" (full hamiltonian) eigenstates, different *m*, well-defined τ

$$K_1^0 = \frac{1}{\sqrt{2}} \left(K^0 + \overline{K}^0 \right) \xrightarrow{CP=+1} \pi^+ \pi^-$$

$$K_{2}^{0} = \frac{1}{\sqrt{2}} \left(K^{0} - \overline{K}^{0} \right) \xrightarrow{CP = -1}{} \pi^{+} \pi^{-} \pi^{0}$$

relatively short-lived

relatively long-lived (less available phase-space)

Quantum Mechanics "laboratory"!

Strangeness oscillations: K⁰_S & K⁰_L

1956, Lande et al. [Phys.Rev.103, 1901 (1956)]: observation of $K_{2}^{0} \approx K_{1}^{0}$ with cloud chamber exposed to the **Brookhaven Cosmotron 3-GeV beam**

Lifetime estimated in the $10^{-9} - 10^{-6}$ s range (K⁰₁ \approx K⁰_S : 10⁻¹⁰ s) Lifetime, (recently) measured values:

$$\begin{split} \tau_{S} &\equiv 1/\Gamma_{S} = (8.927 \pm 0.009) \times 10^{-11} \text{ s} \\ \tau_{L} &\equiv 1/\Gamma_{L} = (5.17 \pm 0.04) \times 10^{-8} \text{ s} \end{split} \qquad \mbox{factor } 600 \ \mbox{s} \end{split}$$

1955, Pais & Piccioni: predict coherent "regeneration" of a K_{1}^{0} component in a beam of K_{2}^{0} going through a target (matter)

Regeneration of K⁰_S

- 1960, F.Muller et al [Phys.Rev.Lett. 4, 418 (1960)]: Regeneration and Mass Difference of Neutral K Mesons
 - Beginning of systematic study of regeneration
 - Different materials and thicknesses
 - Regeneration depends also on Δm $\Rightarrow \Lambda m$ measurement
- ... paved also the way for the discovery of CP Violation:
 - in some experiments there were hints of "anomalous" regeneration $(2\pi \text{ decays of } K_2^0)$, possibly compatible with backgrounds

FIG. 1. Histograms of number of K1 decay events per 0.001 interval of $\cos\theta$ (θ is the angle between the direction of the primary K_2 beam and the regenerated K_1). (a) Data for the 1.5-inch plate; (b) data for the 6-inch plate; (c) combined data for the two plates. The curves are diffraction angular distributions normalized in the 0.980 to 0.998 interval for $\cos \theta$.

... and the discovery of CP violation

Kobayashi and Maskawa

L.Lanceri - CP Violation and Flavour - 1+2

Theoretical predictions

- Kobayashi & Maskawa: CP violation can be explained by a phase in the quark mixing matrix, but then a third family of quarks is required!
- Later, after B meson discovery: Carter, Bigi & Sanda suggested that, if the SM explanation of CP Violation effects is correct, then large CP asymmetries should be seen in "rare" B decays

Experiment: from the discovery of b quarks...

Discovery of $Y(9.46) \rightarrow \mu^+\mu^$ interpreted as 1³S₁ bb

L.Lanceri - CP Violation and Flavour - 1+2

.. and the discovery of B=(bq) mesons...

... to the birth of the "B-factories"...

Short His	story: (focus on CPV, experimental only	/)	
1977 1978	Discovery of b in $\Upsilon(9.46) = 1^3 S_1 b\bar{b}$ at FNA Formation of $\Upsilon(9.46)$ and $\Upsilon(10.01)$ at DES	NL SY	
1980	First B mesons $1^1S_0 b\overline{q}$ at Cornell		
1986-89	"B-Meson Factory" plans at PSI, Switzerla	nd	
1987	ARGUS discovery of B ^o B ^o oscillations	meanwhile:	
1988	Start of PEP-II studies at SLAC	many results from	
1993	Decisions for PEP-II and KEK-B,Cornell: CLEO,BABAR "TDR" & approval,LEP experimentsENAL: CDE_DO		
1995			
7/98	First e⁺e⁻ collisions in PEP-II	TRAL. ODI, DO	
5/99	First e ⁺ e ⁻ events in BABAR and KEK-B/BELLE		
7/00	First BABAR&BELLE results for Osaka conference		
10/00	PEP-II reaches design luminosity of 3 · 10 ³³ /cm ² /s		
7/01	BABAR and BELLE find sin2 $\beta \neq 0$ with 4σ		

November 2005

L.Lanceri - CP Violation and Flavour - 1+2

35

Charged and neutral pseudoscalar mesons: a reminder

Decays and mixing Time evolution and CP-violating observables Theoretical interpretation: CKM
Mixing and decays

Coupled oscillators, with damping

Coupling \Rightarrow frequency (energy, mass) splitting (2 "normal modes") Damping \Rightarrow one of the two modes lasts longer...

Decays

Charged and neutral pseudoscalar mesons (P = K, D, B) Some examples (we will start by discussing B mesons, in particular):

$$K^{0} = (\overline{s}d) \qquad B^{0}_{d} = (\overline{b}d) = B^{0} \qquad B^{+} = (\overline{b}u)$$
$$D^{0} = (c\overline{u}) \qquad B^{0}_{s} = (\overline{b}s) \qquad B^{-} = (b\overline{u})$$

Decay amplitudes for $P \rightarrow f$ and CP-conjugated states:

$$A_{f} = \left\langle f \left| H \right| P \right\rangle, \quad \overline{A}_{f} = \left\langle f \left| H \right| \overline{P} \right\rangle$$
$$A_{\bar{f}} = \left\langle \bar{f} \left| H \right| P \right\rangle, \quad \overline{A}_{\bar{f}} = \left\langle \bar{f} \left| H \right| \overline{P} \right\rangle$$

Decays and mixing: example from K

decay = "damping"

mixing = "coupling"

Fig. 1. – Left: the "tree" and "penguin" diagrams originating $K^0 \rightarrow \pi^+\pi^-$ decays in the Standard Model. Right: The "box" diagram originating $K^0 - \overline{K}^0$ transitions in the Standard Model.

Mixing for P = K, D, B

Problem: find the time evolution of a neutral pseudoscalar meson P: t = 0: superposition of strong "flavour" eigenstates (P^0 , \overline{P}^0) t > 0: also states n_1 , n_2 , n_3 , ... to which P may decay

$$|\psi(t)\rangle = a(t)|P^{0}\rangle + b(t)|\overline{P}^{0}\rangle + c_{1}(t)|n_{1}\rangle + c_{2}(t)|n_{2}\rangle + c_{3}(t)|n_{3}\rangle + \dots$$

Strategy:

Basis: "flavour" eigenstates, unperturbed "strong" hamiltonian Do not try to compute $c_1(t)$, $c_2(t)$, ...: only a(t) and b(t)

- \Rightarrow two-component wave function; hamiltonian in 2nd order perturbation theory
- \Rightarrow use proper time t (particle rest-frame)
- \Rightarrow find "mass eigenstates", that evolve as "physical states" (...) \Rightarrow diagonalize H!

Hamiltonian & Perturbation Theory ...

What is the matrix H_{ii} ? From 2nd order perturbation theory:

$$\begin{split} M_{ij} &= m_0 \delta_{ij} + \left\langle i \left| H_W \right| j \right\rangle + \sum_n P \frac{\left\langle i \left| H_W \right| n \right\rangle \left\langle n \left| H_W \right| j \right\rangle}{m_0 - E_n} & \begin{array}{c} H_W : \text{ weak perturbation} \\ n: \text{ intermediate} \\ \text{virtual states} \\ \Gamma_{ij} &= 2\pi \sum_n \delta(m_0 - E_n) \left\langle i \left| H_W \right| n \right\rangle \left\langle n \left| H_W \right| j \right\rangle & \begin{array}{c} n: \text{ physical states} \\ n: \text{ by simulation} \\ \text{virtual states} \\ \text{to which both can decay} \\ \end{array} \end{split}$$

 \Rightarrow complex numbers, to be evaluated by the theory of weak int. \Rightarrow Assuming CPT invariance, they reduce to 2 real and 2 complex

$$CPT \Rightarrow M_{11} = M_{22} = m_0; \quad \Gamma_{11} = \Gamma_{22} = \gamma$$

hermiticity $\Rightarrow M_{21} = M_{12}^*; \quad \Gamma_{21} = \Gamma_{12}^*$

diagonal: real, *P*⁰ mass and lifetime

off-diagonal: complex, represent mixing (off- and on-shell states)

General formalism, including CPT violation: see i.e. Kirkby & Nir, PDG

41

Diagonalization: eigenvalues

In the "flavour eigenstates" basis:

$$H = \begin{pmatrix} m_0 - \frac{i}{2} \gamma & M_{12} - \frac{i}{2} \Gamma_{12} \\ M_{12}^* - \frac{i}{2} \Gamma_{12}^* & m_0 - \frac{i}{2} \gamma \end{pmatrix} = \begin{pmatrix} \mu_0 & p^2 \\ q^2 & \mu_0 \end{pmatrix} \implies H' = \begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix}$$
Secular equation,
giving the eigenvalues $\det \begin{pmatrix} \mu_0 - \mu & p^2 \\ q^2 & \mu_0 - \mu \end{pmatrix} = 0 \implies$

$$\implies \mu_{1,2} = \mu_0 \pm pq = m_0 - \frac{i}{2} \gamma \pm \sqrt{\left(M_{12} - \frac{i}{2} \Gamma_{12}\right) \left(M_{12}^* - \frac{i}{2} \Gamma_{12}^*\right)}$$

Mass and width differences (*H* = "heavy", *L* = "light"):

$$\Delta \mu = \Delta m - \frac{i}{2} \Delta \Gamma = 2 p q \qquad \Delta m^2 - \frac{1}{4} \Delta \Gamma^2 = 4 |M_{12}|^2 - |\Gamma_{12}|^2$$
$$\Delta m = m_H - m_L \quad \Delta \Gamma = \Gamma_H - \Gamma_L \qquad \Delta m \Delta \Gamma = 4 \Re e \left(M_{12} \Gamma_{12}^* \right)$$

Diagonalization: "mass" eigenstates

"mass eigenstates" (P_L , P_H) \approx CP eigenstates (P_1 , P_2): expressed in terms of "flavour eigenstates" (P^0 , $\overline{P^0}$)

$$\frac{\left|P_{L}^{0}\right\rangle}{\left|P_{H}^{0}\right\rangle} = p\left|P^{0}\right\rangle + q\left|\overline{P}^{0}\right\rangle = \frac{1}{\sqrt{1+\left|\widetilde{\varepsilon}\right|^{2}}}\left(\widetilde{\varepsilon}\left|P_{1}\right\rangle + \left|P_{2}\right\rangle\right) \qquad \widetilde{\varepsilon} = \frac{p-q}{p+q} \quad \text{(complex !)}$$

$$\frac{\left|P_{H}^{0}\right\rangle}{\left|P_{H}^{0}\right\rangle} = p\left|P^{0}\right\rangle - q\left|\overline{P}^{0}\right\rangle = \frac{1}{\sqrt{1+\left|\widetilde{\varepsilon}\right|^{2}}}\left(\left|P_{1}\right\rangle + \widetilde{\varepsilon}\left|P_{2}\right\rangle\right) \qquad \left|q\right|^{2} + \left|p\right|^{2} = 1$$

$$\sqrt{2M^{*} \cdot \mathbb{T}^{*}} \qquad A$$

 $\begin{aligned} \frac{Q}{p} &= \sqrt{\frac{2M_{12} - i\Gamma_{12}}{2M_{12} - i\Gamma_{12}}} = \frac{\Delta\mu}{2M_{12} - i\Gamma_{12}} \\ \frac{Q}{p} &= \sqrt{\frac{2M_{12} - i\Gamma_{12}}{2M_{12} - i\Gamma_{12}}} = \frac{\Delta\mu}{2M_{12} - i\Gamma_{12}} \\ \frac{Q}{p} &= \sqrt{\frac{2M_{12} - i\Gamma_{12}}{2M_{12} - i\Gamma_{12}}} \\ \delta &= |p|^2 - |q|^2 = \langle P_L |P_H \rangle \\ |P_2^0 \rangle &= \frac{1}{\sqrt{2}} |P^0 \rangle - \frac{1}{\sqrt{2}} |\overline{P}^0 \rangle \\ |p|^2 &= \frac{1 + \delta}{2} \qquad |q|^2 = \frac{1 - \delta}{2} \end{aligned}$

CP symmetry \Rightarrow "mass" = "CP" eigenstates, $\widetilde{\varepsilon} = \delta = 0$

L.Lanceri - CP Violation and Flavour - 1+2

43

Time evolution

(assuming CPT as a good symmetry, for simplicity)... Time evolution of the "physical" mass eigenstates:

$$\left| P_L^0(t) \right\rangle = e^{-t\Gamma_L/2} e^{-itm_0} e^{+it\Delta m/2} \left| P_L^0(0) \right\rangle$$
$$\left| P_H^0(t) \right\rangle = e^{-t\Gamma_H/2} e^{-itm_0} e^{-it\Delta m/2} \left| P_H^0(0) \right\rangle$$

If at t = 0 the state is not a mass eigenstate but some superposition of them (for instance: a flavour state P^{0}), then the time evolution is simply the corresponding appropriate combination

Dimensionless parameters

Taking \hbar = c =1, these quantities can be expressed using the same units (for example, MeV or s⁻¹):

$$\Gamma \equiv \frac{\Gamma_L + \Gamma_H}{2} , \quad \Gamma_L \equiv \frac{1}{\tau_L} , \quad \Gamma_H \equiv \frac{1}{\tau_H} , \quad \Delta \Gamma \equiv \Gamma_H - \Gamma_L , \quad \Delta m \equiv m_H - m_L$$

The following dimensionless parameters often appear in time evolution equations:

$$x \equiv \frac{\Delta m}{\Gamma}$$
$$y \equiv \frac{\Delta \Gamma}{2\Gamma}$$

related to oscillations "frequency"

related to oscillations "damping"

45

B mesons: time evolution and CP-violating observables

q, p, Δm and $\Delta \Gamma$ for B_d and B_s

L.Lanceri - CP Violation and Flavour - 1+2

(assuming CPT as a good symmetry, for simplicity)... Time evolution of mass eigenstates:

$$\left| B_{L}^{0}(t) \right\rangle = e^{-t\Gamma_{B}/2} e^{-itM_{B}} e^{+it\Delta m_{B}/2} \left| B_{L}^{0}(0) \right\rangle$$
$$\left| B_{H}^{0}(t) \right\rangle = e^{-t\Gamma_{B}/2} e^{-itM_{B}} e^{-it\Delta m_{B}/2} \left| B_{H}^{0}(0) \right\rangle$$

Time evolution of initially (t=0) pure flavour eigenstates:

$$\begin{vmatrix} B_{phys}^{0}(t) \rangle = h_{+}(t) | B^{0} \rangle + \frac{q}{p} h_{-}(t) | \overline{B}^{0} \rangle \\ h_{+}(t) = e^{-t\Gamma_{B}/2} e^{-itM_{B}} \cos(t \Delta m_{B}/2) \\ h_{-}(t) = i \Big[e^{-t\Gamma_{B}/2} e^{-itM_{B}} \sin(t \Delta m_{B}/2) \Big]$$

Flavour oscillations: for initially pure $B^0(t=0)$, probability for finding $B^0(\overline{B}^0)$ at time t, assuming |q/p|=1

$$h_{\pm}(t)|^2 = \frac{1}{2} e^{-t\Gamma_B} \left[1 \pm \cos(t \,\Delta m_B)\right] \implies a_{mix}(t) = \cos(t \,\Delta m) = \cos(x\Gamma t)$$

Time-integrated ratio and time-integrated oscillation probability:

$$r = \frac{N(\overline{B}^0)}{N(B^0)} = \frac{\int_0^\infty dt \left|h_-(t)\right|^2}{\int_0^\infty dt \left|h_+(t)\right|^2} = \frac{x^2}{2+x^2}, \quad \chi = \frac{r}{1+r} = P(B^0 \to \overline{B}^0), \quad x \equiv \frac{\Delta m}{\Gamma}$$

Observable by looking at self-flavour tagging semileptonic or hadronic decays! For example:

$$B^{0} \to D^{*-}l^{+}\nu \qquad \overline{B}^{0} \to D^{*+}l^{-}\overline{\nu}$$
$$B^{0} \to D^{-}\pi^{+} \qquad \overline{B}^{0} \to D^{+}\pi^{-}$$
$$B^{0}_{s} \to D^{-}_{s}l^{+}\nu \qquad \overline{B}^{0}_{s} \to D^{+}_{s}l^{-}\overline{\nu}$$

L.Lanceri - CP Violation and Flavour - 1+2

49

L.Lanceri - CP Violation and Flavour - 1+2

Combining similar expressions for: $\overline{B}^0_{phys} \to f$, $B^0_{phys} \to \overline{f}$, $\overline{B}^0_{phys} \to \overline{f}$ observable CP-violating asymmetries can be derived

Important special case:

neutral pseudoscalar mesons produced coherently in pairs, from the decay of a vector resonance: $V \rightarrow P^0 \overline{P}^0$. and subsequent decays to final states f_1, f_2 at times t_1, t_2 for instance: $Y(4S) \to B^0 \overline{B}{}^0 \qquad \phi \to K^0 \overline{K}{}^0$

The corresponding time-dependence of decay rates and asymmetries have similar forms, with : $\Delta t \equiv t_2 - t_1$

For a complete discussion including CPT: see e.g.: Kirkby & Nir, PDG

Classification of CP-violating effects

Classification of CP-violating effects

$$\begin{array}{l} \text{CPV in decay:} \\ \left|\overline{A}_{\bar{f}}/A_{f}\right| \neq 1 \end{array} \qquad A_{CP,f^{\pm}} \equiv \frac{\Gamma\left(P^{-} \rightarrow f^{-}\right) - \Gamma\left(P^{+} \rightarrow f^{+}\right)}{\Gamma\left(P^{-} \rightarrow f^{-}\right) + \Gamma\left(P^{+} \rightarrow f^{+}\right)} = \frac{\left|\overline{A}_{f^{-}}/A_{f^{+}}\right|^{2} - 1}{\left|\overline{A}_{f^{-}}/A_{f^{+}}\right|^{2} + 1} \end{array}$$

CPV in mixing:
$$A_{SL}(t) \equiv \frac{d\Gamma/dt \left(\overline{P}_{phys}^{0} \rightarrow l^{+}X\right) - d\Gamma/dt \left(P_{phys}^{0} \rightarrow l^{-}X\right)}{d\Gamma/dt \left(\overline{P}_{phys}^{0} \rightarrow l^{+}X\right) + d\Gamma/dt \left(P_{phys}^{0} \rightarrow l^{-}X\right)} = \frac{1 - |q/p|^{4}}{1 + |q/p|^{4}}$$

CPV in the interference decay-mixing ("mixing-induced"):

$$\Im m(\lambda_f) \neq 0$$
$$\lambda_f \equiv \frac{q}{p} \frac{\overline{A}_f}{A_f}$$

For example: decays to CP eigenstates
$$f_{CP}$$

$$A_{f_{CP}}(t) = \frac{d\Gamma/dt \left(\overline{P}_{phys}^{0} \rightarrow f_{CP}\right) - d\Gamma/dt \left(P_{phys}^{0} \rightarrow f_{CP}\right)}{d\Gamma/dt \left(\overline{P}_{phys}^{0} \rightarrow f_{CP}\right) + d\Gamma/dt \left(P_{phys}^{0} \rightarrow f_{CP}\right)}$$

Observables: "direct" CP asymmetry - 1

Time-integrated "direct" CP asymmetry requires two amplitudes and $\delta \neq 0$:

Observables: "direct" CP asymmetry - 2

Time-integrated "direct" CP asymmetry ("CP violation in decay"):

$$A_{CP} = \frac{\Gamma(i \to f) - \Gamma(\bar{i} \to \bar{f})}{\Gamma(i \to f) + \Gamma(\bar{i} \to \bar{f})} = \frac{2|A_1||A_2|\sin\delta\sin\phi}{|A_1|^2 + |A_2|^2 + 2|A_1||A_2|\cos\delta\cos\phi}$$

- the only possibile CPV effect for *charged* mesons decays ! - requires at least two amplitudes *and* $\delta \neq 0$

Interference between mixing and decay to a CP eigenstate f_{CP} $\Rightarrow \Gamma(B^0_{phys}(t) \rightarrow f_{CP}) \neq \Gamma(\overline{B}^0_{phys}(t) \rightarrow f_{CP})$

Flavor-tagged time-dependent decay rates are different! they are governed by the "CP parameter":

Time-dependent CP asymmetry - 2

Decay distributions $f_{+}(f)$ when tag = $B^{0}(\overline{B^{0}})$, pair-produced at Y(4S) $f_{CP,\pm}(\Delta t) = \frac{1}{4} e^{-\Gamma \Delta t} [1 \pm S_{f_{CP}} \sin \Delta m_d \Delta t \mp C_{f_{CP}} \cos \Delta m_d \Delta t]$

Asymmetry

$$A_{f_{CP}}(\Delta t) = C_{f_{CP}} \cos(\Delta m_d \Delta t) - S_{f_{CP}} \sin(\Delta m_d \Delta t)$$

CP parameter

$$\lambda_{f_{CP}} = \eta_{f_{CP}} \frac{q}{p} \cdot \frac{\overline{A}_{\overline{f_{CP}}}}{A_{f_{CP}}}$$

$$C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}$$
$$S_{f_{CP}} = \frac{-2 \ln \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}$$

For single decay amplitude

 $-\mathbf{Im}\,\lambda_{f_{cr}}$

"Theoretical interpretation": CKM

The CKM paradigm in the SM

(1973) M.Kobayashi and T.Maskawa

• CP violation \Rightarrow third generation of quarks

Cabibbo-Kobayashi-Maskawa matrix V

- couples quark charged currents to W[±]
- mixes the left-handed (q_j=d,s,b) quark mass eigenstates to give weak eigenstates;
- unitary, with 4 independent parameters (e.g., 3 angles and 1 phase)
- complex elements: phase changes sign under CP
- interfering amplitudes can give observable CP-violating rate asymmetries

59

CKM matrix and Unitarity Triangle

$$\alpha \equiv \varphi_2 \equiv \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right),$$

$$\beta \equiv \varphi_1 \equiv \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right),$$

$$\gamma \equiv \varphi_3 \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right),$$

$$\gamma \equiv \varphi_3 \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right),$$

$$\gamma \equiv \varphi_3 \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right),$$

 $V_{1}V_{1}^{*} + V_{2}V_{1}^{*} + V_{2}V_{1}^{*} = 0$

The Unitarity Triangles

apply unitarity constraint to pairs of columns

d•**s*** = 0 (K system)

 $\mathbf{s} \cdot \mathbf{b}^* = 0$ (B_s system)

 $\mathbf{d} \cdot \mathbf{b}^* = 0$ (\mathbf{B}_d system)

These three triangles (and the three triangles corresponding to the rows) all have the same area. A nonzero area is a measure of CP violation and is an invariant of the CKM matrix.

The "normalized" Unitarity Triangle

Orders of magnitude for Wolfenstein parameters:

$$\lambda \approx 0.22$$
, $A \approx 0.8$, $\sqrt{\rho^2 + \eta^2} \approx 0.4$

$$\approx \frac{V_{ub}}{\lambda V_{cb}} * (\mathbf{p}, \mathbf{\eta}) \qquad \frac{V_{td}}{\lambda V_{cb}} * (\mathbf{q}, \mathbf{\eta})$$

$$\gamma \approx \arg V_{ub} \qquad \beta \approx -\arg V_{td} \qquad \alpha = \pi - \beta - \gamma$$

$$\begin{vmatrix} \frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}} + 1 + \frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}} = 0 \\ V_{cd} = \lambda, \quad V_{ud} \approx V_{tb} \approx 1 \end{vmatrix}$$

CKM and Unitarity Angles: CPV roadmap

B meson mixing and decays probe 5 of the 9 elements of the CKM matrix

CP violating asymmetries directly access the CKM phase through the Unitarity Angles $\alpha(\phi_2), \beta(\phi_1), \gamma(\phi_3)$

CPV in the B sector: CKM angles

 $V_{td} = |V_{td}| e^{-i\phi_1} (B^0 - \bar{B}^0 \text{ mixing})$

$$V_{td} = \left| V_{td} \right| e^{-i\beta}$$

 $V_{ub} = |V_{ub}|e^{-i\gamma}$

- Mixing-assisted CPV
 - Observation in $B^0 \rightarrow J/\psi K^0$ BaBar & Belle (2001)
- CPV in B^0 - \bar{B}^0 mixing itself
 - Not seen yet

$$V_{ub} = |V_{ub}| e^{-i\phi_3}$$
 ($b
ightarrow u$ decays)

- Direct CPV (Interference with other diagrams)
 - Evidence in $B^0 \to \pi^+\pi^-$ Belle (2003), not seen by BaBar
 - Evidence in $B^0 \rightarrow K^+ \pi^-$ BaBar & Belle (2004)

Both V_{td} and V_{ub} are involved

- Mixing-assisted CPV for final states containing V_{ub}
 - Evidence in $B^0 \to \pi^+\pi^-$ Belle (2003), not seen by BaBar

$$\frac{\overline{b}}{\overline{b}} \xrightarrow{B^{0} \text{ mixing}} \overline{d}$$

$$\frac{\overline{d}}{\overline{d}} \xrightarrow{\overline{b}} \overline{d}$$

$$\frac{\overline{d}}{q/p} \approx e^{-i2\beta}$$

$$P = K^0, D^0, B^0_{d'}, B^0_{s'}$$

Peculiarities of pseudoscalar mesons

in terms of
$$\Delta m$$
, $\Delta \Gamma$, $x = \frac{\Delta m}{\Gamma}$, $y = \frac{\Delta \Gamma}{2\Gamma}$

and of the expectations for CP effects

K⁰, D⁰, B⁰_d, B⁰_s: Δ m and $\Delta\Gamma$

Consider meson $|P^0
angle$ where $P^0=K^0,\,D^0,\,B^0,\,$ or B_s

pairs of charge-conjugate mesons, which can be transformed to each other via flavor changing weak interaction transitions

	$ K^0 angle = \bar{s}d angle$	$ D^0\rangle = c\bar{u}\rangle$	$ B^0\rangle = \bar{b}d\rangle$	$ B_s\rangle = \bar{b}s\rangle$
	K^0/\overline{K}^0	$D^0/\overline{D}{}^0$	$B^0/\overline{B}{}^0$	B_s/\overline{B}_s
$\tau(ps)$	$89.3 \pm 0.1; 51700 \pm 400$	0.415 ± 0.004	1.564 ± 0.04	1.47 ± 0.06
$\Gamma(\rm ps^{-1})$	$5.61 imes 10^{-3}$	$\simeq 2.4$	0.641 ± 0.016	0.62 ± 0.04
$y=\Delta\Gamma/2\Gamma$	-0.9966	y < 0.08	y < 0.01	$\simeq -0.10$
$\Delta m ({\rm ps}^{-1})$	$(5.301\pm 0.014)\times 10^{-3}$	< 0.2	0.490 ± 0.019	> 14
$x=\Delta m/\Gamma$	0.945 ± 0.002	< 0.09	0.72 ± 0.03	$\sim 20-40$
δ	$(3.27\pm 0.12)\times 10^{-3}$	~ 0	$\sim -10^{-3}$	$ \delta < 10^{-3}$

Time units (ps) for all quantities...! Exercise: check against the latest PDG and HFAG values

November 2005

L.Lanceri - CP Violation and Flavour - 1+2

67

mixing

$$x_K \cong 0.95$$
$$y_K \cong -0.996$$

Both of order unity! Only $K^{o_{L}}$ is left after \approx one oscillation

CPV

CPV is small...

$$\delta_{K} = \frac{2 \operatorname{Re}(\varepsilon_{K})}{1 + |\varepsilon_{K}|^{2}} \cong 3 \times 10^{-3}$$

November 2005

L.Lanceri - CP Violation and Flavour - 1+2

mixing

B_d system

To a very good approx., equal decay Equal decay $y_d \approx 0$ widths and no $\delta_d \approx 0$ CPV in mixing $\delta_d \approx 0$

$$a_{mix}(t) = \cos(\Delta m t)$$
$$= \cos(x_d t / \tau_d)$$

In the simplest case, time-dependent CP asymmetry:

$$a_{f_{CP}}^{CP}(t) = \operatorname{Im}(\lambda_{f_{CP}}) \sin(\Delta m t)$$

Time-integrated (incoherent!): $A_{f_{CP}}^{CP} = \frac{x_d}{1 + x_{f_{CP}}^2} \operatorname{Im}(\lambda_{f_{CP}})$

CPV

 $\chi_d = -$

November 2005

L.Lanceri - CP Violation and Flavour - 1+2

mixing

B_s system

x_s is very large y_s small, perhaps not negligible $x_s > 21$ (95% *CL*) $2y_s < 0.46$ (95% *CL*)

Mixing probability close to 50%

 $\chi_s = \frac{x_s^2 + y_s^2}{2(1 + x_s^2)} > 0.4988$

Time-dependent CP-asymmetry: sinusoidal function, modulated by a function f(t); 100% at the max.!

$$a_{f_{CP}}^{CP}(t) = \operatorname{Im}(\lambda_{f_{CP}}) \sin(\Delta m t) f(t)$$

 $x_s = 15$, $y_s = 0.10$ The Demo plots with unrealistic values! $\rightarrow \frac{x_s - 6}{1m^2}$

November 2005

L.Lanceri - CP Violation and Flavour - 1+2

CPV

70

The D System

In the D^0 - $\overline{D}{}^0$ system, both are very small

 \bullet y_D very small: only few common states

$$CP = +1 \quad \pi\pi, \ K\overline{K}, K_L^0 \pi^0$$
$$CP = -1 \quad K_S^0 \pi^0, \ K_S^0 \omega$$

 x_D very small: strongly CKM suppressed

interesting system to look for new physics

$$a_{mix}(t) \approx 1 - \frac{x_D^2 + y_D^2}{2} (t/\tau)^2$$

Present experimental limits will be summarized in the lecture on D mesons

Lecture 1 - Summary

- CPV tests probe fundamental symmetry properties of nature, with links to cosmology
- CPV seen in K and B mesons!
- Neutral pseudoscalar mesons (P= K, B, D) in particular offer a very rich and subtle phenomenology for stringent tests of theoretical predictions
- We will discuss in more detail (in the given order):
 - B mesons, K mesons, D mesons
 - "CPV without strangeness": Electric Dipole Moments

Discovery potential in B mesons

- B mesons: specially suited for stringent experimental tests of a detailed pattern of theoretical expectations
 - "direct" CP violation in charged B decays
 - from the interference of different decay amplitudes
 - CP *asymmetries* can be large (O(10%))
 - CP violation in mixing: should be small
 - CP violation in the interference of neutral B decays with and without mixing
 - Several "clean" time-dependent CP asymmetries
 - The three Unitarity Angles: α(φ₂), β(φ₁), γ(φ₃), can be determined by observables related to V_{td} and V_{ub}
 - The validity of the CKM model can be tested overconstraining the Unitarity Triangle
 - B_s mixing still to be determined (important for $|V_{ts}|$)!

Back-up slides

SI and natural units

Preferred units in particle physics: "natural units", • just one unit for all physical quantities...

E:
$$1MeV = 10^{6} eV$$
, $1GeV = 10^{9} eV$; (*L*: $1fm = 10^{-15}m$)
 $\hbar = c = 1$ (a-dimensionly) $\Rightarrow [M] = [E] = [T^{-1}] = [L^{-1}]$

examples

Compton we length
$$\lambda_C = \frac{\hbar}{mc} \rightarrow \frac{1}{m}$$
 measure $dn eV^{-1}$ or fm
Lifetime $\tau = \frac{\hbar}{\Gamma} \rightarrow \frac{1}{\Gamma}$ measure $dn eV^{-1}$ or s

SI and natural units

 SI units can be recovered in final results, by inserting appropriate powers of ħ and c via dimensional analysis and using:

$$\begin{array}{c} \hbar = 6.582 \times 10^{-22} \ MeVs \\ c = 3 \times 10^{23} \ fm \ s^{-1} \\ \hbar c = 197.33 \ MeV \ fm \end{array} \xrightarrow{1} 1 \ MeV = 1.52 \times 10^{21} \ s^{-1} \\ 1 \ s = 3 \times 10^{23} \ fm \\ 1 \ fm = 5.07 \times 10^{-3} \ MeV^{-1} \\ \end{array}$$

• Examples:

 $\boldsymbol{\omega}$ resonance: width and lifetime

 $\Gamma = 8.43 \, MeV \implies 1/\tau = 8.43 \times 1.52 \times 10^{21} \, s^{-1} = 1.28 \times 10^{22} \, s^{-1} \implies \tau = 0.78 \times 10^{-22} \, s^{-1}$

 π meson: mass and Compton wavelength

$$m = 140 MeV/c^2 \implies \lambda = 1/m = \frac{1}{140} MeV^{-1} = \frac{1}{140 \times 5.07 \times 10^{-3}} fm = 1.41 fm$$

References - 1

BOOKS

- I.I.Y.Bigi and A.I.Sanda, "CP Violation", Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol. 9, 1 (2000).
- G.C.Branco, L.Lavoura, J.P.Silva, "CP violation", Oxford University Press, Oxford (1999).
- K. Kleinknecht, "Uncovering CP violation: experimental clarification in the neutral K meson and B meson systems", Springer Tracts in Modern Physics, vol. 195 (Springer Verlag 2003).

PDG

D.Kirkby and Y.Nir, "CP Violation in Meson Decays",

F.J.Gilman, K.Kleinknecht, B.Renk, "The CKM Quark-Mixing Matrix", O.Schneider, "B⁰-antiB⁰ mixing",

Y.Kwon, "Production and Decay of b-Flavored Hadrons",

in: S.Eidelman et al., Phys. Lett. B592, 1 (2004), available on: http://pdg.lbl.gov/

References - 2

HFAG

Heavy Flavor Averaging Group (HFAG)

http://www.slac.stanford.edu/xorg/hfag/

http://www.slac.stanford.edu/xorg/hfag/triangle/index.html

HFAG, *"Averages of b-hadron Properties as of Winter 2005",* arXiv:hep-ex/0505100.

CKM fits

J.Charles et al., The CKMfitter Group, *"CP Violation and the CKM Matrix: Assessing the Impact of the Asymmetric B Factories",* Eur. Phys. J. C41, 1-131 (2005), [arXiv:hep-ex/0406184]; Winter 2005 updates in: http://www.slac.stanford.edu/xorg/ckmfitter/

M.Bona et al., The UTfit Collaboration, "*The 2004 UTfit Collaboration Report on the Status of the Unitarity Triangle in the Standard Model*", arXiv:hepex/0501199; Winter 2005 updates in: http://utfit.roma1.infn.it/

Acknowledgements

I am indebted to many colleagues whose seminars and lectures on B physics and CPV were a very helpful source of ideas and material, in particular:

Pat Burchat, Gautier Hamel de Monchenault, Achille Stocchi, ...

For the most recent updates I relied mainly on review talks at the LP2005 conference (Uppsala, June 30 – July 5, 2005), by:

Kazuo Abe, Francesco Forti, Rick Jesick, Ulrich Nierste, Luca Silvestrini, Iain Stewart

The experimental data shown in these lectures are mainly from the B-factories and Tevatron collaborations:

CDF, D0, BaBar, Belle

