CP Violation and Flavour

Lectures 1, 2

Dottorato in Fisica – XXI Ciclo

Livio Lanceri Università di Trieste and INFN

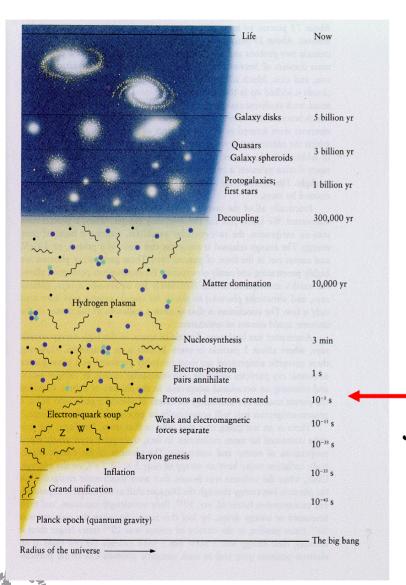
Lectures: outline

- 1. Introduction: C, P, T symmetries and historical perspective
- 2. CP Violation (CPV) and mixing in K, B, D mesons; the Standard Model and the Cabibbo-Kobayashi-Maskawa (CKM) mechanism
- 3. Status of CPV in B mesons
 - 1. Mixing; direct CPV in B decays
 - 2. Unitarity Triangle (UT): measurements of $\sin 2\beta$, $\sin 2\alpha$, γ
 - 3. Overall UT fits
- 4. Status of CPV in K mesons
- 5. Searches for CPV in D mesons and in Electric Dipole Moments
- 6. Conclusions and outlook

Contents

- Theory and formalism: a brief reminder only
 - After the initial discovery in K mesons...
 - B mesons are specially suited for stringent experimental tests of a detailed pattern of theoretical expectations, including large asymmetries in some channels;
 - ... D mesons are promising for New Physics searches, since the Standard Model predicts small CP effects
- Emphasis on present experiments and B mesons
 - Observables, experimental facilities and methods
 - Standard Model expectations (CKM mechanism) as organizing principle of a very rich phenomenology
 - Summary of experimental results, with emphasis on:
 - understanding their limits in precision and accuracy
 - possible windows for New Physics

Introduction


Why is CP Violation (CPV) interesting?

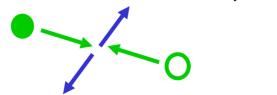
C, P, T symmetries

Historical perspective on CPV and Flavour

Why CPV?

The anti-matter "puzzle"

The present Universe is dominated by

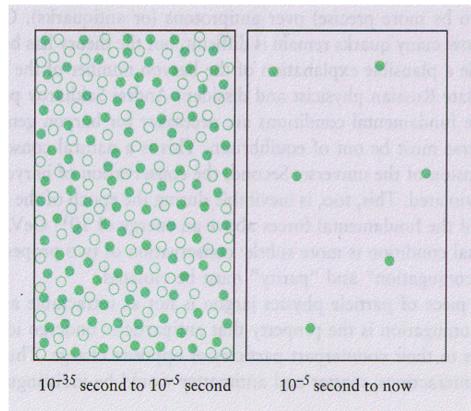

- matter (particles) and
- radiation (photons);

Anti-matter (anti-particles) became very rare! Why?

Evolution of Universe In the Big Bang theory: expansion, cooling

$$10^{-5} \text{ s}$$
 $T \cong 10^{13} \text{K}$ $E \cong 1 \text{ GeV}$

Soup of particles, antiparticles, radiation in thermal equilibrium



Anti-matter: where did it go?

≈ 10 88 + 10 80

○ ≈ 10 ⁸⁸

matter antimatter radiation

$$n_{\rm B} \approx 10^{-7} \, cm^{-3}, \quad n_{\rm V} \approx 400 \, cm^{-3}$$

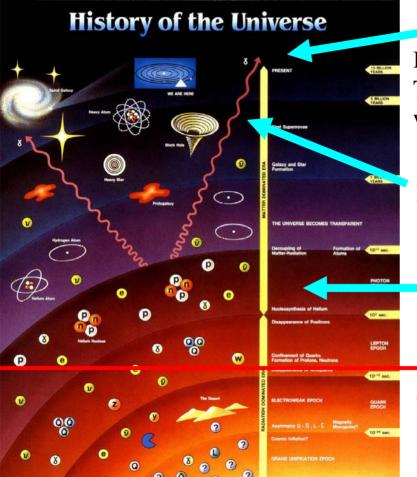
At present:

matter (baryons)/photons

$$\frac{n_B}{n_{v}} \approx 10^{-9\pm1}$$

Quark-antiquark "primordial" asymmetry:

$$\frac{n_B}{n_{\gamma}} \approx \frac{n_q - n_{\overline{q}}}{n_q + n_{\overline{q}}} \approx 10^{-9}$$


Quark-antiquark asymmetry: when and why?

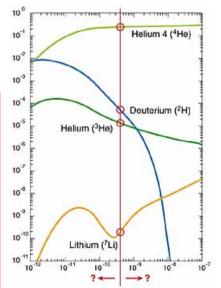
"baryogenesis", $t \approx 10^{-35} \text{ s}$

- (1) non-equilibrium
- (2) B: not conserved
- (3) CP symmetry: violated

Big Bang: strong evidence

Black-body radiation: The universe is filled with (T = 3K) photons

Expanding universe: speed is measured! (red shift)



045 Robert Wil

Light elements: Nucleosynthesis OK

The transition to
Baryon asymmetry
requires an explanation
at the level of
fundamental interactions!

Baryogenesis: Sakharov conditions

CPT: expectations

particle
$$X \Leftrightarrow \text{anti-particle } \overline{X}, \quad m_X = m_{\overline{X}}, \quad \Gamma_X = \Gamma_{\overline{X}}, \quad Q_X = -Q_{\overline{X}}$$

 $\Rightarrow \text{ expect } \quad n_X = n_{\overline{X}} \quad \text{at thermal equilibrium (but:initial conditions...?)}$

- Sakharov conditions
 - 1) B violation
 - 2) C, CP violation
 - 3) Off-equilibrium!

initially:
$$B = 0$$
, finally: $B \neq 0$
 C -invariance $\Rightarrow P(i \rightarrow f) = P(\bar{i} \rightarrow \bar{f})$
 T -invariance $\Rightarrow P(i(\vec{r}_i, \vec{p}_i, \vec{s}_i) \rightarrow f(\vec{r}_j, \vec{p}_j, \vec{s}_j)) =$

 $= P(f(\vec{r}_i, -\vec{p}_i, -\vec{s}_i) \rightarrow i(\vec{r}_i, -\vec{p}_i, -\vec{s}_i))$

Standard Model of elementary particles and GUT extensions?

... Have the basic ingredients, but fail to explain baryogenesis by many orders of magnitude ⇒ "new physics" is required

See: A.Riotto, Theories of Baryogenesis, hep-ph/9807454

Baryogenesis (SM, GUT)

CPV ⇒ different rates for < (off thermal equilibrium)

•	$X \rightarrow u + u$	$X \to \overline{d} + e^+$	$Y \to \overline{d} + \overline{\nu}_e$	$Y \rightarrow \overline{u} + e^+$
•	$\overline{X} \to \overline{u} + \overline{u}$	$\overline{X} \to d + e^-$	$\overline{Y} \rightarrow d + \nu_e$	$\overline{Y} \rightarrow u + e^-$

	Time <i>t</i> [s]	Energy $E = kT$ [GeV]	Temp. <i>T</i> [K]	'Diameter' of Universe R [cm]
Planck-time t _{Pl}	10-44	1019	10 ³²	10^{-3}
GUT SU(5) breaking, m_X	10^{-36}	10 ¹⁵	10^{28}	10
$SU(2)_L \otimes U(1)$ breaking, m_W	10^{-10}	10 ²	10 ¹⁵	10 ¹⁴
Quark confinement,	10^{-6}	1	10 ¹³	10^{16}
$p\overline{p}$ -annihilation ν decouple, e^+e^- -annihilation	1	10-3	10 ¹⁰	10 ¹⁹
Formation of light nuclei	10 ²	10^{-4}	109	10 ²⁰
γ decouple, transition from radiation-dominated universe	10^{12} ($\approx 10^5 \text{ a}$)	10-9	104	10 ²⁵
to matter-dominated, formation of atoms, formation of stars and galaxies				
Today, t_0	$\approx 5 \times 10^{17}$ $(\approx 2 \times 10^{10} \text{ a})$	3×10^{-13}	3	10 ²⁸

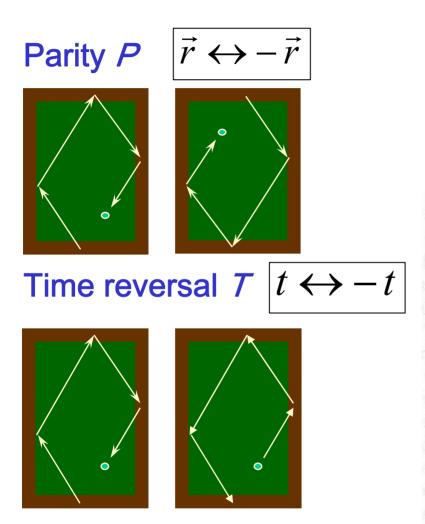
(1) GUT bosons X, Y decay and "decouple": a net quark-antiquark asymmetry remains

(2) Excess quarksform hadrons(baryons)

The predicted asymmetry is too small!

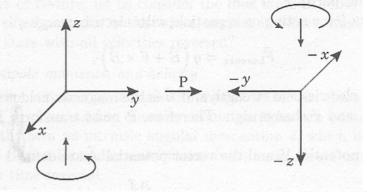
$$\frac{n_B}{n_{\gamma}} \approx \frac{n_q - n_{\overline{q}}}{n_q + n_{\overline{q}}} \approx 10^{-18}$$

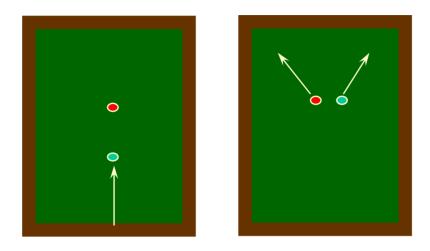
CP Violation!


- CP violation has been observed in weak interactions (K and B mesons: mixing and decay)
- The Standard Model (SM) has a recipe for CPV ("CKM mechanism"), but no fundamental understanding of its origin
- Baryogenesis requires additional sources of CPV, beyond SM + GUT, that alone would predict $n_B/n_\gamma \approx 10^{-18}$ rather than the observed $n_B/n_\gamma \approx 10^{-9}$
- CPV is a very interesting probe of fundamental properties both of basic interactions among particles and of the universe evolution

C, P, T: "discrete" symmetries

P and T in classical physics

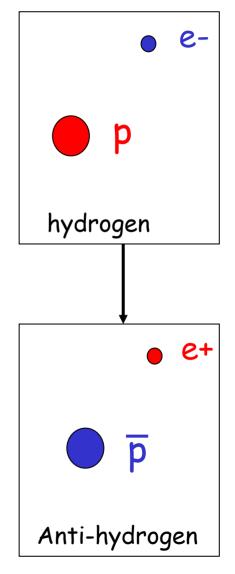



Table 1.1 P and \hat{T} transformations in classical physics.

Name	Symbol	P	Î
Time	t	+	-
Position	$ec{r}$		+
Energy	E	+	+
Momentum	$ec{p}$	-	-
Spin	\vec{s}	+	1 88
Helicity	h	1190	+
Electric-field strength	$ec{E}$	_	+
Magnetic-field strength	$ec{B}$	+	-
Magnetic dipole moment	d_m	+	+
Electric dipole moment	d_e	TaTe	

All the equations of classical physics are invariant for *P*, *T* transformations

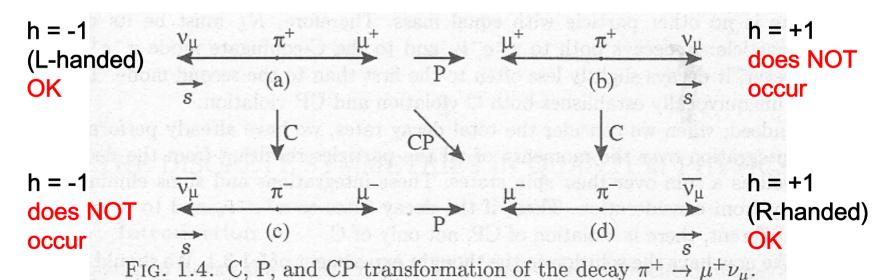
What about the "time arrow"?


2nd Law of Thermodynamics: non-equilibrium macroscopic systems evolve towards states with higher entropy (configurations microscopically more probable)

This is explained by statistical mechanics and does not imply in any way a time-reversal asymmetry in the fundamental laws of microscopic physics

Charge Conjugation C

- Charge conjugation C: particle
 → antiparticle
 - No analogue in classical physics
 - Relativistic quantum theory:
 - for every particle there is an anti-particle
 - particle and antiparticle have identical mass and lifetime
 - particle and antiparticle have opposite charges
 - Electric charge, baryon and lepton number, flavour quantum numbers such as strangeness, etc.
- C symmetry (if realized) implies that:
 - A system where all the particles are substituted with the corresponding antiparticles behaves as the original system
 - It is a matter of convention which of them we call "particles" and which we call "antiparticles"



C, P and CP

- Electromagnetic and strong interactions:
 - both C- and P-symmetric
- Weak interactions
 - violate maximally both the C and P symmetry
 - are approximately symmetric for the combined CP transformation

Quantum Mechanics: C, P

C, P operators applied twice reproduce the initial state (up to a phase)

$$P^2 = 1$$
 $C^2 = 1$ $P^{\dagger}P = 1 \Rightarrow P^{\dagger} = P$ $C^{\dagger}C = 1 \Rightarrow C^{\dagger} = C$ unitary Hermitian (observable) (observable)

Eigenstates of P(C) are characterized by the eigenvalue "parity" ("C-parity"), a multiplicative quantum number

if
$$|\psi\rangle$$
 is an eigenstate: if $|\psi\rangle$ is an eigenstate:
$$P|\psi\rangle = \eta_P|\psi\rangle = (\pm 1)|\psi\rangle \qquad C|\psi\rangle = \eta_C|\psi\rangle = (\pm 1)|\psi\rangle$$

NB: not all single particle states are C eigenstates! Can you guess which?

"intrinsic" parities

- When single particle states are eigenstates:
 - P operator:
 "intrinsic parity" η_P = ±1
 - C operator:
 "intrinsic C-parity" η_C = ±1
- Assignments: conventional for some particles; for the others: parity conservation, angular momentum etc.
- C-parity is only defined for particles that are "totally neutral" (all charges = 0, not only the electrical charge)

	Spin	Helicity	Parity
Quarks u, d, s, c, b, t	1/2	$\pm \frac{1}{2}$	+
Octet baryons n, p, Λ , Σ , Ξ	$\frac{1}{2}$	$\pm \frac{1}{2}$	+
Decuplet baryons Δ , Σ^* , Ξ^* , Ω^-	3	$\pm \frac{1}{2}, \pm \frac{3}{2}$	+
Charged leptons e ⁻ , μ ⁻ , τ ⁻	$\frac{1}{2}$	$\pm \frac{1}{2}$	+
The antiparticle of a fermion always hopposite parity. Neutrinos v_e , v_u , $v_{\bar{\tau}}$	as the same sp	in as the fermion	and the
Neutrinos v. v. v			
		_1	
Antineutrinos $\bar{\nu}_{\rm e}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}$		$+\frac{1}{2} \\ \pm 2$	+
Antineutrinos \bar{v}_e , \bar{v}_μ , \bar{v}_τ Graviton		$\begin{array}{c} +\frac{1}{2} \\ \pm 2 \\ \pm 1 \end{array}$	+
Antineutrinos $\bar{\nu}_{\rm e}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}$	1	±2	+ - -
Antineutrinos $\bar{\nu}_e$, $\bar{\nu}_\mu$, $\bar{\nu}_\tau$ Graviton Photon	1	±2 ±1	+

Table 4.2. Charge conjugation parity

Particle	Photon	Z^0	π^0	η
η_C	-1	-1	+1	+1

Quantum Mechanics: T is "anti-unitary"

Time reversal in Quantum Mechanics:

 $t \rightarrow -t$ and $i \rightarrow -i$ (complex conjugation)

 a simplified argument based on the invariance of the Schrodinger equation justifies the definition of the time reversal operator *T* as:

$$T = UK$$

U: Unitary $t \rightarrow -t$

K: complex conjugation of all c-numbers standing on its right

CPT Theorem

A quantum field theory that

- 1. satisfies Lorentz and space-time translation invariance,
- 2. posesses a lowest "vacuum" state in its energy spectrum,
- 3. obeys "microcausality" (commutation or anticommutation relations between all distinct fields),

will be CPT-invariant: [CPT, H] = 0

Direct consequence:

every particle has the same mass and lifetime as its antiparticle magnetic moments are equal in size, opposite direction

CPT invariance and *CP* violation \Rightarrow *T* violation

CP(T) Violation: "cherchez la phase"!

If a process is described by two amplitudes with a relative phase

$$M = A_1 + e^{i\delta} A_2$$

Time reversal *T* in QM:

 $t \rightarrow -t$ and $i \rightarrow -i$ (complex conj.)

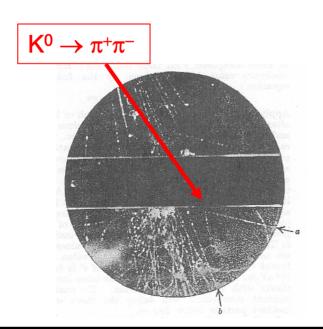
$$M' = (CP)M = A_1 + e^{-i\delta}A_2$$

CP Violation is a consequence of the interference term:

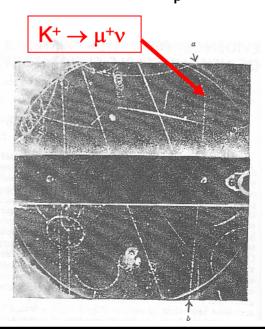
$$\left|M\right|^{2} = \left|A_{1} + e^{i\delta}A_{2}\right|^{2} \xrightarrow{T} \left|M'\right|^{2} = \left|A_{1} + e^{-i\delta}A_{2}\right|^{2} \neq \left|M\right|^{2}$$

CPV and Flavour

Historical (experimental) perspective


"strange" K mesons in cosmic rays

- 1944, L.Leprince-Ringuet & M.Lheritier
- 1947, G.D.Rochester & C.C.Butler [Nature, 160, 855 (1947)]

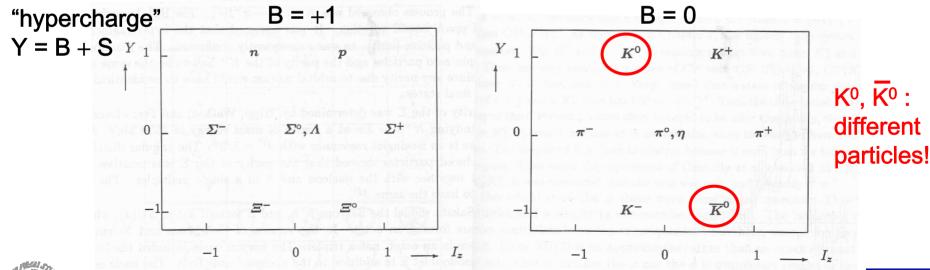

Cloud chamber exposed to cosmic rays

"V particles": first evidence of "strange" matter, not present on earth, unstable

Neutral particle, mass 393 to 818 MeV/c²

Charged particle, mass 500 MeV/c² to m_p

Strangeness: K^0 (S = +1), Λ (S = -1)


Experiments at accelerators:

associate "strong" production (strangeness conserving)

$$\sigma (\pi^- p \rightarrow K^0 \Lambda) \approx 1 \text{ mb} \approx \sigma_{\text{tot}} / 40$$

"weak" decay (strangeness violating)

$$\tau~(\Lambda\to\pi^-p)\approx 10^{\text{-}10}~\text{s}>> 10^{\text{-}23}~\text{s}$$
 as slow as $\pi^-p\to\pi^0\Lambda$, strangeness-violating

24

Strangeness: K^0 (S = +1), \overline{K}^0 (S = -1)

1955, Gell-Mann & Pais:

predicted oscillations and long-lived neutral K

Also $\overline{\mathsf{K}^0}$ is produced, for instance in $\mathsf{K}^-\mathsf{p} \to \Lambda \ \mathsf{K}^0 \ \overline{\mathsf{K}^0}$

Equal m (CPT), undefined τ : not "physical" states

$$K^0 \neq \overline{K}^0$$
 strong interaction (S) eigenstates, not weak or CP eigenstates

$$K^0 \to \pi^+ \pi^-, \quad \overline{K}^0 \to \pi^+ \pi^-$$

common weak decays ⇒ coupled!

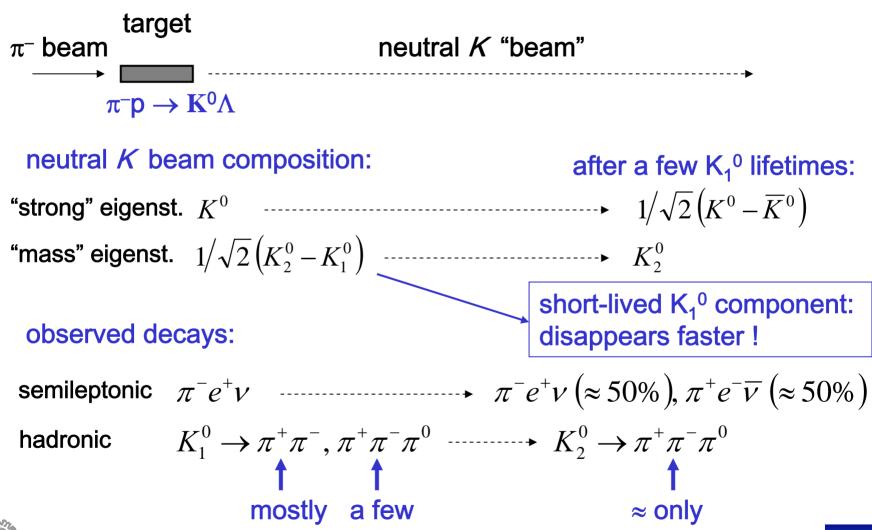
$$K^0 \to \pi^- e^+ \nu$$
, $\overline{K}^0 \to \pi^+ e^- \overline{\nu}$

different weak "semileptonic" decays ⇒ a superposition can be analyzed!

$$K_1^0, K_2^0$$
 "physical" (full hamiltonian) eigenstates, different *m*, well-defined τ

$$K_1^0 = \frac{1}{\sqrt{2}} (K^0 + \overline{K}^0) \xrightarrow{CP=+1} \pi^+ \pi^-$$

relatively short-lived


$$K_2^0 = \frac{1}{\sqrt{2}} \left(K^0 - \overline{K}^0 \right) \xrightarrow{CP = -1} \pi^+ \pi^- \pi^0$$

relatively long-lived (less available phase-space)

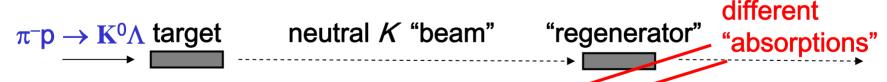
Quantum Mechanics "laboratory"!

Strangeness oscillations: K⁰_S & K⁰_L

1956, Lande et al. [Phys.Rev.103, 1901 (1956)]:

observation of $K_2^0 \approx K_L^0$ with cloud chamber exposed to the Brookhaven Cosmotron 3-GeV beam

Lifetime estimated in the $10^{-9} - 10^{-6}$ s range ($K_1^0 \approx K_S^0 : 10^{-10}$ s)


Lifetime, (recently) measured values:

$$\tau_{\rm S} \equiv 1/\Gamma_{\rm S} = (8.927 \pm 0.009) \times 10^{-11} \, {\rm s}$$

factor 600!

$$\tau_{L} \equiv 1/\Gamma_{L} = (5.17 \pm 0.04) \times 10^{-8} \text{ s}$$

1955, Pais & Piccioni: predict coherent "regeneration" of a K⁰₁ component in a beam of K⁰₂ going through a target (matter)

K composition:
$$K^0$$
 $\cdots K_2^0 \propto \left(K^0 - \overline{K}^0\right) \approx K_2^0 + rK_1^0$

decays:
$$2\pi$$
 3π , 2π

Regeneration of K⁰_S ...

1960, F.Muller et al [Phys.Rev.Lett. 4, 418 (1960)]: Regeneration and Mass Difference of Neutral K Mesons

- Beginning of systematic study of regeneration
- Different materials and thicknesses
- Regeneration depends also on *∆m* ⇒ *∆m* measurement

... paved also the way for the discovery of CP Violation:

in some experiments there were hints of "anomalous" regeneration (2π decays of K₂⁰), possibly compatible with backgrounds

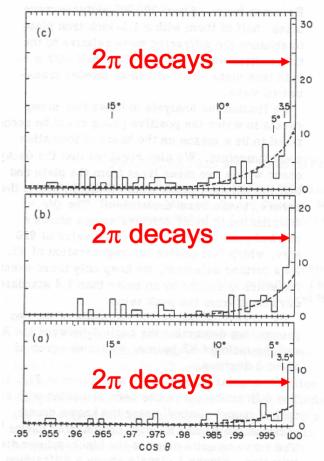


FIG. 1. Histograms of number of K1 decay events per 0.001 interval of $\cos\theta$ (θ is the angle between the direction of the primary K2 beam and the regenerated K1). (a) Data for the 1.5-inch plate; (b) data for the 6-inch plate; (c) combined data for the two plates. The curves are diffraction angular distributions normalized in the 0.980 to 0.998 interval for $\cos\theta$.

... and the discovery of CP violation

PHYSICAL REVIEW LETTERS

EVIDENCE FOR THE 2π DECAY OF THE K_2° MESON*†

J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay Princeton University, Princeton, New Jersey (Received 10 July 1964)

- 1964, Christenson et al.
 - Careful control of material to subtract regeneration background
 - Double-arm spectrometer, spark chambers

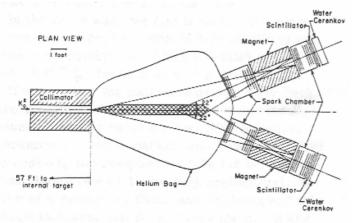
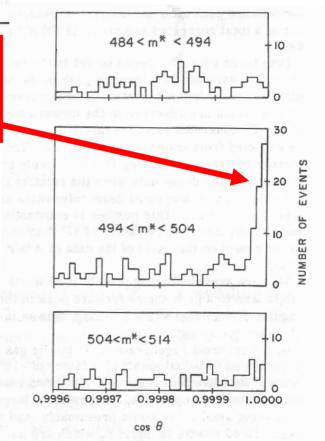
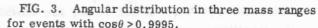
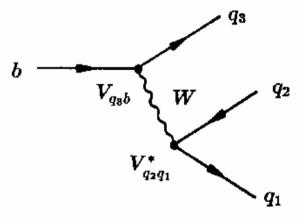




FIG. 1. Plan view of the detector arrangement.

Kobayashi and Maskawa


2 families of 2 quarks: 4 couplings 2x2 unitary matrix: No phase!

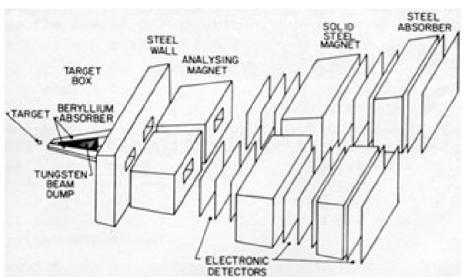
To obtain a phase (source of CPV):

3 families of 2 quarks!
9 couplings
3x3 unitary matrix

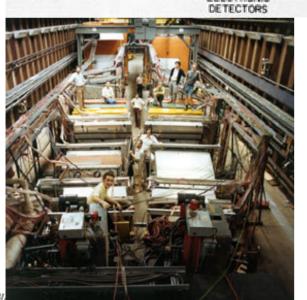
 couplings V_{qq} among up and down quarks (3 families): 9 complex numbers, may have an irreducible phase

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ \hline V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

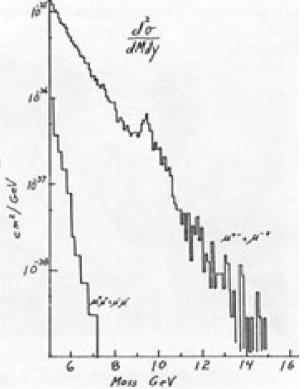
phase ⇒ CP violation



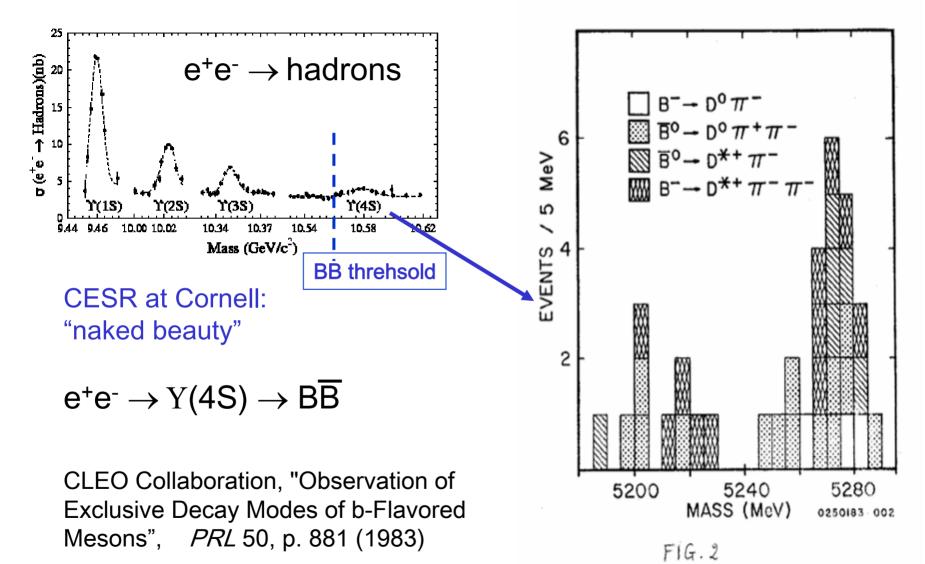
Theoretical predictions


- Kobayashi & Maskawa: CP violation can be explained by a phase in the quark mixing matrix, but then a third family of quarks is required!
- Later, after B meson discovery: Carter, Bigi & Sanda suggested that, if the SM explanation of CP Violation effects is correct, then large CP asymmetries should be seen in "rare" B decays

Experiment: from the discovery of b quarks...



Summer 1977 at FNAL: Discovery of $Y(9.46) \rightarrow \mu^{+}\mu^{-}$ interpreted as $1^{3}S_{1}$ bb

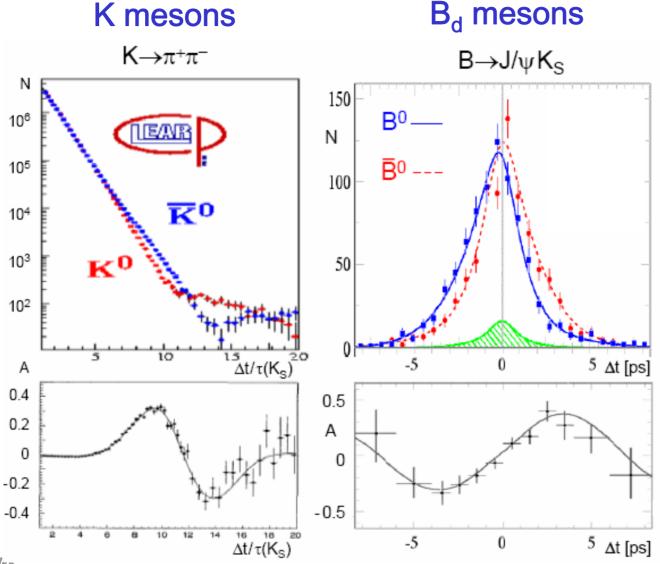


"Observation of a Dimuon Resonance at 9.5 GeV in 400 GeV Proton-Nucleus Collisions,"

PRL 39, p. 252, (1977)

... and the discovery of B=(bq) mesons...

33


...to the birth of the "B-factories"...

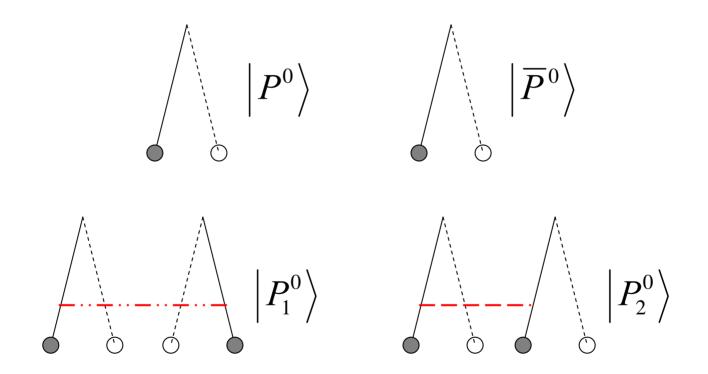
Short History: (focus on CPV, experimental only)

```
Discovery of b in \Upsilon(9.46) = 1^3 S_1 \, b\bar{b} at FNAL
1977
          Formation of \Upsilon(9.46) and \Upsilon(10.01) at DESY
1978
          First B mesons 11S<sub>0</sub> bq at Cornell
1980
          "B-Meson Factory" plans at PSI, Switzerland
1986-89
          ARGUS discovery of BoBo oscillations
1987
                                                             meanwhile:
          Start of PEP-II studies at SLAC
1988
                                                             many results from
1993
          Decisions for PEP-II and KEK-B,
                                                             Cornell: CLEO,
1995
          BABAR "TDR" & approval,
                                                             LEP experiments,
                                                             FNAL: CDF. D0
7/98
           First e<sup>+</sup>e<sup>-</sup> collisions in PEP-II
                                             and KEK-B/BELLE
5/99
           First e<sup>+</sup>e<sup>-</sup> events in BABAR
7/00
           First BABAR & BELLE results for Osaka conference
           PEP-II reaches design luminosity of 3 · 10<sup>33</sup> /cm<sup>2</sup>/s
10/00
           BABAR and BELLE find \sin 2\beta \neq 0 with 4\sigma
7/01
```


...and the observation of CPV in the B_d system!

plot from *BABAR* similar result from *BELLE*

...this is our starting point



Charged and neutral pseudoscalar mesons: a reminder

Decays and mixing
Time evolution and CP-violating observables
Theoretical interpretation: CKM

Mixing and decays

Coupled oscillators, with damping

Coupling ⇒ frequency (energy, mass) splitting (2 "normal modes") Damping ⇒ one of the two modes lasts longer...

Decays

Charged and neutral pseudoscalar mesons (P = K, D, B)

Some examples (we will start by discussing B mesons, in particular):

$$K^{0} = (\overline{s}d) \qquad B_{d}^{0} = (\overline{b}d) = B^{0} \qquad B^{+} = (\overline{b}u)$$
$$D^{0} = (c\overline{u}) \qquad B_{s}^{0} = (\overline{b}s) \qquad B^{-} = (b\overline{u})$$

Decay amplitudes for $P \rightarrow f$ and CP-conjugated states:

$$A_{f} = \langle f | H | P \rangle, \quad \overline{A}_{f} = \langle f | H | \overline{P} \rangle$$

$$A_{\bar{f}} = \langle \bar{f} | H | P \rangle, \quad \overline{A}_{\bar{f}} = \langle \bar{f} | H | \overline{P} \rangle$$

Decays and mixing: example from K

decay = "damping"

mixing = "coupling"

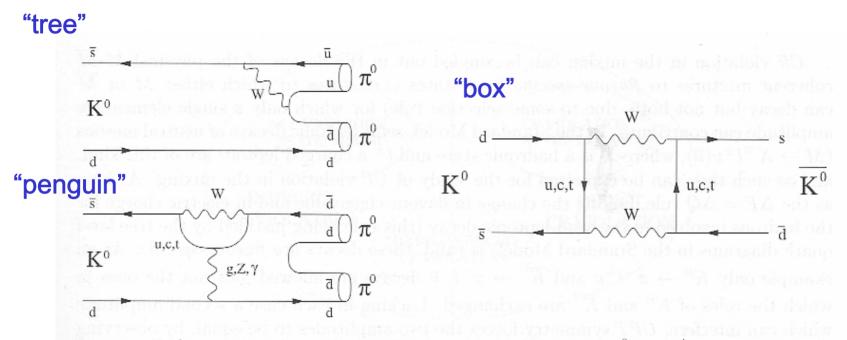


Fig. 1. – Left: the "tree" and "penguin" diagrams originating $K^0 \to \pi^+\pi^-$ decays in the Standard Model. Right: The "box" diagram originating K^0 - \overline{K}^0 transitions in the Standard Model.

Mixing for P = K, D, B

Problem: find the time evolution of a neutral pseudoscalar meson P:

t = 0: superposition of strong "flavour" eigenstates (P^0 , \overline{P}^0)

t > 0: also states n_1 , n_2 , n_3 , ... to which P may decay

$$|\psi(t)\rangle = a(t)|P^{0}\rangle + b(t)|\overline{P}^{0}\rangle + c_{1}(t)|n_{1}\rangle + c_{2}(t)|n_{2}\rangle + c_{3}(t)|n_{3}\rangle + \dots$$

Effective Hamiltonian approximation:

$$i\frac{d}{dt}\binom{a(t)}{b(t)} = H\binom{a(t)}{b(t)}; \quad P^0 = \begin{pmatrix} 1\\0 \end{pmatrix}, \ \overline{P}^0 = \begin{pmatrix} 0\\1 \end{pmatrix}; \quad H_{ij} = M_{ij} - i\Gamma_{ij}/2$$
non-hermitian

Strategy:

Basis: "flavour" eigenstates, unperturbed "strong" hamiltonian

Do not try to compute $c_1(t)$, $c_2(t)$, ...: only a(t) and b(t)

- ⇒ two-component wave function; hamiltonian in 2nd order perturbation theory
- ⇒ use proper time t (particle rest-frame)
- \Rightarrow find "mass eigenstates", that evolve as "physical states" (...) \Rightarrow diagonalize H!

"dispersive"

Hamiltonian & Perturbation Theory ...

What is the matrix H_{ii} ? From 2nd order perturbation theory:

$$M_{ij} = m_0 \delta_{ij} + \langle i | H_W | j \rangle + \sum_n P \frac{\langle i | H_W | n \rangle \langle n | H_W | j \rangle}{m_0 - E_n}$$

H_W: weak perturbation

n: intermediate virtual states

$$\Gamma_{ij} = 2\pi \sum_{n} \delta(m_0 - E_n) \langle i | H_W | n \rangle \langle n | H_W | j \rangle$$

n: physical states to which both can decay

- ⇒ complex numbers, to be evaluated by the theory of weak int.
- ⇒ Assuming CPT invariance, they reduce to 2 real and 2 complex

$$CPT \Rightarrow M_{11} = M_{22} = m_0$$
; $\Gamma_{11} = \Gamma_{22} = \gamma$

diagonal: real,

Po mass and lifetime

hermiticity $\Rightarrow M_{21} = M_{12}^*$;

 $\Gamma_{21} = \Gamma_{12}^*$

off-diagonal: complex, represent mixing (off- and on-shell states)

General formalism, including CPT violation: see i.e. Kirkby & Nir, PDG

Diagonalization: eigenvalues

In the "flavour eigenstates" basis:

In the "flavour eigenstates" basis:
$$H = \begin{pmatrix} m_0 - \frac{i}{2} \gamma & M_{12} - \frac{i}{2} \Gamma_{12} \\ M_{12}^* - \frac{i}{2} \Gamma_{12}^* & m_0 - \frac{i}{2} \gamma \end{pmatrix} = \begin{pmatrix} \mu_0 & p^2 \\ q^2 & \mu_0 \end{pmatrix} \implies H' = \begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix}$$

$$H' = \begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix}$$

Secular equation, giving the eigenvalues
$$\det \begin{pmatrix} \mu_0 - \mu & p^2 \\ q^2 & \mu_0 - \mu \end{pmatrix} = 0 \implies$$

$$\Rightarrow \mu_{1,2} = \mu_0 \pm pq = m_0 - \frac{i}{2}\gamma \pm \sqrt{M_{12} - \frac{i}{2}\Gamma_{12}M_{12}^* - \frac{i}{2}\Gamma_{12}^*}$$

Mass and width differences (*H* = "heavy", *L* = "light"):

$$\Delta \mu = \Delta m - \frac{i}{2} \Delta \Gamma = 2pq \qquad \Delta m^2 - 1/4 \Delta \Gamma^2 = 4|M_{12}|^2 - |\Gamma_{12}|^2$$

$$\Delta m = m_H - m_L \quad \Delta \Gamma = \Gamma_H - \Gamma_L \qquad \Delta m \Delta \Gamma = 4\Re \left(M_{12} \Gamma_{12}^*\right)$$

Diagonalization: "mass" eigenstates

"mass eigenstates" $(P_L, P_H) \approx \text{CP eigenstates } (P_1, P_2)$: expressed in terms of "flavour eigenstates" (P^0, \overline{P}^0)

$$\left| P_{L}^{0} \right\rangle = p \left| P^{0} \right\rangle + q \left| \overline{P}^{0} \right\rangle = \frac{1}{\sqrt{1 + \left| \widetilde{\varepsilon} \right|^{2}}} \left(\widetilde{\varepsilon} \left| P_{1} \right\rangle + \left| P_{2} \right\rangle \right) \qquad \widetilde{\varepsilon} = \frac{p - q}{p + q} \quad \text{(complex !)}$$

$$|P_H^0\rangle = p|P^0\rangle - q|\overline{P}^0\rangle = \frac{1}{\sqrt{1+|\widetilde{\varepsilon}|^2}} (|P_1\rangle + \widetilde{\varepsilon}|P_2\rangle) \qquad |q|^2 + |p|^2 = 1$$

CP eigenstates (P_1, P_2) :

$$\left|P_1^0\right> = \frac{1}{\sqrt{2}} \left|P^0\right> + \frac{1}{\sqrt{2}} \left|\overline{P}^0\right>$$

$$\left|P_2^0\right\rangle = \frac{1}{\sqrt{2}} \left|P^0\right\rangle - \frac{1}{\sqrt{2}} \left|\overline{P}^0\right\rangle$$

$$\frac{q}{p} = \sqrt{\frac{2M_{12}^* - i\Gamma_{12}^*}{2M_{12} - i\Gamma_{12}}} = \frac{\Delta\mu}{2M_{12} - i\Gamma_{12}}$$

$$\delta = |p|^2 - |q|^2 = \langle P_L | P_H \rangle$$

$$|p|^2 = \frac{1 + \delta}{2} \qquad |q|^2 = \frac{1 - \delta}{2}$$

CP symmetry \Rightarrow "mass" = "CP" eigenstates, $\tilde{\varepsilon} = \delta = 0$

Time evolution

(assuming CPT as a good symmetry, for simplicity)...
Time evolution of the "physical" mass eigenstates:

$$\begin{aligned} \left| P_L^0(t) \right\rangle &= e^{-t\Gamma_L/2} \ e^{-itm_0} \ e^{+it\Delta m/2} \left| P_L^0(0) \right\rangle \\ \left| P_H^0(t) \right\rangle &= e^{-t\Gamma_H/2} \ e^{-itm_0} \ e^{-it\Delta m/2} \left| P_H^0(0) \right\rangle \end{aligned}$$

If at t = 0 the state is not a mass eigenstate but some superposition of them (for instance: a flavour state P^0), then the time evolution is simply the corresponding appropriate combination

Dimensionless parameters

Taking \hbar = c =1, these quantities can be expressed using the same units (for example, MeV or s⁻¹):

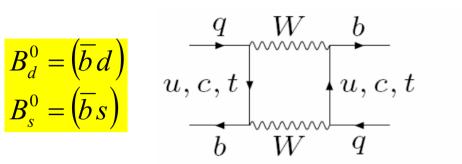
$$\Gamma \equiv \frac{\Gamma_L + \Gamma_H}{2} \; , \quad \Gamma_L \equiv \frac{1}{\tau_L} \; , \quad \Gamma_H \equiv \frac{1}{\tau_H} \; , \quad \Delta \Gamma \equiv \Gamma_H - \Gamma_L \; , \quad \Delta m \equiv m_H - m_L$$

The following dimensionless parameters often appear in time evolution equations:

$$x \equiv \frac{\Delta m}{\Gamma}$$

related to oscillations "frequency"

$$y \equiv \frac{\Delta\Gamma}{2\Gamma}$$


related to oscillations "damping"

B mesons: time evolution and CP-violating observables

q, p, Δm and $\Delta \Gamma$ for B_d and B_s

$$B_d^0 = \left(\overline{b}\,d\right)$$
$$B_s^0 = \left(\overline{b}\,s\right)$$

$$\overline{B}_d^0 = (b\overline{d})$$

$$\overline{B}_s^0 = (b\overline{s})$$

In the SM for B mesons: dominated by the top quark few common on-shell states

$$\Gamma_{12}/M_{12} << 1$$

$$\Rightarrow \Delta m \approx 2|M_{12}|$$

$$\Delta\Gamma \approx \frac{2\Re e(M_{12}\Gamma_{12}^*)}{|M_{12}|} << \Delta m$$

$$\Delta\Gamma \approx \frac{2\Re e \left(M_{12} \Gamma_{12}^* \right)}{\left| M_{12} \right|} << \Delta m \qquad \frac{q}{p} = -\frac{\Delta m - i/2\Delta\Gamma}{2M_{12} - i\Gamma_{12}} \approx -\frac{\left| M_{12} \right|}{M_{12}}$$

(assuming CPT as a good symmetry, for simplicity)...

Time evolution of mass eigenstates:

$$\begin{vmatrix} B_L^0(t) \rangle = e^{-t\Gamma_B/2} e^{-itM_B} e^{+it\Delta m_B/2} |B_L^0(0)\rangle$$
$$|B_H^0(t) \rangle = e^{-t\Gamma_B/2} e^{-itM_B} e^{-it\Delta m_B/2} |B_H^0(0)\rangle$$

Time evolution of initially (t=0) pure flavour eigenstates:

$$\begin{aligned} \left| B_{phys}^{0}(t) \right\rangle &= h_{+}(t) \left| B^{0} \right\rangle + \frac{q}{p} h_{-}(t) \left| \overline{B}^{0} \right\rangle \\ \left| \overline{B}_{phys}^{0}(t) \right\rangle &= \frac{p}{q} h_{-}(t) \left| B^{0} \right\rangle + h_{+}(t) \left| \overline{B}^{0} \right\rangle \end{aligned} \qquad h_{+}(t) = e^{-t\Gamma_{B}/2} e^{-itM_{B}} \cos(t \Delta m_{B}/2) \\ \left| \overline{B}_{phys}^{0}(t) \right\rangle &= \frac{p}{q} h_{-}(t) \left| B^{0} \right\rangle + h_{+}(t) \left| \overline{B}^{0} \right\rangle \end{aligned} \qquad h_{-}(t) = i \left[e^{-t\Gamma_{B}/2} e^{-itM_{B}} \sin(t \Delta m_{B}/2) \right]$$

Flavour oscillations: for initially pure $B^0(t=0)$, probability for finding $B^0\left(\overline{B}^{\,0}\right)$ at time t, assuming |q/p|=1

$$|h_{\pm}(t)|^2 = \frac{1}{2}e^{-t\Gamma_B} \left[1 \pm \cos(t \,\Delta m_B)\right] \quad \Rightarrow \quad a_{mix}(t) = \cos(t \,\Delta m) = \cos(x \,\Gamma t)$$

Time-integrated ratio and time-integrated oscillation probability:

$$r = \frac{N(\overline{B}^{0})}{N(B^{0})} = \frac{\int_{0}^{\infty} dt \left|h_{-}(t)\right|^{2}}{\int_{0}^{\infty} dt \left|h_{+}(t)\right|^{2}} = \frac{x^{2}}{2+x^{2}}, \quad \chi = \frac{r}{1+r} = P(B^{0} \to \overline{B}^{0}), \quad x \equiv \frac{\Delta m}{\Gamma}$$

Observable by looking at self-flavour tagging semileptonic or hadronic decays! For example:

$$B^{0} \to D^{*-}l^{+}\nu \qquad \overline{B}^{0} \to D^{*+}l^{-}\overline{\nu}$$

$$B^{0} \to D^{-}\pi^{+} \qquad \overline{B}^{0} \to D^{+}\pi^{-}$$

$$B^{0}_{s} \to D^{-}l^{+}\nu \qquad \overline{B}^{0}_{s} \to D^{+}l^{-}\overline{\nu}$$

(assuming CPT as a good symmetry, for simplicity)...

Time-dependent decay rate for $B_{phys}^0 \to f$:

$$\frac{d\Gamma\left(B_{phys}^{0}(t)\to f\right)}{dt} = \left|\left\langle f\left|H\right|B_{phys}^{0}(t)\right\rangle\right|^{2} = \text{"decay"}$$

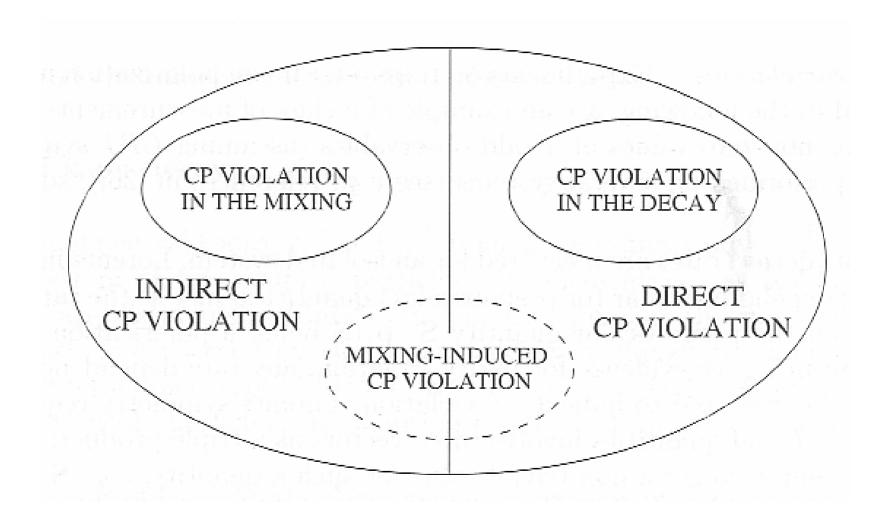
$$= \frac{e^{-\Gamma t}}{2} \left| + (1-\cos(\Delta m\,t))\left|A_{f}\right|^{2} + \left| + (1-\cos(\Delta m\,t))\left|\frac{q}{p}\right|^{2}\left|\overline{A_{f}}\right|^{2} - \left| + (1-\cos(\Delta m\,t))\left|\lambda_{f}\right|^{2} - \left| -2\Im\left(\lambda_{f}\right)\sin(\Delta m\,t)\right| \right| + \left| + (1-\cos(\Delta m\,t))\left|\lambda_{f}\right|^{2} - \left|\lambda_{f}\right|^{2} - \left|\lambda_{f}$$

$$\lambda_f = \frac{q}{p} \frac{\overline{A}_f}{A_f}$$

Combining similar expressions for: $\overline{B}^{\,0}_{phys} \to f$, $B^{\,0}_{phys} \to \overline{f}$, $\overline{B}^{\,0}_{phys} \to \overline{f}$ observable *CP-violating asymmetries* can be derived

Important special case:

neutral pseudoscalar mesons produced coherently in pairs, from the decay of a vector resonance: $V \to P^0 \overline{P}^0$, and subsequent decays to final states f_1 , f_2 at times t_1 , t_2 for instance: $Y(4S) \to B^0 \overline{B}^0$ $\phi \to K^0 \overline{K}^0$


The corresponding time-dependence of decay rates and asymmetries have similar forms, with : $\Delta t \equiv t_2 - t_1$

For a complete discussion including CPT: see e.g.: Kirkby & Nir, PDG

Classification of CP-violating effects

July 10, 2006

Classification of CP-violating effects

CPV in decay:

$$\left| \overline{A}_{\bar{f}} \middle/ A_f \right| \neq 1$$

$$A_{CP,f^{\pm}} \equiv \frac{\Gamma(P^{-} \to f^{-}) - \Gamma(P^{+} \to f^{+})}{\Gamma(P^{-} \to f^{-}) + \Gamma(P^{+} \to f^{+})} = \frac{\left|\overline{A}_{f^{-}} / A_{f^{+}}\right|^{2} - 1}{\left|\overline{A}_{f^{-}} / A_{f^{+}}\right|^{2} + 1}$$

CPV in mixing:

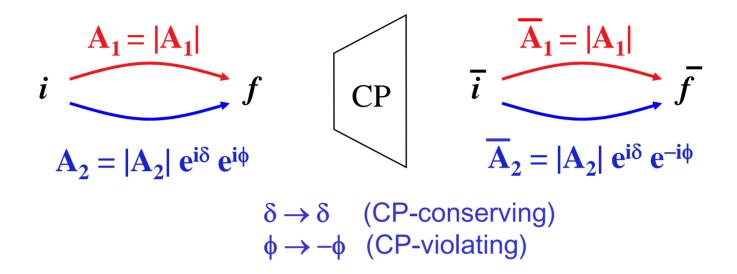
$$|q/p| \neq 1$$

$$A_{SL}(t) = \frac{d\Gamma/dt \left(\overline{P}_{phys}^{0} \to l^{+}X\right) - d\Gamma/dt \left(P_{phys}^{0} \to l^{-}X\right)}{d\Gamma/dt \left(\overline{P}_{phys}^{0} \to l^{+}X\right) + d\Gamma/dt \left(P_{phys}^{0} \to l^{-}X\right)} = \frac{1 - \left|q/p\right|^{4}}{1 + \left|a/p\right|^{4}}$$

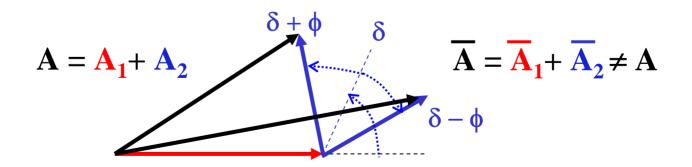
CPV in the interference decay-mixing ("mixing-induced"):

$$\Im m(\lambda_f) \neq 0$$

$$\lambda_f \equiv \frac{q}{p} \frac{\overline{A}_f}{A_f}$$


For example: decays to CP eigenstates $f_{\it CP}$

$$A_{f_{CP}}(t) = \frac{d\Gamma/dt \left(\overline{P}_{phys}^{0} \to f_{CP}\right) - d\Gamma/dt \left(P_{phys}^{0} \to f_{CP}\right)}{d\Gamma/dt \left(\overline{P}_{phys}^{0} \to f_{CP}\right) + d\Gamma/dt \left(P_{phys}^{0} \to f_{CP}\right)}$$

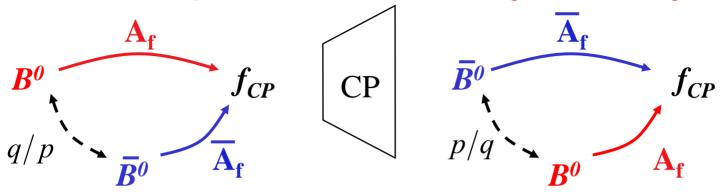


Observables: "direct" CP asymmetry - 1

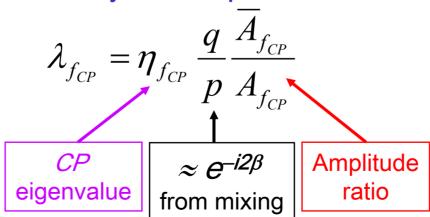
Time-integrated "direct" CP asymmetry requires two amplitudes and $\delta \neq 0$:

Observables: "direct" CP asymmetry - 2

Time-integrated "direct" CP asymmetry ("CP violation in decay"):


$$A_{CP} \equiv \frac{\Gamma(i \to f) - \Gamma(\bar{i} \to \bar{f})}{\Gamma(i \to f) + \Gamma(\bar{i} \to \bar{f})} = \frac{2|A_1||A_2|\sin\delta\sin\phi}{|A_1|^2 + |A_2|^2 + 2|A_1||A_2|\cos\delta\cos\phi}$$

- the only possibile CPV effect for *charged* mesons decays!
- requires at least two amplitudes *and* $\delta \neq 0$


Time-dependent CP asymmetry - 1

Interference between mixing and decay to a CP eigenstate f_{CP}

$$\Rightarrow \Gamma(B_{phys}^{0}(t) \to f_{CP}) \neq \Gamma(\overline{B}_{phys}^{0}(t) \to f_{CP})$$

Flavor-tagged time-dependent decay rates are different! they are governed by the "CP parameter":

Time-dependent CP asymmetry - 2

Decay distributions $f_{+}(\underline{f})$ when tag = $B^{0}(\overline{B^{0}})$, pair-produced at Y(4S)

$$f_{CP,\pm}(\Delta t) = \frac{\Gamma}{4} e^{-\Gamma \Delta t} [1 \pm S_{f_{CP}} \sin \Delta m_d \Delta t \mp C_{f_{CP}} \cos \Delta m_d \Delta t]$$

Asymmetry

$$A_{f_{CP}}(\Delta t) = C_{f_{CP}}\cos(\Delta m_d \Delta t) - S_{f_{CP}}\sin(\Delta m_d \Delta t)$$

CP parameter

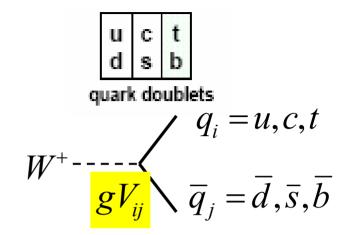
$$\lambda_{f_{CP}} = \eta_{f_{CP}} \, rac{q}{p} \cdot rac{\overline{\mathcal{A}}_{\overline{f}_{CP}}}{\mathcal{A}_{f_{CP}}}$$

$$C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^{2}}{1 + |\lambda_{f_{CP}}|^{2}}$$

$$S_{f_{CP}} = \frac{-2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^{2}}$$

For single decay amplitude = 0 $= -\operatorname{Im} \lambda_{f_{c}}$

"Theoretical interpretation": CKM


The CKM paradigm in the SM

(1973) M.Kobayashi and T.Maskawa

CP violation ⇒ third generation of quarks

Cabibbo-Kobayashi-Maskawa matrix V

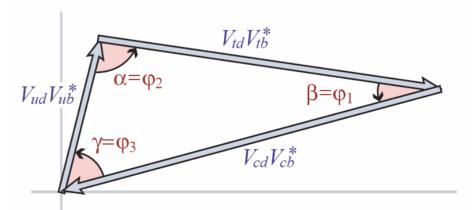
- couples quark charged currents to W[±]
- mixes the left-handed (q_j=d,s,b) quark mass eigenstates to give weak eigenstates;
- unitary, with 4 independent parameters (e.g., 3 angles and 1 phase)
- complex elements: phase changes sign under CP
- interfering amplitudes can give observable CP-violating rate asymmetries

$$V = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

CKM matrix and Unitarity Triangle

"improved" Wolfenstein parameterization:

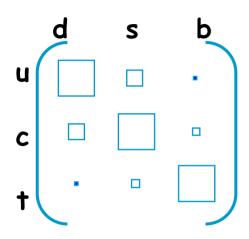
$$V_{\rm CKM} =$$


$$\begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix} \quad \mathcal{C}$$

$$\alpha \equiv \varphi_2 \equiv \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right),$$

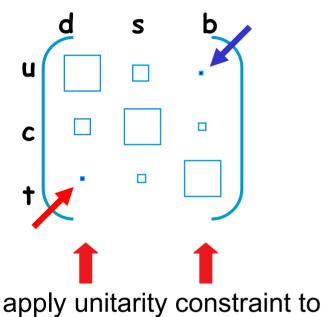
$$\beta \equiv \varphi_1 \equiv \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right),$$

$$\gamma \equiv \varphi_3 \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{ub}^*}\right),$$


$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 .$$

The Unitarity Triangles

apply unitarity constraint to pairs of columns


$$d \cdot s^* = 0$$
 (K system)

$$s \cdot b^* = 0$$
 (B_s system)

$$d \cdot b^* = 0$$
 (B_d system)

These three triangles (and the three triangles corresponding to the rows) all have the same area. A nonzero area is a measure of CP violation and is an invariant of the CKM matrix.

The "normalized" Unitarity Triangle

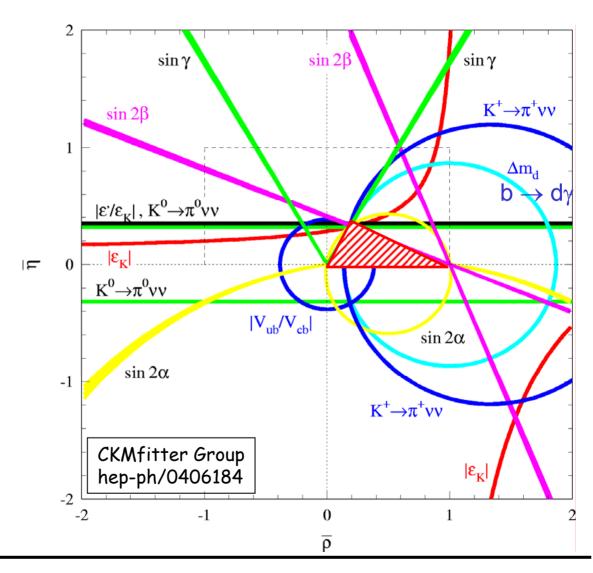
 $\approx \frac{V_{ub}^{*}}{\lambda V_{cb}^{*}} \qquad \alpha \qquad \frac{V_{td}}{\lambda V_{cb}^{*}}$ $(0,0) \qquad \beta \qquad (1,0)$ $V \approx \arg(V_{ub}^{*}) \quad \beta \approx -\arg(V_{td}) \quad \alpha = \pi - \beta - \gamma$

these two columns

Orders of magnitude for Wolfenstein parameters:

$$\lambda \approx 0.22$$
, $A \approx 0.8$, $\sqrt{\rho^2 + \eta^2} \approx 0.4$

$$\begin{aligned} & \frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}} + 1 + \frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}} = 0 \\ & V_{cd} = \lambda , \quad V_{ud} \approx V_{tb} \approx 1 \end{aligned}$$



CKM and Unitarity Angles: CPV roadmap

B meson mixing and decays probe 5 of the 9 elements of the CKM matrix

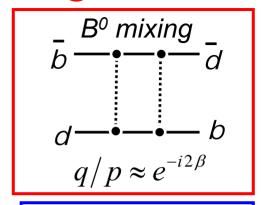
CP violating asymmetries directly access the CKM phase through the Unitarity Angles $\alpha(\phi_2)$, $\beta(\phi_1)$, $\gamma(\phi_3)$

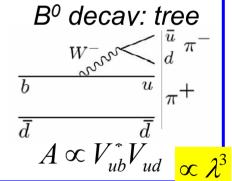
CPV in the B sector: CKM angles

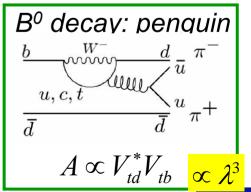
$$V_{td}=|V_{td}|e^{-i\phi_1}\,(B^0ar{B}^0\,{
m mixing})$$

$$V_{td} = |V_{td}| e^{-i\beta}$$

- Mixing-assisted CPV
 - Observation in $B^0 o J/\psi K^0$ BaBar & Belle (2001)
- CPV in B^0 - \bar{B}^0 mixing itself
 - Not seen yet


$$V_{ub} = |V_{ub}|e^{-i\phi_3}$$
 ($b \to u$ decays) $V_{ub} = |V_{ub}|e^{-i\gamma}$


$$V_{ub} = |V_{ub}|e^{-i\gamma}$$


- Direct CPV (Interference with other diagrams)
 - Evidence in $B^0 \to \pi^+\pi^-$ Belle (2003), not seen by BaBar
 - Evidence in $B^0 \to K^+\pi^-$ BaBar & Belle (2004)

Both V_{td} and V_{ub} are involved

- Mixing-assisted CPV for final states containing V_{ub}
 - Evidence in $B^0 \to \pi^+\pi^-$ Belle (2003), not seen by BaBar

$$P = K^{0}, D^{0}, B^{0}_{d}, B^{0}_{s}$$

Peculiarities of pseudoscalar mesons

in terms of
$$\Delta m$$
, $\Delta \Gamma$, $x = \frac{\Delta m}{\Gamma}$, $y = \frac{\Delta \Gamma}{2\Gamma}$

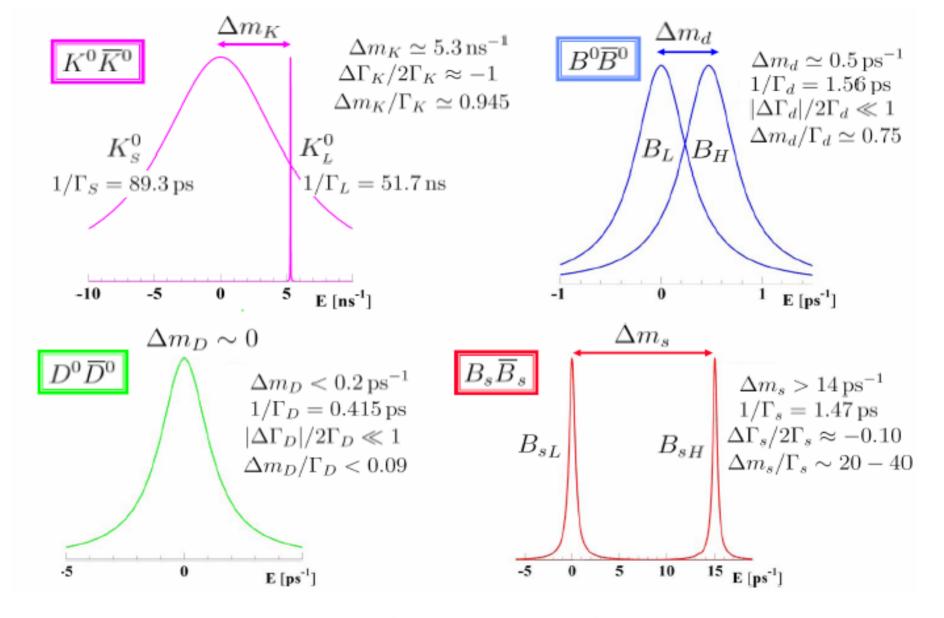
and of the expectations for CP effects

K^0 , D^0 , B^0_d , B^0_s : Δm and ΔΓ

Consider meson $|P^0\rangle$ where $P^0=K^0,\,D^0,\,B^0,\,$ or B_s

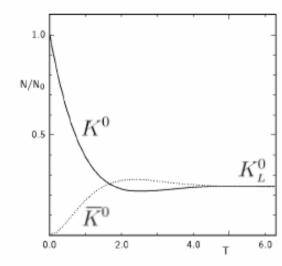
pairs of charge-conjugate mesons, which can be transformed to each other via flavor changing weak interaction transitions

$$|K^{0}\rangle = |\bar{s}d\rangle$$
 $|D^{0}\rangle = |c\bar{u}\rangle$ $|B^{0}\rangle = |\bar{b}d\rangle$ $|B_{s}\rangle = |\bar{b}s\rangle$


	K^0/\overline{K}^0	$D^0/\overline{D}{}^0$	$B^0/\overline{B}{}^0$	B_s/\overline{B}_s
$\tau(ps)$	89.3 ± 0.1 ; 51700 ± 400	0.415 ± 0.004	1.564 ± 0.04	1.47 ± 0.06
$\Gamma(\mathrm{ps}^{-1})$	5.61×10^{-3}	$\simeq 2.4$	0.641 ± 0.016	0.62 ± 0.04
$y = \Delta\Gamma/2\Gamma$	-0.9966	y < 0.08	y < 0.01	$\simeq -0.10$
$\Delta m (\mathrm{ps}^{-1})$	$(5.301 \pm 0.014) \times 10^{-3}$	< 0.2	0.490 ± 0.019	> 14
$x = \Delta m/\Gamma$	0.945 ± 0.002	< 0.09	0.72 ± 0.03	$\sim 20 - 40$
δ	$(3.27\pm0.12)\times10^{-3}$	~ 0	$\sim -10^{-3}$	$ \delta < 10^{-3}$

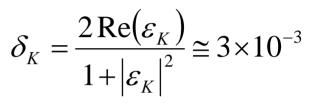
Time units (ps) for all quantities...!

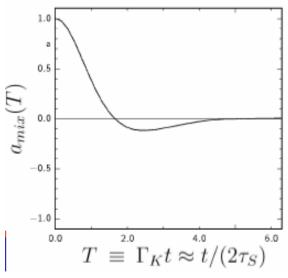
Exercise: check against the latest PDG and HFAG values

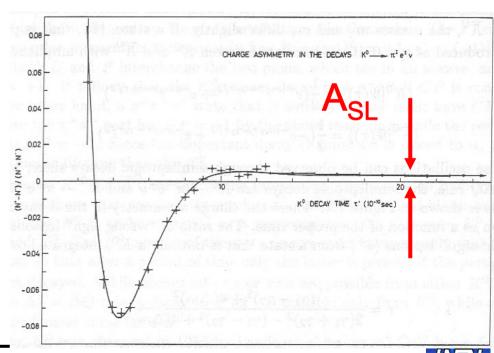


67

mixing

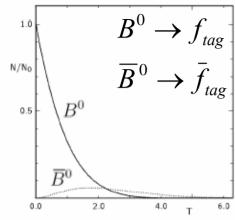

K⁰ system

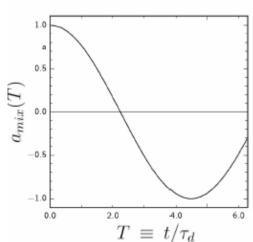

CPV



$$x_K \cong 0.95$$
$$y_K \cong -0.996$$

CPV is small...





mixing

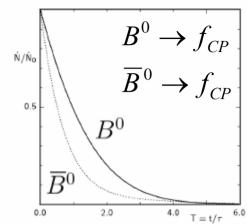
$$x_d = 0.72 \pm 0.03$$

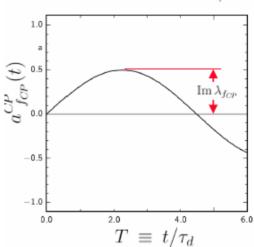
$$\chi_d = \frac{x_d^2}{2(1 + x_d^2)} \cong 18\%$$

B_d system

To a very good approx., equal decay widths and no CPV in mixing $y_d \approx 0$

$$a_{mix}(t) = \cos(\Delta m t)$$
$$= \cos(x_d t/\tau_d)$$

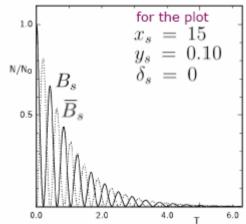

In the simplest case, time-dependent CP asymmetry:

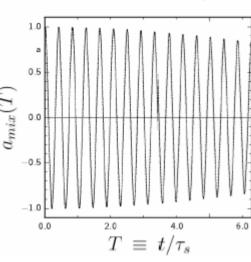

$$a_{f_{CP}}^{CP}(t) = \operatorname{Im}(\lambda_{f_{CP}}) \sin(\Delta m t)$$

Time-integrated (incoherent!):

$$A_{f_{CP}}^{CP} = \frac{x_d}{1 + x_d^2} \operatorname{Im}(\lambda_{f_{CP}})$$

CPV




$$\frac{x_d}{1 + x_d^2} \cong 0.47$$

mixing

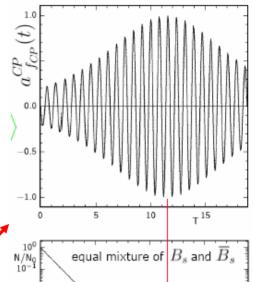
B_s system

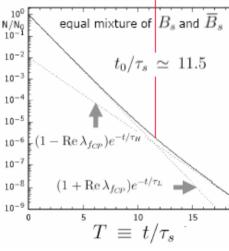
x_s is very largey_s small, perhaps not negligible

$$x_s > 21$$
 (95% *CL*)

$$2y_s < 0.46 \ (95\% \ CL)$$

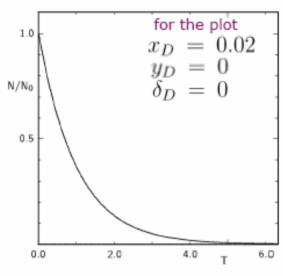
Mixing probability close to 50%

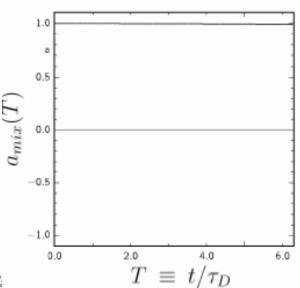

$$\chi_s = \frac{x_s^2 + y_s^2}{2(1 + x_s^2)} > 0.4988$$


Time-dependent CP-asymmetry: sinusoidal function, modulated by a function f(t); 100% at the max.!

$$a_{f_{CP}}^{CP}(t) = \operatorname{Im}(\lambda_{f_{CP}}) \sin(\Delta m t) f(t)$$

 $y_s = 0.10$ Demo plots with unrealistic values!


CPV



The D System

In the D^0 - $\overline{D}{}^0$ system, both are very small

 $\star y_D$ very small: only few common states

$$CP = +1 \quad \pi \pi, \ K \overline{K}, K_L^0 \pi^0$$

$$CP = -1 \quad K_S^0 \pi^0, \ K_S^0 \omega$$

 \star x_D very small: strongly CKM suppressed

Mixing probability extremely small
$$\chi = \frac{x_D^2}{2(1+x_D^2)}$$

interesting system to look for new physics

$$a_{mix}(t) \approx 1 - \frac{x_D^2 + y_D^2}{2} (t/\tau)^2$$

Present experimental limits will be summarized in the lecture on D mesons

Lecture 1 - Summary

- CPV tests probe fundamental symmetry properties of nature, with links to cosmology
- CPV seen in K and B mesons!
- Neutral pseudoscalar mesons (P= K, B, D) in particular offer a very rich and subtle phenomenology for stringent tests of theoretical predictions
- We will discuss in more detail (in the given order):
 - B mesons, K mesons, D mesons
 - "CPV without strangeness": Electric Dipole Moments

Discovery potential in B mesons

- B mesons: specially suited for stringent experimental tests of a detailed pattern of theoretical expectations
 - "direct" CP violation in charged B decays
 - from the interference of different decay amplitudes
 - CP asymmetries can be large (O(10%))
 - CP violation in mixing: should be small
 - CP violation in the interference of neutral B decays with and without mixing
 - Several "clean" time-dependent CP asymmetries
 - The three Unitarity Angles: $\alpha(\phi_2)$, $\beta(\phi_1)$, $\gamma(\phi_3)$, can be determined by observables related to V_{td} and V_{ub}
 - The validity of the CKM model can be tested overconstraining the Unitarity Triangle
 - B_s mixing still to be determined (important for $|V_{ts}|$)!

Back-up slides

SI and natural units

 Preferred units in particle physics: "natural units", just one unit for all physical quantities...

E:
$$1MeV = 10^6 eV$$
, $1GeV = 10^9 eV$; (L: $1fm = 10^{-15}m$)
 $\hbar = c = 1$ (a-dimensionly) $\Rightarrow [M] = [E] = [T^{-1}] = [L^{-1}]$

examples

Compton wælength
$$\lambda_C = \frac{\hbar}{mc} \rightarrow \frac{1}{m}$$
 measureidn eV^{-1} or fm
Lifetime $\tau = \frac{\hbar}{\Gamma} \rightarrow \frac{1}{\Gamma}$ measureidn eV^{-1} or s

SI and natural units

• SI units can be recovered in final results, by inserting appropriate powers of \hbar and c via dimensional analysis and using:

Examples:

ω resonance: width and lifetime

$$\Gamma = 8.43 \, MeV \implies 1/\tau = 8.43 \times 1.52 \times 10^{21} \, s^{-1} = 1.28 \times 10^{22} \, s^{-1} \implies \tau = 0.78 \times 10^{-22} \, s^{-1}$$

 π meson: mass and Compton wavelength

$$m = 140 \,\text{MeV/}c^2 \implies \lambda = 1/m = \frac{1}{140} \,\text{MeV}^{-1} = \frac{1}{140 \times 5.07 \times 10^{-3}} \,\text{fm} = 1.41 \,\text{fm}$$

References - 1

BOOKS

- I.I.Y.Bigi and A.I.Sanda, "CP Violation", Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol. 9, 1 (2000).
- G.C.Branco, L.Lavoura, J.P.Silva, "CP violation", Oxford University Press, Oxford (1999).
- K. Kleinknecht, "Uncovering CP violation: experimental clarification in the neutral K meson and B meson systems", Springer Tracts in Modern Physics, vol. 195 (Springer Verlag 2003).

PDG

- D.Kirkby and Y.Nir, "CP Violation in Meson Decays",
- F.J.Gilman, K.Kleinknecht, B.Renk, "The CKM Quark-Mixing Matrix",
- O.Schneider, "B0-antiB0 mixing",
- Y.Kwon, "Production and Decay of b-Flavored Hadrons",
 - in: S.Eidelman et al., Phys. Lett. B592, 1 (2004), available on: http://pdg.lbl.gov/

References - 2

HFAG

Heavy Flavor Averaging Group (HFAG)

http://www.slac.stanford.edu/xorg/hfag/

http://www.slac.stanford.edu/xorg/hfag/triangle/index.html

HFAG, "Averages of b-hadron Properties as of Winter 2005", arXiv:hep-ex/0505100.

CKM fits

J.Charles et al., The CKMfitter Group, "CP Violation and the CKM Matrix: Assessing the Impact of the Asymmetric B Factories", Eur. Phys. J. C41, 1-131 (2005), [arXiv:hep-ex/0406184]; Winter 2005 updates in: http://www.slac.stanford.edu/xorg/ckmfitter/

M.Bona et al., The UTfit Collaboration, "The 2004 UTfit Collaboration Report on the Status of the Unitarity Triangle in the Standard Model", arXiv:hep-ex/0501199; Winter 2005 updates in: http://utfit.roma1.infn.it/

Acknowledgements

I am indebted to many colleagues whose seminars and lectures on B physics and CPV were a very helpful source of ideas and material, in particular:

Pat Burchat, Gautier Hamel de Monchenault, Achille Stocchi, ...

For the most recent updates I relied mainly on review talks at the LP2005 conference (Uppsala, June 30 – July 5, 2005), by:

Kazuo Abe, Francesco Forti, Rick Jesick, Ulrich Nierste, Luca Silvestrini, Iain Stewart

The experimental data shown in these lectures are mainly from the B-factories and Tevatron collaborations:

CDF, D0, BaBar, Belle

