CP Violation and Flavour

Lecture 3

Dottorato in Fisica – XX Ciclo

Livio Lanceri Università di Trieste and INFN

Recap

- B mixing and CPV: detailed pattern of SM (CKM) predictions, many channels
 - Typical expectations: O(10%) asymmetries in rare (10⁻⁴ and less) decays
 - need many reconstructed and tagged B mesons \Rightarrow high luminosity!

- Measurements to be discussed in lectures 3 5:
 - Tevatron: ${\rm B}_{\rm s}$ mixing ($\Delta \Gamma_{\rm s}$, $\Delta m_{\rm s}$)
 - B factories: CPV in B_d , B^{\pm}
 - "direct" in decays,
 - "indirect" in mixing, and
 - "mixing-induced"
 - \Rightarrow CKM Unitarity Angles $\alpha(\phi_2)$, $\beta(\phi_1)$, $\gamma(\phi_3)$

Lecture 3 - Outline

- **Experimental facilities**
- B_s mixing at the Tevatron $-\Delta\Gamma_s$, Δm_s
- **Detectors at the B-factories**
 - design criteria and performance
- Direct CPV
 - $B \rightarrow K\pi$
- Limits on indirect CPV

 $- A_{SI} = (N(I^+I^+) - N(I^-I^-)) / (N(I^+I^+) + N(I^-I^-))$

- Methods
- Results
- Statistics,
- systematics

Experimental facilities (B physics)

Past: LEP, CESR Present: Tevatron, PEP-II, KEK-B Future: LHC; Super B-Factory?

Recent past: LEP, SLC and CLEO

- $e^+e^- \rightarrow Z^0 \rightarrow b\overline{b}$
 - LEP (Aleph, Delphi, L3, OPAL)
 - 4 M Z⁰ \Rightarrow 1.4 M B_{u,d} ; B_s, b-baryons, ...; σ_{bb} / $\sigma_{\text{had}} \cong 0.2$
 - $p_{lab} \cong 30 GeV \implies boost \gamma \beta c \tau \cong 3 mm$
 - Silicon vertex detectors, particle identification
 - Lifetimes, mixing, b-tags
 - SLC (linear collider: SLD)
 - 400K Z⁰ \Rightarrow 140K B_{u,,d}; Polarized beam (A_{FB} measurement!)
 - Smaller diameter vacuum pipe, pixel vertex detector
- $e^+e^- \rightarrow Y(4S) \rightarrow B^0\overline{B}{}^0, B^+B^-$
 - CESR (CLEO, several upgrades) until 2001
 - + 17 M events, $B_{u,d}$ only; $\,\,\sigma_{bb}\,\,/\,\sigma_{had}\cong 0.25$
 - Monochromatic B mesons, small boost: $\gamma\beta\cong 0.06$
 - Vertex detector, particle identification; many important results!

Decay vertex technology

An $e^+e^- \rightarrow Z^0 \rightarrow bb$ event recorded by ALEPH

One b hadronizes to B_s fully reconstructed with detached decay vertex

Present (1): Tevatron, Run II

- Tevatron @ FNAL: pp collider (CDF, D0)
 - Large cross section and backgrounds, at E_{cm} = 1.96 TeV:

 $\sigma_{bb}\cong 10^5~nb$, $~~\sigma_{bb}$ $/~\sigma_{had}\cong 0.001$

- $\ \ \, \text{All species of b-hadrons: } B^{\pm} \text{, } B^{0} \text{, } B_{\text{S}} \text{, } B_{\text{C}} \text{, } \Lambda_{\text{b}} \text{, } \Xi_{\text{b}} \text{; } \gamma \beta c \tau \ \cong 3 \text{ mm}$
- Present *peak* luminosity:
 ² 10³² cm⁻² s⁻¹; *integrated* about 1 fb⁻¹

Collider Run II Integrated Luminosity

Max. recordable rate, all processes \approx 50 Hz

B rate \approx 300 Hz !

 \Rightarrow a selective trigger is essential ! also on hadrons, not only on leptons

Tevatron, Run II

Ambitious program:

luminosity up to 4-8 fb⁻¹ by 2009 upgraded CDF and D0 detectors

Physics reach:

top, W, searches, QCD B-physics, including: Rare decays, CPV, CKM, B_c B_s mixing: ($\Delta\Gamma/\Gamma$)_s, ($\Delta m/\Gamma$)_s unique opportunity!

B_s mixing (old upgrade proposal, 2fb⁻¹) → 20000 B_s → D_s⁺π⁻, D_s⁺π⁻π⁺π⁻ Tag efficiency: εD² =5.7÷11.3%

Pretty tough ... !

Present (2): the B-factory approach

• CM energy = 10.580 GeV

Effective cross sections:

L.Lanceri - CP Violation and Flavour

$Y(4S) \rightarrow B\overline{B}$ events are simpler...

CP eigenstate

$$B^0(\overline{B}^0) \to \psi(2S) K_S^0$$

Flavour eigenstate

$$\overline{B}^{0} \rightarrow D^{*_{+}} \pi^{-}$$

B-Factories: PEP-II and KEK-B

- $e^+e^- \rightarrow Y(4s) \rightarrow B_d^0 \overline{B}_d^0$ with asymmetric energy to boost the B mesons: PEP-II at SI AC and KEK-B at KEK
- clean environment, low backgrounds, high efficiency; small cross section (\approx 1nb): luminosity is the key factor. KEK-B record: 15.8 events/(nb s)
- > 700 M B-meson pairs recorded in total by Belle and BaBar !

Future: LHC & Super B-Factories?

• Dedicated seminars:

- *J.N.Butler,* "Future experiments on CP violation in the B system at hadron machines"
- *M.Giorgi,* "Possibilities for future experiments on CP violation in the B system at super B-factories"
- D.Hitlin, "The asymmetric B factories"

Detectors

CDF and D0 (*BABAR* and *BELLE* : next lecture)

CDF and DØ

November 2005

L.Lanceri - CP Violation and Flavour

14

The CDF Run II Detector

- New silicon vertex detector
 - inner layer at 1.35 cm
- New central tracker
 - Excellent mass resolution
- Extended μ coverage
- TOF and dE/dx particle ID
- Second level impact parameter trigger
 - Allows all hadronic B decay triggers

The DØ Run II Detector

- Silicon vertex detector
 - |η| < 3.0</p>
- Central fiber tracker and pre-shower detectors
 - |η| < 1.5
- 2 T solenoid magnet
- New low pT central muon trigger scintillators
- New forward µ system
 - Excellent muon purity and coverage: $|\eta| < 1.5$
- Second level silicon track trigger being commissioned, B tagging at 3rd level now

(Rick Jesik, LP2005)

B_s mixing at the Tevatron

B_s mixing: an open issue

• **B**_s mixing: $P(B_s \to \overline{B}_s) \propto e^{-t/\tau_s} (1 - \cos x_s t/\tau_s)$ $\Delta m_s = \hbar$

$$x_s = \frac{\Delta m_s}{\Gamma_s} \quad \Gamma_s = \frac{n}{\tau_s}$$

• $\Delta \Gamma_s$ and Δm_s : expectations

LEP, SLD, CDF-I $\Delta m_s > 14.5 \, ps^{-1}$ $x_s > 21.1$

$$\frac{x_{s}}{x_{d}} = \frac{m_{B_{s}}\eta_{B_{s}}}{m_{B_{d}}}\frac{B_{B_{s}}f_{B_{s}}}{B_{B_{d}}}\frac{|V_{ts}|^{2}}{|V_{td}|^{2}}$$

 $\left(\frac{\Delta\Gamma_s}{\Gamma_s}\right)_{theor} = \left(\frac{f_{B_s}}{210 \text{MeV}}\right)^2 \left(0.054^{+0.016}_{-0.032} \pm ...\right) \qquad 12 \pm 6\% \text{ (quoted by CDF)} \\ \left(\frac{\Delta\Gamma_s}{\Delta m_s}\right)_{theor} = \left(2.63^{+0.67}_{-1.36} \pm ...\right) \times 10^{-3} \quad \begin{array}{l} \text{Dunietz et al, PRD 63, 114015 (2001)} \\ \text{Beneke et al, PLB 459, 631 (1999)} \end{array} \right)$

Triggering at the Tevatron

- Dimuons: J/ψ modes
 p_T > 1.5 3.0 GeV
 CDF central, D0 out to |η| < 3.0</p>
- Single muons: semileptonic & tag D0: track-matched, p_T > 4 GeV CDF: also p_T > 2 GeV, with 120 μm < d < 1 mm (*)
- CDF only: two displaced vertex tracks: hadronic samples! $p_T > 2GeV$, 120 $\mu m < d < 1 mm$ (*) $\Sigma p_T > 5.5 GeV$

(*) CDF Silicon Vertex Trigger (lev.2)

Beamspot reconstruction, updated every 30 s; d resolution $\approx 50 \mu m$ Trigger on displaced tracks

November 2005

19

b-hadron samples at the Tevatron

CDF Run II Preliminary 355 pb ⁻¹			
$\stackrel{\circ}{\geq} 1600 \stackrel{\bullet}{=} B^0_{\text{s}} \rightarrow l^{\dagger} \nu D_{\text{s}} (D_{\text{s}}^{\dagger} \rightarrow \phi \pi^{\dagger}) \stackrel{\bullet}{=} \frac{l^{\dagger} D_{\text{s}}}{-l^{\dagger} D_{\text{s}}}$	CDF	DØ b-hadron	samples
≥ 1200 - N(ID _s) = 4355 ± 94	$B_s \rightarrow D_s / v$	Mode	evts / 100pb-1
<u>م</u> 1000		$J/\psi \rightarrow \mu^+ \mu^-$	1.14 M
008 U	N = 4355 ± 94	$B^+ \rightarrow J/\psi K^+$	1700
		$B_d \rightarrow J/\psi K^{*0}$	740
200	Lumi = 355 pb ⁻¹	$B_d \rightarrow J/\psi K_S^0$	40
		$B_s \rightarrow J/\psi \phi$	100
1.85 1.90 1.95 2.00 mass(KKπ) (GeV/c ²)		$\Lambda_b \rightarrow J/\psi \Lambda$	25
CDFII Preliminary, 355 pb ⁻¹ , $B_s \rightarrow D_s \pi$, $D_s \rightarrow \phi \pi$		$B_c \rightarrow J/\psi \mu X$	65
Data	CDF	X(3872) → J/ψ π ⁺ π ⁻	230
Ψ 120 $-B_s \rightarrow D_s \pi$		$\mathbf{B} \rightarrow \mathbf{D}^{**} \ \mu \ \mathbf{\nu}$	210
କୁ 100 କ ାର୍କ ପ୍ୟ ଅକ୍ୟ କାର୍କ ପ୍ୟ	$B_s \rightarrow D_s \pi$	$B^{**} \rightarrow B \pi$	150
O 80 combinatorial		$\boldsymbol{B_s \to D_{s1} \; \mu \; X}$	4
20 60 x ² /NDF = 132.7/125	$N = 526 \pm 33$	$B^+ \rightarrow D^0 \ \mu^+ \ X$	46.2 K
P 40 - N prob: 30.18%		$\boldsymbol{B_d \to D^{*-} \ \mu^+ \ X}$	10 K
	Lumi = 355 pb ⁻¹	$B_s \rightarrow D_s(\phi \pi) \mu X$	2900
0 5.0 5.5 6.0 6.5		$B_s \rightarrow D_s(K^*K) \mu X$	2500
K⁺K⁻π⁻π _B mass [GeV/c ²]			
November 2005	L.Lanceri - CP Violatior	n and Flavour	20 Trieste

 $\Delta \Gamma_s$ from $B_s \rightarrow J/\psi \phi$

$\Delta \Gamma_s$ from $B_s \rightarrow J/\psi \phi$: method

Relation of matrix elements to decay and oscillation parameters:

$$\Delta m = M_H - M_L \approx 2|M_{12}| \qquad \phi = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$
$$\Delta \Gamma = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}|\cos\phi$$

- In the Standard Model:

 - Mass eigenstates are ~ CP eigenstates with definite lifetimes
- The J/ψ φ final state is a mixture of CP states
 - L=0, 2; CP even; (A₀, A₁)
 - L=1; CP odd; (A₁)
- Assuming no CP violation in the B_s system, measure two B_s lifetimes, $\tau_{\rm H}$ and $\tau_{\rm H}$ (or $\Delta\Gamma/\Gamma$ and τ) by simultaneously fitting time evolution and angular distribution in untagged $B_s \rightarrow J/\psi \phi$ decays
- CDF result last summer: $\Delta\Gamma/\Gamma = 0.65^{+0.25}_{-0.33} \pm 0.01$

Phys.Rev.Lett. 94 (2005) 101803

$B_s \rightarrow J/\psi\phi$: transversity analysis

Angles and proper decay time:

 $\vec{\rho} \equiv \{\cos\theta, \varphi, \cos\psi\}$

From an unbinned Max. Likelihood fit to decay time-and-angles distribution:

 $A_0, A_{\parallel}, A_{\parallel}, c \tau_L, c \tau_H, \Delta \Gamma_s$ $ct = c(\vec{l}_T \cdot \vec{p}_T)M_B/p_T^2$

$$\frac{d^4 \mathcal{P}(\vec{\rho},t)}{d\vec{\rho}\,dt} \propto |A_0|^2 e^{-\Gamma_L t} \cdot f_1(\vec{\rho}) + |A_{\parallel}|^2 e^{-\Gamma_L t} \cdot f_2(\vec{\rho}) + |A_{\perp}|^2 e^{-\Gamma_H t} \cdot f_3(\vec{\rho}) + \operatorname{Re}(A_0^* A_{\parallel}) \cdot f_5(\vec{\rho}) e^{-\Gamma_L t}$$

$\Delta \Gamma_s$ from $B_s \rightarrow J/\psi \phi$: recent results

$\Delta \Gamma_s$: status and outlook

$\Delta m_s \text{ from } B_s \rightarrow D_s / v , D_s \pi$

Δm_s from $B_s \rightarrow D_s / v$ $(D_s \pi)$: method

- Take a lepton and a "seed"-track for D_s reconstruction ($\phi \pi$, etc.) from SVT data
- Vertex the D_s and then the (D_s -lepton) ٠
- Compute "transverse decay length" L^{B}_{xv} • and the proper decay time ct
- "opposite side" flavour tag \Rightarrow classify "mixed"/"unmixed" event Electron or muon tag Jet charge tag

 $\left|\varepsilon D^2 = \varepsilon (1-2w)^2\right|$

back-of-the-envelope calculation of significance S:

$$S \approx \sqrt{\frac{\varepsilon D^2}{2}} \frac{N_s}{\sqrt{N_s + N_B}} e^{-(\Delta m_s \sigma_t)^2/2}$$

Likelihood fits, limits

Δm_s : B_s decays, reconstruction

 $B_{s} \rightarrow D_{s}/v$ N = 4355 + 94

CDF

CDF

 $B_s \rightarrow D_s \pi$

Lumi = 355 pb⁻¹

Lumi = 355 pb^{-1}

DØ 460 pb⁻¹ Semileptonic decay

Δm_s : CDF semileptonic analysis

 $B_s^0 \to D_s^- l^+ \nu,$ $D_s^- \to \phi \pi^- (\phi \to K^+ K^-),$ $D_s^- \to K^{*0} K^- (K^{*0} \to K^+ \pi^-),$ $D_s^- \to \pi^+ \pi^- \pi^-$ Luminosity = 355 pb^{-1}

	Ν	S/B	S/√(S+B)
φπ-	4355±94	3.12	55.9
K*0K–	1750±83	0.42	22.8
$\pi^+\pi^-\pi^-$	1573±88	0.32	19.4

Proper decay time *ct*:

			$\epsilon = efficiencv$	
"Transverse decay length"	σ≈60μm	Flavour lag	D = dilution =	= 1-2 ∖
$\vec{X} = \vec{X} \cdot \vec{p}_T (D_s^- l^+)$		Tag type	εD ² (%)	
$L_{xy}^{\nu} = \frac{1}{\left \vec{p} \left(D^{-} l^{+} \right) \right }$		Muon	(0.70±0.04)%	
$ PT(\mathbf{P}_{s}, \mathbf{r}_{s}) $)	Electron	(0.37±0.03)%	
$ct = L_{xy}^{B} \frac{m(B_{s}^{0})}{p_{T}(D_{s}^{-}l^{+})} \frac{p_{T}(D_{s}^{-}l^{+})}{p_{T}(B_{s}^{0})}$		2ndary vtx	(0.36±0.02)%	
		Displaced track	(0.36±0.03)%	
I		Highest p jet	(0.15±0.01)%	
"pseudo proper-time" ("K-f	actor"	Total	~1.6%	

The complete likelihood function includes terms for four different types of backgrounds; their parameters are determined by control samples (sidebands) and simulations. Perform an "amplitude A scan" vs Δm_s values

"Amplitude scan"

If $\Delta m_s \approx$ true value, A=1 is expected within its uncertainty σ_A

If Δm_s far from the true value, A = 0 is expected

The Δm_s value can be excluded at 95% CL if (A + 1.645 σ_A)< 1

30

Δm_s : CDF results

- Semileptonic Channel
 - Sensitivity = 7.4 ps⁻¹
 - Limit: 7.7 ps⁻¹

- Semileptonic + Hadronic
 - Sensitivity: 7.4 → 8.4 ps⁻¹
 - Limit: 7.7 → 7.9 ps⁻¹

Δm_s : World Average and CDF

- World Average
 - LEP, SLD, CDF run I
 - Sensitivity: 18.2 ps⁻¹

- World Average + CDF Run II
 - Sensitivity: 18.6 ps⁻¹
 - Limit 14.5 ps⁻¹

Δm_s : expected improvements

expect combined hadronic and semileptonic **CDF** sensitivity ~ 15ps⁻¹ in 1 fb⁻¹

- Add new tagging algorithms
 - same side Kaon
- Add more channels
 - K*K, 3π
- Add signals from other triggers
 - 4GeV-lepton + 1 displaced track trigger adds 3x data
- Improve decay time resolution with event by event primary vertex reconstruction

DØ

Semileptonic reach ~12 ps⁻¹ in 1 fb⁻¹

B-factory detectors

BABAR and BELLE: Optimized for time-dependent CP asymmetries

Time-Dependent CP Asymmetry Measurement

B-flavor tagging efficiency and Δt resolution function are obtained from data (measurement of mixing, with exclusively reconstructed self-tagging flavor states)

Time-Dependent Mixing Measurement

B-flavor tagging efficiency and Δt resolution function are obtained from data (measurement of mixing, with exclusively reconstructed self-tagging flavor states)

"Back-of-the-envelope" sensitivity

CP asymmetry: sensitivity

- Observed asymmetry: diluted! $A_{obs} = D A_{CP}$
- Uncertainty on $A_{CP} = A_{obs} / D$:

$$\delta A_{CP} \simeq rac{1}{D\sqrt{N_{obs}}} = rac{1}{D\sqrt{\epsilon imes Br imes N_{prod}}}$$

examples and numbers: see for instance **BaBar Physics Book**

- Figures of merit
 - Number of produced events

$$N_{prod} = \int L dt \times \sigma_{b\bar{b}} \times 2f_0$$

Efficiencies $\mathcal{E} = \mathcal{E}_{det} \times \mathcal{E}_{CP} \times \mathcal{E}_{tag}$

- Dilution factors
$$D = d_{mix} \times d_{tag} \times d_{bkg}$$

 $d_{min} = x/(1+x)^2 \approx 0.47$, for time-integrated

- vertexing and tracking: crucial for Δt and low p_T tracks SVT:
- DCH: main tracking device, also dE/dx for particle ID
- DIRC: K- π separation > 3.4 σ for P < 3.5GeV/c
- EMC: very good energy resolution; electron ID, π^0 and γ reco.
- IFR: Muon and neutral hadrons (K⁰,) ID

BaBar: the Silicon Vertex Tracker

Particle identification: the DIRC

K identification performance

Charged K identified by

DIRC: Cerenkov angle DCH: dE/dx (p < 0.7 GeV/c)

Efficiency and purity measured on control samples (soft pion tag) $D^{*+} \rightarrow D^0 \pi^+, \quad D^0 \rightarrow K^- \pi^+$

Lepton identification performance

electrons

Ingredients: track matching, E/p, EMC cluster shape, dE/dx consistency Typical tight selection efficiency (E>0.5GeV): $\epsilon \approx 92\%$, 0.1% π misID Measured on control samples

muons

IFR penetration and hit pattern, MIP consistency in EMC Typical tight selection efficiency (E>1.5GeV):

 $\epsilon \approx 75\%$, 3% π misID

Belle detector at KEK

Both BaBar and Belle: optimized for CP asymmetries

Δt from (Δz)_{LAB}

K.Abe LP 2005

•
$$\Delta z = z_{cp} - z_{tag}$$

$$\Delta t \simeq \Delta z / (\gamma \beta c)$$

- Interaction Point $\gg \Delta z$
 - B flight-length in x-y: only $\sim 30 \mu$
- C conservation in $\Upsilon(4S) \rightarrow B\overline{B}$
 - $\psi(t) = |B_1^0 > |\bar{B}_2^0 > -|\bar{B}_1^0 > |B_2^0 >$

(one is B^0 and other is $ar{B}^0$ at any time)

The other B provides time reference and flavor tagging at $\Delta t=0$

Parameters	BaBar	Belle	
e^+e^- energy	$3.1 \times 9 \text{GeV}$	$3.5 \times 8.5 \text{GeV}$	
$\gamma\beta$	0.56	0.425	
Interaction point $(h \times v \times l)$	$120\mu\text{m} \times 5\mu\text{m} \times 8.5\text{mm}$	$80\mu\text{m} \times 2\mu\text{m} \times 3.4\text{mm}$	
Typical Δz	260µm	200µ m	
σ_z (CP-side)	$50\mu m$	75µm	
σ_z (tag-side)	$100 \sim 150 \mu{ m m}$	140 µ m	

∆t resolution effect

Δt resolution effect

November 2005

L.Lanceri - CP Violation and Flavour

Exclusive B decay reconstruction

- Likelihood fits with discriminating variables:
 - Kinematics:

$$m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$$
$$\Delta E = E_B^* - E_{beam}^*$$

- Particle ID: π , K, e, μ , ...
- Event shape variables, to separate the continuum bkgd (use "off-resonance" data as control sample!!!)
- Efficiency
 - Typically $\varepsilon \approx 15 \div 40\%$
- Purity
 - Up to 97% (for $J/\psi K_s$)

B Flavour Tagging

CP asymmetry is between $B^0 \rightarrow f$ and $\overline{B^0} \rightarrow f$ Must tag flavor at $\Delta t=0$ (when we know flavor of two Bs is opposite). Use decay products of *other* (tag) B.

Leptons : Cleanest tag. Correct >95%

Overall tagging performance

$$\sum_{i} \varepsilon_i (1 - 2\omega_i)^2 \approx 28\%$$

recently improved to 30.5%

BaBar

- ε_i tag efficiency
- ω_i wrong tag probability

Direct CP Violation in B decays

$B^0 \rightarrow h^+h^-$: direct CPV ?

Expect direct CPV asymmetry and constraints on γ (theoretically difficult!)

(where $\delta = CP$ -conserving strong phase complicated by long-distance & re-scattering)

Look for direct CPV!

Direct CP asymmetry in $B^0 \rightarrow K^+\pi^-$!

- BaBar analysis (2004)
 - 227 M BB events
 - 68030 selected events
- Extended ML fit:
 - discriminating variables:

 $\vec{x}_j = \{m_{\text{ES}}, \Delta E, \mathcal{F}, \theta_c^+, \theta_c^-\}$

- Fisher, Cherenkov angles

- Fitted parameters
 - Yields for $K\pi$, $\pi\pi$, KK

$$n_{K\pi} = 1606 \pm 51$$

 $n_{\pi\pi} = 467 \pm 33$

$$n_{KK} = 3 \pm 12$$

- asymmetries for signal and background $A_{K\pi}$, $A_{K\pi}{}^{b}$

(Likelihood Projection !)

Observation in 2004

• BaBar result (significance: 4.3σ), soon confirmed by Belle

$$A_{K\pi} = \frac{n(K^{-}\pi^{+}) - n(K^{+}\pi^{-})}{n(K^{-}\pi^{+}) + n(K^{+}\pi^{-})} = -0.133 \pm 0.030 \,(\text{stat}) \pm 0.009 \,(\text{syst})$$

- Systematic uncertainty
 - Dominated by the asymmetry of identified charged tracks
 - Controlled by the background asymmetry, compatible with zero; the bkgd is from real K and π with the correct kinematics, from opposite jets of continuum cc events
- Coherent results in all subsamples

$$A_{K\pi}^b = -0.001 \pm 0.008$$

Sample	$N_{B\overline{B}}$	$n_{K\pi}$	$\mathcal{A}_{K\pi}$	$\mathcal{A}^{ extbf{b}}_{K\pi}$
1999 - 2001	21.1	142 ± 15	-0.240 ± 0.102	0.006 ± 0.026
2002	66.4	479 ± 27	-0.102 ± 0.055	-0.008 ± 0.015
2003	34.1	241 ± 19	-0.109 ± 0.079	0.007 ± 0.021
2004	104.9	743 ± 33	-0.142 ± 0.044	0.004 ± 0.012

K- π separation

Crucial ingredient to distinguish $B \rightarrow K\pi$ from $B \rightarrow \pi\pi$ particle identification: K/ π separation > 3 σ up to 3.5 GeV

Update at LP 2005 $\bar{B}^0 \rightarrow K^- \pi^+$ is Different from $B^0 \rightarrow K^+ \pi^-$

Belle $(386 \times 10^6 B\bar{B})$ Entries/2MeV/c 8 8 8 8 8 $K^-\pi^+$ $K^+\pi^-$ 600E 200 20 100 100 5.25 5.25 M_{bc} (GeV/c²) M_{bc} (GeV/c²) Entries/20MeV Entries/20MeV 00 00 00 00 00 00 $K^-\pi^+$ $K^+\pi^-$ 5.26 5.28 5.3 mes (GeV/c²) 300 300 200 200 100 100 ∆E (GeV) ∆E (GeV)

$$A_{CP}(K^+\pi^-) = -0.133 \pm 0.030 \pm 0.009$$

Babar $(227 \times 10^6 B\bar{B})$

0.1

5.2

5.22 5.24

Events/

Vsymmetry

solid lines are for $K^+\pi^-$

 $A_{CP}(K^+\pi^-) = -0.113 \pm 0.022 \pm 0.008$ (was $-0.101 \pm 0.025 \pm 0.005$ with $275 \times 10^6 B\bar{B}$)

Value / 30 MeV

-0.1

0

0.1

ΔE (GeV)

November 2005

L.Lanceri - CP Violation and Flavour

Definitively rules out Superweak models

K.Abe

LP 2005

"direct" A_{CP}: experimental status

CP Asymmetry in Charmless B Decays

No other evidence up to now

L.Lanceri - CP Violation and Flavour

A_{CP} in charmless $B \rightarrow PP$

K.Abe, LP05

Decay Mode	BaBar	Belle	SM diagrams
$K^+\pi^-$	$-0.133 \pm 0.030 \pm 0.009$	$-0.113 \pm 0.021 \pm 0.008$	tree, penguin
$K^+\pi^0$	$+0.06\pm 0.06\pm 0.01$	$+0.04\pm0.04\pm0.02$	tree, penguin
$K_S^0 \pi^+$	$-0.09 \pm 0.05 \pm 0.01$	$+0.05\pm 0.05\pm 0.01$	penguin
$K_S^0 \pi^0$	$-0.06 \pm 0.18 \pm 0.03$	$+0.16 \pm 0.29 \pm 0.05$	penguin
$\pi^+\pi^-$	$+0.09 \pm 0.15 \pm 0.04$	$+0.52\pm0.14$	tree, penguin
$\pi^+\pi^0$	$-0.01 \pm 0.10 \pm 0.02$	$+0.02\pm0.08\pm0.01$	tree
$\pi^0\pi^0$	$+0.12\pm0.56\pm0.06$	$0.44^{+0.53}_{-0.52} \pm 0.17$	tree, penguin
K^+K^-	signal not seen	signal not seen	W-exchange
K^+K^0	seen	seen	penguin, annihilation
$K^0 \overline{K}^0$	seen	seen	penguin

Extraction of ϕ_3 may be difficult due to hadronic effects. Hope to learn about them from measurements. (e.g. Why $A_{CP}(K^+\pi^0) \neq A_{CP}(K^+\pi^-)$? Expect the same based on naive factorization)

B_d : limits on CPV in mixing

B_d lifetime and mixing: status

A_{SL} and CPV in mixing

CPV in $B\overline{B}$ Mixing (Analogous to \mathcal{E}_K in K^0 System)

CPV in mixing $\rightarrow |q/p| \neq 1$

This can occur if M_{12} and Γ_{12} have different phases

• $\left|\frac{\Gamma_{12}}{M_{12}}\right| \simeq \frac{3\pi}{2} \frac{m_b^2}{m_W^2} \frac{1}{S_0(m_t^2/m_W^2)} \sim \mathscr{O}(\frac{m_b^2}{m_t^2})$

•
$$\phi_{M_{12}} - \phi_{\Gamma_{12}} = \pi + \mathscr{O}(\frac{M_c^2}{m_b^2})$$
 ($\phi_{M_{12}} = \phi_1$ in SM)

•
$$1 - |\frac{q}{p}|^2 \simeq Im\left(\frac{\Gamma_{12}}{M_{12}}\right) \sim \mathscr{O}(10^{-3})$$

Mass and flavor eigenstates: $|B_1 \rangle = p | B^0 \rangle + q | \overline{B}^0 \rangle$ $|B_2 \rangle = p | B^0 \rangle - q | \overline{B}^0 \rangle$

Charge asymmetry in same-sign dilepton events $A_{SL} = (1 - |q/p|^4)/(1 + |q/p|^4)$

at the B-factories:

$$A_{SL} \equiv \frac{P(\overline{B}^{0} \to B^{0}) - P(B^{0} \to \overline{B}^{0})}{P(\overline{B}^{0} \to B^{0}) + P(B^{0} \to \overline{B}^{0})} = \frac{\Gamma_{Y(4S) \to l^{+}l^{+}} - \Gamma_{Y(4S) \to l^{-}l^{-}}}{\Gamma_{Y(4S) \to l^{+}l^{+}} + \Gamma_{Y(4S) \to l^{-}l^{-}}}$$

A_{SL} , |q/p|, ϵ_B are related

A_{SI} observable and CP parameters:

$$A_{SL} = \frac{P(\overline{B}^{0} \to B^{0}) - P(\overline{B}^{0} \to \overline{B}^{0})}{P(\overline{B}^{0} \to B^{0}) + P(\overline{B}^{0} \to \overline{B}^{0})}$$

$$A_{SL} = \frac{\Gamma_{Y(4S) \to l^{+}l^{+}} - \Gamma_{Y(4S) \to l^{-}l^{-}}}{\Gamma_{Y(4S) \to l^{+}l^{+}} + \Gamma_{Y(4S) \to l^{-}l^{-}}} = - \text{at the B-factories}$$

$$= \frac{|p/q|^{2} - |q/p|^{2}}{|p/q|^{2} + |q/p|^{2}} = \frac{1 - |q/p|^{4}}{1 + |q/p|^{4}} \cong - \frac{4 \operatorname{Re} \varepsilon_{B}}{1 + |\varepsilon_{B}|^{2}} \xrightarrow{\text{equivalent to } \varepsilon_{K}}$$

$$\varepsilon_{B} = \frac{p - q}{p + q} \implies \frac{q}{p} = \frac{1 - \varepsilon_{B}}{1 + \varepsilon_{B}} \qquad \left| \frac{|q|}{|p|} = \sqrt{\frac{1 - A_{SL}}{1 + A_{SL}}} \right|$$

L.Lanceri - CP Violation and Flavour

CPV in B_d mixing: A_{SL}

Experimental status:

from measurements at LEP, CLEO, BaBar and Belle:

 $|q/p| = 1.0013 \pm 0.0067$ A_{SL} = -0.0026 ± 0.0034 $\frac{\operatorname{Re}\varepsilon_B}{\varepsilon_B} = -0.0007 \pm 0.0017$

HFAG, Winter'05 average

Not easy to improve: systematics!

For example, the most recent paper: *BELLE*, hep-ex/0505017:

$$\begin{split} A_{\rm sl} &= (-1.1 \pm 7.9 ({\rm stat}) \pm 7.0 ({\rm sys})) \times 10^{-3}, \\ &|q/p| = 1.0005 \pm 0.0040 ({\rm stat}) \pm 0.0035 ({\rm sys}). \\ &\frac{{\rm Re}(\epsilon_B)}{1+|\epsilon_B|^2} = (-0.3 \pm 2.0 ({\rm stat}) \pm 1.7 ({\rm sys})) \times 10^{-3} \end{split}$$

BELLE 2005 (78 + 9) fb⁻¹

```
< 1/5 of the
available data !
```


A_{SL} : what does it take?

To measure the charge asymmetry in dilepton events, Quoting from BELLE, hep-ex/0505017:

careful charge-dependent corrections, in several steps.

Subtraction of the background from continuum $e+e- \rightarrow q\overline{q}$ (where q = u, d, s or c), using off-resonance data.

From control samples: corrections of all detected lepton tracks:

charge asymmetries in the efficiencies for track finding (< 1%) and for lepton identification (< 1%)

charge-dependent probabilities of mis-identifying hadrons as leptons (main effect: 2% "fake" μ^{\pm} are K[±], with 0.02×0.5 \approx 1% charge asymmetry)

Separation of the remaining backgrounds from B⁰B⁰ and B⁺B⁻ using their different behavior in the Δt (Δz) distributions.

A_{SL} : typical systematic uncertainties

TABLE II: Source of systematic errors for the measurement of A_{sl} .

Category	Source	$\Delta A_{\rm sl}~(\times 10^{-3})$	
Event selection	Track selection	± 2.61	
	$\cos \theta^*_{\ell\ell}$ cut	± 0.63	Control samples:
	Lepton pair veto	± 2.33	
Continuum subtraction	l	± 4.88	$e^+e^- \rightarrow (e^+e^-)e^+e^- \qquad e^+e^-\gamma$
Track corrections	Track finding efficiency	± 1.56	
	Electron identification efficiency	± 0.56	simulation embedded in data
	Muon identification efficiency	± 1.98	
	Fake electrons	± 0.45	$K_S^0 o \pi^+ \pi^-, \phi o K^+ K^-,$
	Fake muons	± 0.81	
	Relative multiplicity	± 0.56	$\Lambda \to p\pi,$
Δz fit for dileptons	Detector response function	± 0.07	$(D^{*-} \rightarrow \overline{D}^0 \sigma^- \overline{D}^0 \rightarrow V^- \sigma^+)$
	Δm_d	± 0.08	$(D \to D \ \pi \ , \ D \to K \ \pi)$
	$ au_{B^0}$	± 0.07	
	69 μm smearing of background Δz	± 0.13	
	Statistics of signal MC	± 0.01	
	Statistics of background MC	± 0.19	ASL.
	Fitting range	± 0.04	systematic uncertainty
	Assuming $N_b^{++} = N_b^{}$	± 1.59	<i>BELLE</i> hep-ex/0505017
Δz fit for $A_{\rm sl}$	Fitting range	± 1.30	0.007 - 7.40 - 3
Total		± 6.97	$0.007 = 7 \times 10^{-3}$

Older BaBar result (23 M B-pairs)

Events x10³/ 0.04 Gev/c 2.0 t

05

1.5

2

p, (GeV/c)

$A_{T/CP} = (0.5 \pm 1.2 (\text{stat}) \pm 1.4 (\text{syst})) \%$

 $|q/p| = 0.998 \pm 0.006(\text{stat}) \pm 0.007(\text{syst}).$

Type of systematic error	$\sigma(A_{T/CP})(\%)$
Electron charge asymmetry in the detection	0.5
Muon charge asymmetry in the detection	0.6
Non- $B\overline{B}$ background charge asymmetry	0.7
$B\overline{B}$ background charge asymmetry	0.9
Correction of the background dilution	0.01
Total	1.4

PRL 88, 231801 (2002)

(a)

2.5

(c)

Gevi

Vents x10³/ 0.04

0

2

0.5

3

B4B4R

2.5

(d)

p, (GeV/c)

1.5

Lecture 3: Summary

- Bs mixing from CDF and D0: Still $x_s > 21$, significant work needed to improve (...LHCb?)
- "Direct" CPV seen in $B_d \rightarrow K\pi$! $A_{CP}(K^+\pi^-) = -0.133 \pm 0.030 \pm 0.009$ **BaBar 2004** $A_{CP}(K^+\pi^-) = -0.113 \pm 0.022 \pm 0.008$ Belle update 2005
- "Indirect" CPV in mixing (ASL) not seen yet •

 $A_{sr} = -0.0026 \pm 0.0034$ HFAG world average, winter 2005

Next: ... Unitarity Angles!

