CP Violation and Flavour

Lecture 5

Dottorato in Fisica – XX Ciclo

Livio Lanceri Università di Trieste and INFN

Recap and Outline

- $sin 2\beta$ measurements (Lecture 4):
 - b $\rightarrow c\bar{c}s$: very good agreement with SM (CKM) expectations
 - b \rightarrow sss : ϕK_s update from Belle now consistent with BaBar and compatible with the SM
 - b → sss : all compatible with the SM within ≈ 1σ, except η'K_s; all below the SM except f_0K_s ; more data needed to understand if there really is a non-SM effect
- Today:
 - Review of results on $\pi\pi$, $\rho\pi$, $\rho\rho$ and $\sin 2\alpha$ (ϕ_2)
 - Measurements of $\gamma(\phi_3)$
 - Wrap-up on the Unitarity Triangle and CKM fits

A_{CP} in charmless $B \rightarrow PP$

K.Abe, LP05

Decay Mode	BaBar	Belle	SM diagrams
$K^+\pi^-$	$-0.133 \pm 0.030 \pm 0.009$	$-0.113 \pm 0.021 \pm 0.008$	tree, penguin
$K^+\pi^0$	$+0.06 \pm 0.06 \pm 0.01$	$+0.04 \pm 0.04 \pm 0.02$	tree, penguin
$K_S^0 \pi^+$	$-0.09 \pm 0.05 \pm 0.01$	$+0.05\pm 0.05\pm 0.01$	penguin
$K_S^0 \pi^0$	$-0.06 \pm 0.18 \pm 0.03$	$+0.16 \pm 0.29 \pm 0.05$	penguin
$\pi^+\pi^-$	$+0.09 \pm 0.15 \pm 0.04$	$+0.52\pm0.14$	tree, penguin
$\pi^+\pi^0$	$-0.01 \pm 0.10 \pm 0.02$	$+0.02\pm0.08\pm0.01$	tree
$\pi^0\pi^0$	$+0.12\pm0.56\pm0.06$	$0.44^{+0.53}_{-0.52} \pm 0.17$	tree, penguin
K^+K^-	signal not seen	signal not seen	W-exchange
K^+K^0	seen	seen	penguin, annihilation
$K^0 \overline{K}^0$	seen	seen	penguin

Extraction of ϕ_3 may be difficult due to hadronic effects. Hope to learn about them from measurements. (e.g. Why $A_{CP}(K^+\pi^0) \neq A_{CP}(K^+\pi^-)$? Expect the same based on naive factorization)

$sin2\alpha (\phi_2)$ from time-dependent CP asymmetries in b \rightarrow uūd

NB: Experimental challenge: BFs down to ~ 10^{-6} ; purities also are lower!

Isospin analysis for $\kappa = \alpha - \alpha_{eff}$

Use SU(2) (u and d quarks) to relate amplitudes of all $\pi\pi$ ($\rho\rho$) modes.

$$\mathbf{A}^{+-} = \mathbf{A}(B^0 \to h^+ h^-)$$
$$\mathbf{A}^{+0} = \mathbf{A}(B^+ \to h^+ h^0)$$
$$\mathbf{A}^{00} = \mathbf{A}(B^0 \to h^0 h^0)$$

 $hh = \pi\pi, \rho\rho$ $rac{1}{\sqrt{2}}A^{+-}$ $2\delta^{2|0-0.eff}$ $\tilde{\Lambda}^{00}$ A^{00} $A^{+0} = \tilde{A}^{-0}$ ~: Charge conj. Pure tree

Gronau, London : PRL65, 3381 (1990)

ππ favored for isospin analysis $π^0π^0$ measured: too small for isospin analysis, too large for limits ρρ has 3 polarization amplitudes Expected dilution because of mixed CP, but instead...

- ...almost 100% longitudinally
- polarized: pure CP-even state
- Larger branching fraction than $\pi\pi$
- $\rho^0\rho^0$ not observerd yet (small)

→ good limit on α - α _{eff}

 $\rho\rho$ gives best determination of α

$B^0 \rightarrow \pi^+ \pi^-$

BaBar (227 M B-pairs)

Belle (275 M B-pairs)

CP fit results: $S_{\pi\pi}$ and $C_{\pi\pi}$

BaBar, hep-ex/0501071 • BaBar Belle, hep-ex/0502035 • Belle

Belle claim: 4.0 σ evidence of direct CPV

$B \rightarrow \pi \pi$: experimental issues

- Higher backgrounds than charmonium;
 K-π separation to distinguish ππ from *K*π;
 otherwise the analysis is *as "simple"*
 - $m_{ES'} \Delta E$, "Fischer", θ_C^+ , θ_C^- ; Δt , "tag"
- For the isospin analysis:
 - $B^0 \rightarrow \pi^0 \pi^0$: BF = (1.45 ± 0.29) ×10⁻⁶
 - Too small, not enough
- Direct CPV evidence from Belle (4.0σ), not seen by BaBar

$B^{0} \rightarrow \rho \rho$

BaBar (232 M B-pairs)

Belle (275 M B-pairs)

$B \rightarrow \rho^+ \rho^-$

- Reconstruct the $\rho^{+(-)} \rightarrow \pi^{+(-)} \pi^0$
- As for ππ, CP fit based on: kinematical signal identification + π/K separation + event shape variables; and Δt, tag
- From the polarization measurement (f_L) : almost pure CP eigenstate
- It can be treated as a "two-body" decay, but: *larger backgrounds!* Not only continuum, also from other B decays, and "self-cross-feed" (SCF)

 $B \rightarrow \rho^+ \rho^-$

FIG. 1: The distributions for the highest purity tagged events for the variables $m_{\rm ES}$ (a), ΔE (b), cosine of the ρ helicity angle (c) and $m_{\pi\pm\pi^0}$ (d). The dotted lines are the sum of backgrounds and the solid lines are the full PDF.

FIG. 2: The Δt distribution for a sample of events enriched in signal for B^0 (a) and \overline{B}^0 (b) tagged events. The dotted lines are the sum of backgrounds and the solid lines are the sum of signal and backgrounds. The time-dependent *CP* asymmetry (see text) is shown in (c), where the curve is the measured asymmetry.

Isospin analysis with $B \rightarrow \rho \rho$

Almost complete polarization f_L $\Rightarrow \approx CP$ eigenstate

Branching Fractions isospin-related channes

Nev	W BABAR	BELLE
f _L	$0.978 \pm 0.014^{+0.021}_{-0.029}$	$0.951^{+0.033+0.029}_{-0.039-0.031}$
$\mathcal{S}_{ ho ho,L}$	$-0.33 \pm 0.24^{\scriptscriptstyle +0.08}_{\scriptscriptstyle -0.14}$	$0.09 \pm 0.42 \pm 0.08$
$\mathcal{C}_{ ho ho,L}$	$-0.03 \pm 0.18 \pm 0.09$	$0.00 \pm 0.30^{+0.09}_{-0.10}$
$B_{\rho+ ho-}$	$(30\pm4\pm5)\times10^{-6}$	$(24.4 \pm 2.2^{+3.8}_{-4.1}) \times 10^{-6}$
$B_{\rho+\rho0}$	$(22.5^{+5.7}_{-5.4}\pm 5.8)\times 10^{-6}$	$(31.7\pm7.1^{+3.8}_{-6.7})\times10^{-6}$
$B_{\rho 0 \rho 0}$	<1.1×10 ⁻⁶	-

Use averages for BF and S/C coefficients Use BABAR $\rho^0 \rho^0$ limit, which dominates the error. $|\alpha - \alpha_{eff}| < 11^\circ$

Isospin analysis with $B \rightarrow \rho \rho$

(1) "Quasi 2-body" parameters

Not a CP eigenstate: time dependence is more complicated: 5 coefficients instead of just 2:

These coefficients are related to two more intuitive asymmetries:

$$A_{-+} \equiv \frac{\mathcal{N}(\overline{B}{}^{0} \to \rho^{+}\pi^{-}) - \mathcal{N}(B^{0} \to \rho^{-}\pi^{+})}{\mathcal{N}(\overline{B}{}^{0} \to \rho^{+}\pi^{-}) + \mathcal{N}(B^{0} \to \rho^{-}\pi^{+})}$$
$$= \frac{\mathcal{A}_{\rho\pi} - C_{\rho\pi} - \mathcal{A}_{\rho\pi} \times \Delta C_{\rho\pi}}{1 - \Delta C_{\rho\pi} - \mathcal{A}_{\rho\pi} \times C_{\rho\pi}}$$
$$A_{+-} \equiv \frac{\mathcal{N}(\overline{B}{}^{0} \to \rho^{-}\pi^{+}) - \mathcal{N}(B^{0} \to \rho^{+}\pi^{-})}{\mathcal{N}(\overline{B}{}^{0} \to \rho^{-}\pi^{+}) + \mathcal{N}(B^{0} \to \rho^{+}\pi^{-})}$$
$$= \frac{\mathcal{A}_{\rho\pi} + C_{\rho\pi} + \mathcal{A}_{\rho\pi} \times \Delta C_{\rho\pi}}{1 + \Delta C_{\rho\pi} + \mathcal{A}_{\rho\pi} \times C_{\rho\pi}}$$

November 2005

L.Lanceri - CP Violation and Flavour

16

"Quasi 2-body" parameters F.Forti, LP05

"Full Dalitz" analysis

A full time-dependent Dalitz plot analysis can constrain α.Time-dependent decay rate:Snyder, Quinn : PRD 48, 2139 (1993)

$$|\mathcal{A}_{3\pi}^{\pm}(\Delta t)|^{2} = \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} \Big[|\mathcal{A}_{3\pi}|^{2} + |\overline{\mathcal{A}}_{3\pi}|^{2} \mp \left(|\mathcal{A}_{3\pi}|^{2} - |\overline{\mathcal{A}}_{3\pi}|^{2} \right) \cos(\Delta m_{d}\Delta t)$$

Interference at equal massessquared gives information on strong phases between resonances

$$\begin{split} A_{3\pi} &= f_{+}A^{+} + f_{-}A^{-} + f_{0}A^{0} \\ \overline{A}_{3\pi} &= f_{+}\overline{A}^{+} + f_{-}\overline{A}^{-} + f_{0}\overline{A}^{0} \\ script \{+,-,0\} \end{split}$$

 $\pm 2 \mathrm{Im} \left[\overline{\mathcal{A}}_{3\pi} \mathcal{A}_{3\pi}^* \right] \sin(\Delta m_d \Delta t) \Big| ,$

refers to $\{\rho^+, \rho^-, \rho^0\}$

The "f"s are functions of the Dalitz-plot and describe the kinematics of $B \rightarrow \rho \pi$ (S \rightarrow VS). The "A"s are the complex amplitudes

containing weak and strong phases. They are independent of the Dalitz variables.

Experimental & analysis issues

- Signal and backgrounds: also here, not only continuum but also "other B" and "self-cross-feed": keep migrations in the interference regions under control!
- Rather long path from fitted coefficients to the Unitarity Angle, through parametrizations of the tree and penguin amplitudes and their phases

F.Forti, LP05

α determination

 $\pi\pi$ determination: limited power $\rho\rho$ best individual measurement

Mirror solution are disfavored, thanks to $\rho\pi$.

Same precision as global CKM fit.

Methods to measure γ

• The challenge: directly measure the $b \rightarrow u$ phase (γ) relative to the $b \rightarrow c$ phase (0).

 These amplitudes *interfere* for D final states that both D⁰ and D⁰ can decay to.

$$r_b \equiv \frac{A(b \to u)}{A(b \to c)} = R_{\text{U}} F_{\text{CS}} \qquad \text{larger } r_{\text{b}} \Rightarrow \text{larger interference term}$$

$$\implies \text{more sensitivity to } \gamma$$

Fcs is an *unknown* colorsuppression factor. Expected to be in the range [0.2,0.5].

R^u is the left side of the Unitarity Triangle (~0.4).

Methods to measure γ

- $B^- \rightarrow D^{(*)0} K^{(*)-}$, $B^- \rightarrow \overline{D}^{(*)0} K^{(*)-}$
 - $D^{(*)0}$, $\overline{D}^{(*)0}$ decay to same final state.
 - Squashed triangles • D^{0}_{CP} Gronau-London-Wyler (GLW) Small triangles • *D*⁰_{Non-CP} Atwood-Dunietz-Soni (ADS) Model dependence • $D^0 \rightarrow K_s \pi^+ \pi^-$ Dalitz Giri-Grossman-Soffer-Zupan The best results at present
 - $\sin(2\beta + \gamma)$ in $B^0 \rightarrow D^{(*)\pm}\pi^{\mp}$
 - Via BB mixing.

Alternative interference method: 2β from mixing (time-dependent!), γ from suppressed b \rightarrow u decays

Problems:

Large number of events, but: small time-dependent asymmetry

$R^- \rightarrow D^{(*)0} K^-$ Dalitz

Interference since both $D^0 \rightarrow K^0{}_S \pi^+\pi^-$ and $\overline{D}{}^0 \rightarrow K^0{}_S \pi^+\pi^-$

Sensitivity to γ enters via amplitude $\propto V_{ub}$; interference occurs in Dalitz plot for $D^0(D^0) \rightarrow K^0_{S} \pi^+ \pi^-$

$$\begin{split} M_{+} &= f\left(m_{+}^{2}, m_{-}^{2}\right) + re^{i(\delta + \gamma)} f\left(m_{-}^{2}, m_{+}^{2}\right) \\ M_{-} &= f\left(m_{-}^{2}, m_{+}^{2}\right) + re^{i(\delta - \gamma)} f\left(m_{+}^{2}, m_{-}^{2}\right) \end{split} \qquad r = \frac{A(b \to u)}{A(b \to c)} = \frac{A(B^{-} \to \overline{D}^{0} K^{-})}{A(B^{-} \to D^{0} K^{-})}$$

Dalitz distributions

$$\left|f(m_{+}^{2},m_{-}^{2})+re^{i(+\phi_{3}+\delta)}f(m_{-}^{2},m_{+}^{2})\right|^{2} \text{ and } \left|f(m_{-}^{2},m_{+}^{2})+re^{i(-\phi_{3}+\delta)}f(m_{+}^{2},m_{-}^{2})\right|^{2}$$

These will have different patterns if $r \neq 0$ and $\phi_3 \neq 0$. r, ϕ_3 , and δ can be extracted from the difference.

November 2005

L.Lanceri - CP Violation and Flavour

D⁰ Dalitz Plot Model (old plots)

Select \mathcal{D}^{0} sample from $\mathcal{D}^{*_{+}} \rightarrow \mathcal{D}^{0} \left[\rightarrow \mathcal{K}_{S}^{0} \pi^{+} \pi^{-} \right] \pi^{+}$

Reconance	Our fit		
Resonance	Amplitude	Phase, °	Fit fraction
$\sigma_1 K_s$	1.66±0.11	218.0±3.8	11%
ρ(770) K _S	1	0	21%
ω <i>K</i> ,	(3.30±1.13)·10 ⁻²	114.3±2.3	0.4%
f ₀ (980) K _s	0.405±0.008	212.9±2.3	4.8%
$\sigma_2 K_s$	0.31±0.05	236±11	0.9%
f ₂ (1270) K _s	1.36±0.06	352±3	1.5%
f ₀ (1370) K _s	0.82±0.10	308±8	0.9%
K* (892)- * #	1.656±0.012	137.6±0.6	60%
K*(892)+ <i>π</i> -	0.149±0.007	325.2±2.2	0.5%
$K^{*}_{g}(1430) \cdot \pi^{+}$	1.96±0.04	357.3±1.5	5.8%
$K^*_{g}(1430)^+\pi^-$	0.30±0.05	128±8	0.1%
K [*] ₂ (1430) ⁻ π ⁺	1.32±0.03	313.5±1.8	2.8%
$K_{2}^{*}(1430)$ + π -	0.21±0.03	281.5±9	0.07%
K*(1680) + a -	2.56±0.22	70±6	0.4%
K*(1680) ⁻ \pi ⁺	1.02±0.22	102±11	0.07%
Non resonant	6.1±0.3	146±3	24%

Dalitz distributions

K.Abe, LP05

K.Abe, LP05

Fitting for $Re(r_{\pm}e^{i(\pm\phi_3+\delta)})$ and $Im(r_{\pm}e^{i(\pm\phi_3+\delta)})$

Dalitz distributions •

$$B^{+}: |f(m_{+}^{2}, m_{-}^{2}) + r_{+}e^{i(\phi_{3}+\delta)}f(m_{-}^{2}, m_{+}^{2})|^{2} \quad B^{-}: |f(m_{-}^{2}, m_{+}^{2}) + r_{-}e^{i(-\phi_{3}+\delta)}f(m_{+}^{2}, m_{-}^{2})|^{2}$$

Physically $r_{+} = r_{-}$, allow them to vary separately for better statistical behaviour

• Determine
$$x_{\pm} = Re(r_{\pm}e^{i(\pm\phi_3+\delta)}), y_{\pm} = Im(r_{\pm}e^{i(\pm\phi_3+\delta)})$$
 for each decay mode

Perform pseudo-experiment technique (Toy Monte Carlo)

 $(x_{\pm}, y_{\pm}) \times \text{decay mode} \rightarrow (r, \delta) \times \text{decay modes and } \phi_3$

K.Abe, LP05

γ (ϕ_3) Dalitz fit results

	Modes	r	δ (°)	ϕ_3 (°)
BaBar	DK	$0.118 \pm 0.079 \pm 0.034^{+0.036}_{-0.034}$	$104 \pm 45^{+17}_{-21}{}^{+16}_{-24}$	
	D^*K	$0.169 \pm 0.096^{+0.030}_{-0.028} {}^{+0.029}_{-0.026}$	$296 \pm 41^{+14}_{-12} \pm 15$	
	combined			$70 \pm 31^{+12}_{-10}{}^{+14}_{-11}$
Belle	DK	$0.21 \pm 0.08 \pm 0.03 \pm 0.04$	$157 \pm 19 \pm 11 \pm 21$	
	D^*K	$0.12^{+0.16}_{-0.11} \pm 0.02 \pm 0.04$	$321 \pm 57 \pm 11 \pm 21$	
	combined			$68^{+14}_{-15} \pm 13 \pm 11$
	DK^*	$0.25^{+0.17}_{-0.18} \pm 0.09 \pm 0.04 \pm 0.08$	$358 \pm 35 \pm 8 \pm 21 \pm 49$	$112 \pm 35 \pm 9 \pm 11 \pm 8$

Errors: statistical, detector systematic, $D \to K_S \pi \pi$ decay model, non-resonant $DK\pi$

 2σ allowed interval BaBar 12° - 137° Belle 22° - 113°

Significance of direct CPV BaBar 2.4σ Belle 2.3σ

CKM fits (CKMfitter group)

Putting it all together

Conclusions on B mesons - 1

• "Direct" CPV

- Observed by BaBar and Belle in $B\to K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$
- Evidence by Belle in $B\to\pi^+\pi^-$, not seen by BaBar
- CPV in mixing
 - Expected to be small ($\approx 10^{-3}$), not seen yet
- $sin 2\beta$
 - Precision measurement with charmonium modes dominate now CKM fits, in agreement with SM expectation
 - Looking at b → s penguins for non-SM effects : φK⁰ from Belle now compatible with SM; if present, effects are not large ⇒ more data required

Conclusions - 2

• $sin2\alpha$

- $\pi^+\pi^-$ interesting, also penguins \Rightarrow isospin analysis needed for sin2 α , too few $\pi^0\pi^0...$
- $\rho^+\rho^-$ smaller corrections
- $\rho^+\pi^-$ asymmetries measured in "quasi-two-body" approach; first results also from Dalitz analyses, work in progress
- γ
 - DK and Dπ methods: few events, sensitivities depend on r_b (CKM and color suppression factor of interfering amplitudes)
 ⇒ Dalitz method is the best up to now: need more data...
- CKM fits are giving a consistent picture (SM works!)
 and also feedback on B decay mechanisms

Conclusions - 3

- Short term prospects for the B factories, very successful up to now:
 - Double the integrated luminosity at least twice with the present detectors:
 - ~ 500 fb⁻¹ per experiment by 2006 (KEK-B is almost there!)
 - > 1 ab⁻¹ per experiment by 2008-09
 - This will not exhaust the B physics program...
- Hadron collider experiments: B_s , γ , some rare decays
 - Tevatron, CDF/D0: upgrades and new triggers, preliminary results for B_s mixing, sensitivity still marginal
 - LHC-B at LHC: expected on line in ~2007; BTeV terminated
- Long term future of B-factories: physics case of a Super B-Factory
 - Prospects under discussion by the interested community

Backup slides