CP Violation and Flavour

Lecture 3

Dottorato in Fisica – XXI Ciclo

Livio Lanceri Università di Trieste and INFN

Recap

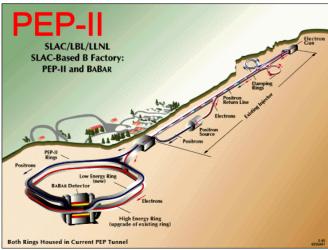
- B mixing and CPV: detailed pattern of SM (CKM) predictions, many channels
 - Typical expectations: O(10%) asymmetries in rare (10⁻⁴ and less) decays
 - need many reconstructed and tagged B mesons ⇒ high luminosity!

- Measurements to be discussed in lectures 3 5:
 - Tevatron: B_s mixing ($\Delta\Gamma_s$, Δm_s)
 - B factories: CPV in B_d, B[±]
 - "direct" in decays,
 - "indirect" in mixing, and
 - "mixing-induced"
 - \Rightarrow CKM Unitarity Angles $\alpha(\phi_2)$, $\beta(\phi_1)$, $\gamma(\phi_3)$

Lecture 3 - Outline

- Experimental facilities
- B_s mixing at the Tevatron
 - $-\Delta\Gamma_s$, Δm_s
- Detectors at the B-factories
 - design criteria and performance
- Direct CPV
 - $-B \rightarrow K\pi$
- Limits on indirect CPV
 - $A_{SL} = (N(I^+I^+) N(I^-I^-)) / (N(I^+I^+) + N(I^-I^-))$

- Methods
- Results
- Statistics, systematics


Experimental facilities (B physics)

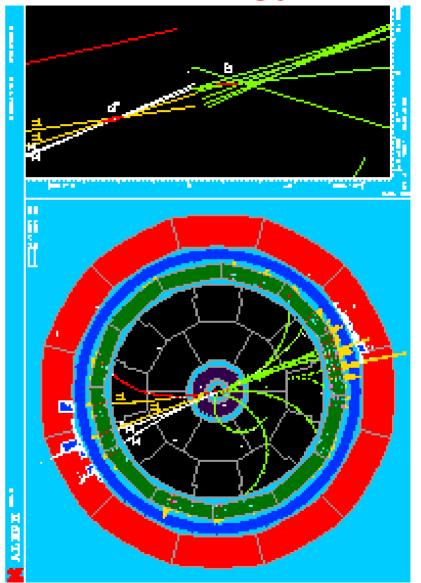
Past: LEP, CESR

Present: Tevatron, PEP-II, KEK-B

Future: LHC; Super B-Factory?

Recent past: LEP, SLC and CLEO

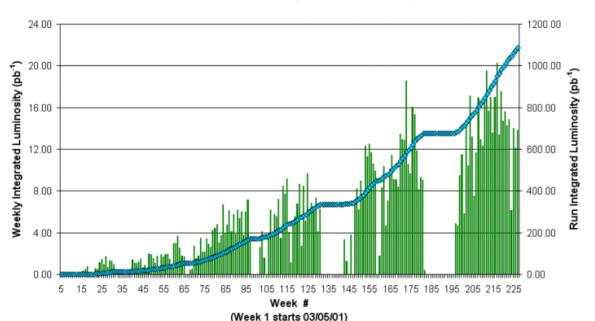
- $e^+e^- \rightarrow Z^0 \rightarrow b\bar{b}$
 - LEP (Aleph, Delphi, L3, OPAL)
 - 4 M Z $^0~\Rightarrow~$ 1.4 M B $_{\text{u.d}}$; B $_{\text{s}},$ b-baryons, ...; σ_{bb} / $\sigma_{\text{had}} \cong 0.2$
 - $p_{lab} \cong 30 GeV \implies boost \gamma \beta c\tau \cong 3 mm$
 - Silicon vertex detectors, particle identification
 - Lifetimes, mixing, b-tags
 - SLC (linear collider: SLD)
 - 400K $Z^0 \Rightarrow 140K B_{u.d}$; Polarized beam (A_{FB} measurement!)
 - Smaller diameter vacuum pipe, pixel vertex detector
- $e^+e^- \rightarrow Y(4S) \rightarrow B^0\overline{B}{}^0$, B^+B^-
 - CESR (CLEO, several upgrades) until 2001
 - 17 M events, $B_{u.d}$ only; σ_{bb} / $\sigma_{had} \cong 0.25$
 - Monochromatic B mesons, small boost: $\gamma\beta \approx 0.06$
 - Vertex detector, particle identification; many important results!



Decay vertex technology

An $e^+e^- \rightarrow Z^0 \rightarrow bb$ event recorded by ALEPH

One b hadronizes to B_s fully reconstructed with detached decay vertex


Present (1): Tevatron, Run II

- Tevatron @ FNAL: pp collider (CDF, D0)
 - Large cross section *and* backgrounds, at E_{cm} = 1.96 TeV:

$$\sigma_{bb} \cong 10^5 \; nb$$
 , $\sigma_{bb} \; / \; \sigma_{had} \cong 0.001$

- All species of b-hadrons: B^{\pm} , B^{0} , B_{S} , B_{C} , Λ_{b} , Ξ_{b} ; $\gamma\beta c\tau \approx 3$ mm
- Present peak luminosity:
 ≤ 10³² cm⁻² s⁻¹; integrated about 1 fb⁻¹

Collider Run II Integrated Luminosity

Max. recordable rate, all processes ≈ 50 Hz

B rate ≈ 300 Hz!

⇒ a selective trigger is essential! also on hadrons, not only on leptons

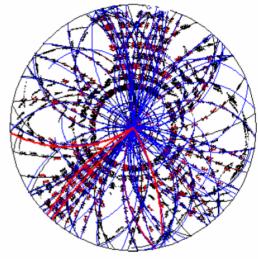
Tevatron, Run II

Ambitious program:

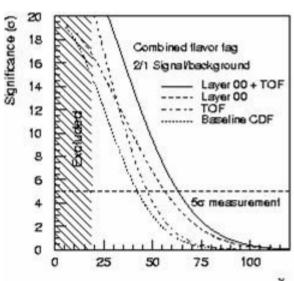
luminosity up to 4-8 fb⁻¹ by 2009 upgraded CDF and D0 detectors

Physics reach:

top, W, searches, QCD B-physics, including:


Rare decays, CPV, CKM, B_c

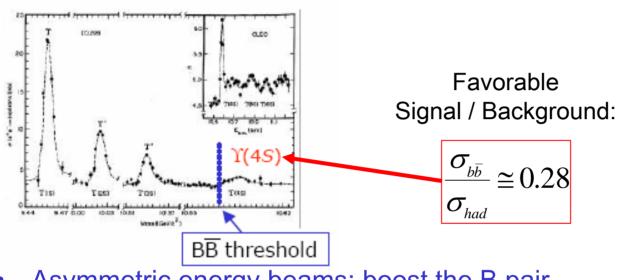
 B_s mixing: $(\Delta\Gamma/\Gamma)_s$, $(\Delta m/\Gamma)_s$ unique opportunity!


B_s mixing (old upgrade proposal, 2fb⁻¹) →

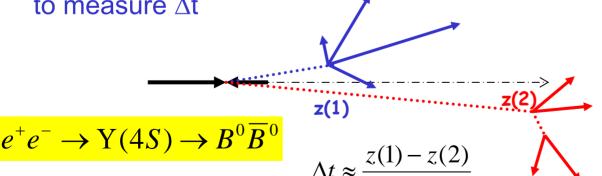
20000 $B_s \rightarrow D_s^+\pi^-, D_s^+\pi^-\pi^+\pi^-$

Tag efficiency: $\varepsilon D^2 = 5.7 \div 11.3\%$

Pretty tough ...!



Present (2): the B-factory approach


CM energy = 10.580 GeV

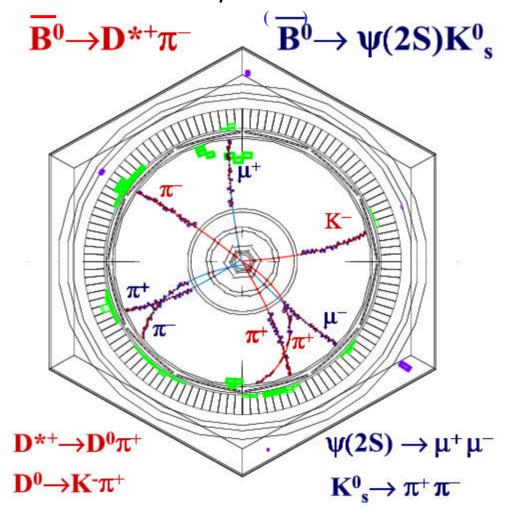
Effective cross sections:

$e^+e^- \rightarrow$	σ(nb)
bb	1.05
cc	1.30
SS	0.35
uu	1.39
dd	0.35
$ au^+ au^-$	0.94
$\mu^{+}\mu^{-}$	1.16
$\mathbf{e}^{+}\mathbf{e}^{-}$	≈40

 Asymmetric energy beams: boost the B pair to measure ∆t

boost: $\gamma\beta \approx 0.56$ for: $E(e^{-}) \approx 9 \,\text{GeV},$ $E(e^{+}) \approx 3 \,\text{GeV},$

Y(4S)→BB events are simpler...


CP eigenstate

$$B^0(\overline{B}^0) \rightarrow \psi(2S)K_S^0$$

Flavour eigenstate

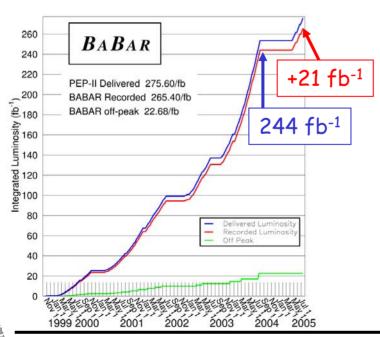
$$\overline{B}^0 \rightarrow D^{*_+} \pi^-$$

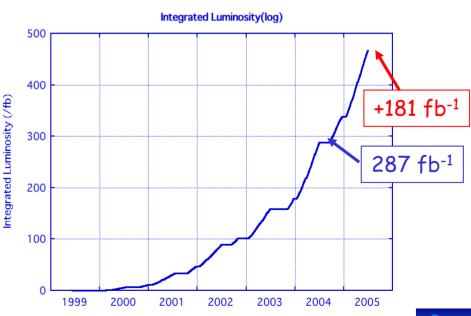
Fish-eye view:

B-Factories: PEP-II and KEK-B

- e⁺e⁻ → Y(4s) → B 0_d $\overline{B}{}^0_d$ with asymmetric energy to boost the B mesons: PEP-II at SLAC and KEK-B at KEK
- clean environment, low backgrounds, high efficiency; small cross section
 (≈ 1nb): luminosity is the key factor. KEK-B record: 15.8 events/(nb s)
- > 700 M B-meson pairs recorded in total by Belle and BaBar!

PEP-II

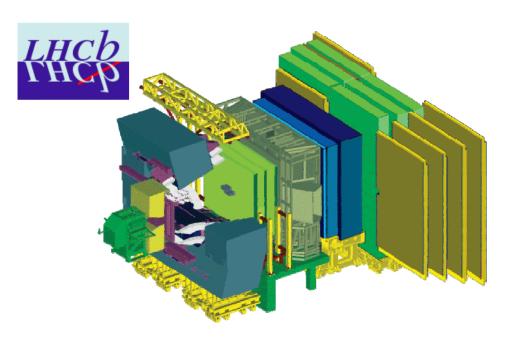

Last summer: 244 fb⁻¹


Now: 265 fb⁻⁷

KEK-B

Last summer: 287 fb⁻¹

Now: 468 fb⁻¹


Future: LHC & Super B-Factories?

Dedicated seminars:

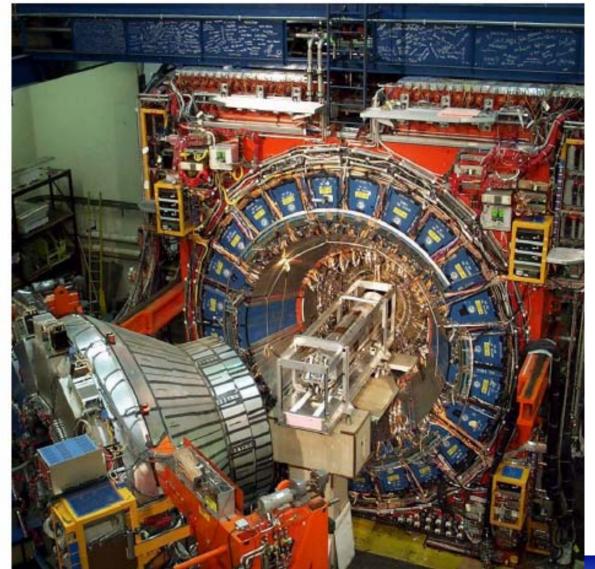
J.N.Butler, "Future experiments on CP violation in the B system at hadron machines"

M.Giorgi, "Possibilities for future experiments on CP violation in the B system at super B-factories"

D. Hitlin, "The asymmetric B factories"

Detectors

CDF and D0


(BABAR and BELLE: next lecture)

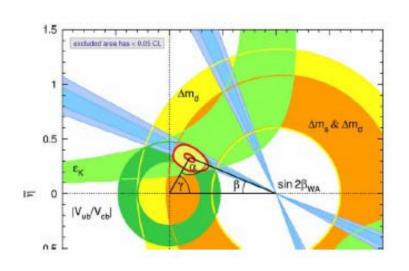
CDF and DØ $\eta = 0$ $\gamma_j=1$ Muon Scintillators Muon Chambers $\eta = 3$ Shielding Calorimeter Toroid CDF Tracking Volume END WALL HADRON $y_0 = 0$ 2.0 CAL Preshower Solenoid SOLENOID 1.5 $\eta = 2$ Fiber Tracker $n_{\parallel} = 3$ Silicon Tracker сот .5 2.5 2.0 3.0 m INTERMEDIATE 5 LAYERS SILICON LAYERS

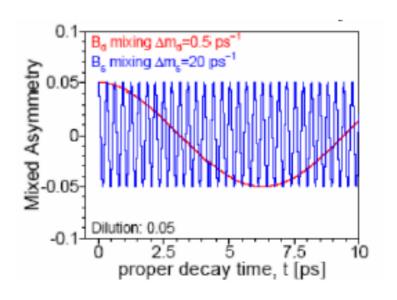
The CDF Run II Detector

- New silicon vertex detector
 - inner layer at 1.35 cm
- New central tracker
 - Excellent mass resolution
- Extended μ coverage
- TOF and dE/dx particle ID
- Second level impact parameter trigger
 - Allows all hadronic B decay triggers

(Rick Jesik, LP2005)

The DØ Run II Detector


- Silicon vertex detector
 - |η| < 3.0
- Central fiber tracker and pre-shower detectors
 - |η| < 1.5
- 2 T solenoid magnet
- New low pT central muon trigger scintillators
- New forward μ system
 - Excellent muon purity and coverage: |η| < 1.5
- Second level silicon track trigger being commissioned, B tagging at 3rd level now



B_s mixing at the Tevatron

B_s mixing: an open issue

• B_s mixing: $P(B_s \to \overline{B}_s) \propto e^{-t/\tau_s} (1 - \cos x_s t/\tau_s)$

$$x_{s} = \frac{\Delta m_{s}}{\Gamma_{s}} \quad \Gamma_{s} = \frac{\hbar}{\tau_{s}}$$

LEP, SLD, CDF-I $\Delta m_s > 14.5 \, ps^{-1}$ $x_s > 21.1$

$$x_s > 21.1$$

• $\Delta\Gamma_s$ and Δm_s : expectations

$$\frac{x_{s}}{x_{d}} = \frac{m_{B_{s}} \eta_{B_{s}} B_{B_{s}} f_{B_{s}}}{m_{B_{d}} \eta_{B_{d}} B_{B_{d}} f_{B_{d}} |V_{ts}|^{2}}$$

$$\left(\frac{\Delta\Gamma_s}{\Gamma_s}\right)_{t} = \left(\frac{f_{B_s}}{210\text{MeV}}\right)^2 \left(0.054^{+0.016}_{-0.032} \pm ...\right)$$
 12 ± 6% (quoted by CDF)

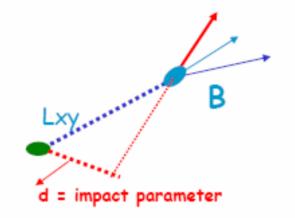
$$\left(\frac{\Delta\Gamma_s}{\Delta m_s}\right)_{discret} = \left(2.63^{+0.67}_{-1.36} \pm ...\right) \times 10^{-3}$$
 Dunietz et al, PRD 63, 114015 (2001)
Beneke et al, PLB 459, 631 (1999)

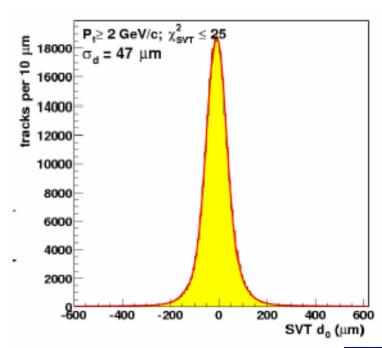
Triggering at the Tevatron

Dimuons: J/ψ modes
 p_T > 1.5 – 3.0 GeV
 CDF central, D0 out to |η| < 3.0

Single muons: semileptonic & tag

D0: track-matched, $p_T > 4$ GeV

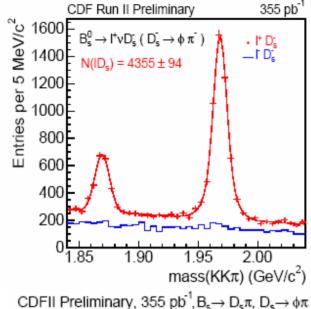

CDF: also $p_T > 2$ GeV, with 120 μ m < d < 1 mm (*)

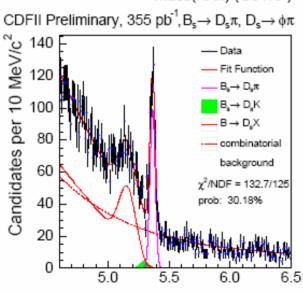

CDF only: two displaced vertex tracks: hadronic samples!
 p_T > 2GeV, 120 μm < d < 1 mm (*)

 $\Sigma p_T > 5.5 \text{ GeV}$

(*) CDF Silicon Vertex Trigger (lev.2)

Beamspot reconstruction, updated every 30 s; d resolution $\approx 50 \mu m$ Trigger on displaced tracks



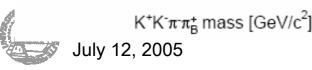


b-hadron samples at the Tevatron

CDF $B_s \rightarrow D_s I v$

 $N = 4355 \pm 94$

Lumi = 355 pb^{-1}


CDF $B_s \rightarrow D_s \pi$

 $N = 526 \pm 33$

Lumi = 355 pb^{-1}

DØ b-hadron samples

Mode	evts / 100pb-1
$J/\psi \to \mu^+ \; \mu^-$	1.14 M
$B^+ \to J/\psi \ K^+$	1700
$B_d \rightarrow J/\psi K^{*0}$	740
$B_d \rightarrow J/\psi K_S^0$	40
$B_s \rightarrow J/\psi \phi$	100
$\Lambda_b \to \textbf{J}/\psi \Lambda$	25
$\boldsymbol{B}_{c} \to \boldsymbol{J}/\psi \; \boldsymbol{\mu} \; \boldsymbol{X}$	65
$X(3872) \rightarrow J/\psi \pi^+ \pi^-$	230
$\textbf{B} \rightarrow \textbf{D}^{**} \; \mu \; \textbf{\textit{v}}$	210
$\textbf{B}^{**} \rightarrow \textbf{B} \; \pi$	150
${\bf B_s} \rightarrow {\bf D_{s1}} \; \mu \; {\bf X}$	4
$\mbox{B}^{+} \rightarrow \mbox{D}^{0}~\mu^{+}~\mbox{X}$	46.2 K
$\boldsymbol{B_d} \to \boldsymbol{D^{*-}} \; \boldsymbol{\mu^+} \; \boldsymbol{X}$	10 K
$B_s \rightarrow D_s(\phi \pi) \mu X$	2900
$B_s \rightarrow D_s(K^*K) \mu X$	2500

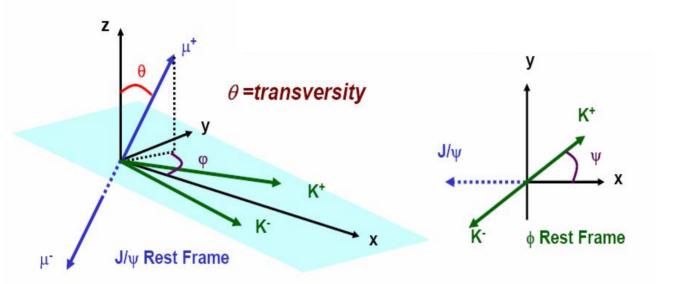
$\Delta\Gamma_s$ from $B_s \to J/\psi\phi$

$\Delta\Gamma_s$ from $B_s \to J/\psi \phi$: method

Relation of matrix elements to decay and oscillation parameters:

$$\Delta m = M_H - M_L \approx 2|M_{12}|$$

$$\Delta \Gamma = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}|\cos\phi$$


$$\phi = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$

- In the Standard Model:
 - The CP violating phase, φ is expected to be small
 - Mass eigenstates are ~ CP eigenstates with definite lifetimes
- The J/ψ φ final state is a mixture of CP states
 - L=0, 2; CP even; (A₀, A_{||})
 - L=1; CP odd; (A_⊥)
- Assuming no CP violation in the B_s system, measure two B_s lifetimes, τ_L and τ_H , (or $\Delta\Gamma/\Gamma$ and τ) by simultaneously fitting time evolution and angular distribution in untagged $B_s \rightarrow J/\psi$ ϕ decays
- CDF result last summer: $\Delta\Gamma/\Gamma = 0.65^{+0.25}_{-0.33} \pm 0.01$

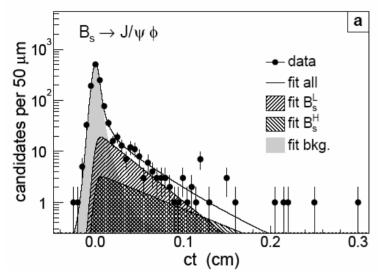
$B_s \rightarrow J/\psi \phi$: transversity analysis

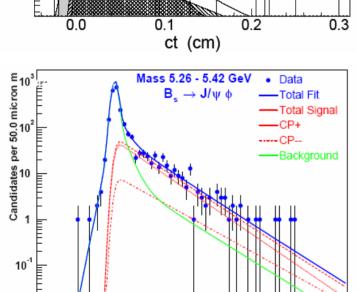
Angles and proper decay time:

$$\vec{\rho} \equiv \{\cos\theta, \varphi, \cos\psi\}$$

$$ct = c(\vec{l}_T \cdot \vec{p}_T) M_B / p_T^2$$

From an unbinned Max. Likelihood fit to decay time-and-angles distribution:


$$A_0$$
 , A_{\parallel} , A_{\perp} , $c\, au_L$, $c\, au_H$, $\Delta\Gamma_s$


$$\begin{split} \frac{d^4 \mathcal{P}(\vec{\rho},t)}{d\vec{\rho} \, dt} \propto |A_0|^2 e^{-\Gamma_L t} \cdot f_1(\vec{\rho}) + \; |A_{\parallel}|^2 e^{-\Gamma_L t} \cdot f_2(\vec{\rho}) \\ + |A_{\perp}|^2 e^{-\Gamma_H t} \cdot f_3(\vec{\rho}) + \; \text{Re}(A_0^* A_{\parallel}) \cdot f_5(\vec{\rho}) e^{-\Gamma_L t}. \end{split}$$

$\Delta\Gamma_s$ from $B_s \to J/\psi \phi$: recent results

CDF published: $L = 260 \text{ pb}^{-1}$, $N = 203\pm15$

$$\tau_L = (1.05 \, {}^{+0.16}_{-0.13} \, \pm 0.02) \, \text{ps}$$

$$\tau_H = (2.07 \, {}^{+0.58}_{-0.46} \, \pm 0.03) \, \mathrm{ps}$$

$$\Delta\Gamma_s = (0.47 ^{+0.19}_{-0.24} \pm 0.01) \,\mathrm{ps}^{-1}$$

 $\Delta\Gamma_s/\Gamma_s = (65 ^{+25}_{-33} \pm 1)\%$

D0 preliminary: Lumi = 450 pb^{-1} , N = 483 ± 32

$$\frac{\overline{\tau}(B_s^0) = 1.39_{-0.14}^{+0.13} \pm 0.08 \, ps}{\frac{\Delta \Gamma}{\overline{\Gamma}} = 0.21_{-0.40}^{+0.27} \pm 0.20} = 0.02 ?$$

$$\frac{A\Gamma}{\overline{\Gamma}} = 0.17 \pm 0.10 \pm 0.02$$

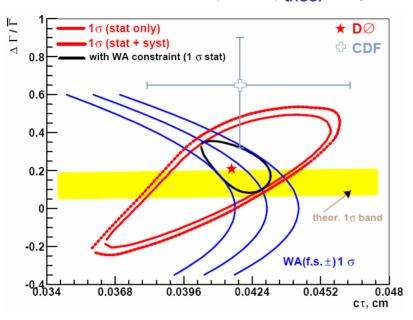
$$\frac{|A_{\perp}|^2}{|A_0|^2 + |A_{\parallel}|^2}$$

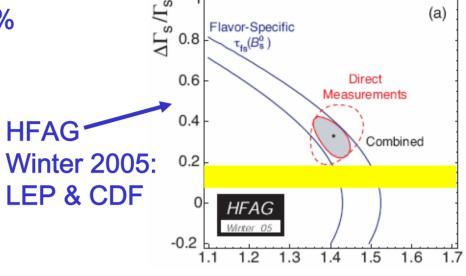
$$\frac{d\Gamma(t)}{d\cos\theta} \propto \left(\left| A_0(t) \right|^2 + \left| A_{\parallel}(t) \right|^2 \right) \frac{3}{8} \left(1 + \cos^2\theta \right) + \left| A_{\perp}(t)^2 \right| \frac{3}{4} \sin^2\theta$$

0.05

0.1

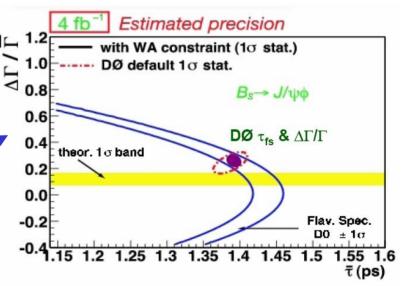
0.15


0.2


-0.05

0.25 0. Β_s cτ, cm

$\Delta\Gamma_s$: status and outlook

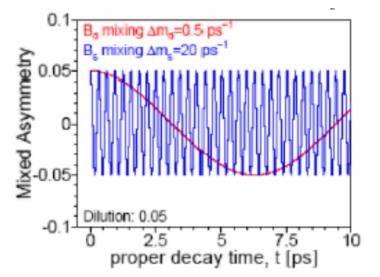

D0, with lifetime constraint:

$$\Gamma_{fs} = \overline{\Gamma} \left(\frac{1 - (\Delta \Gamma/2\overline{\Gamma})^2}{1 + (\Delta \Gamma/2\overline{\Gamma})^2} \right)$$

$$\overline{\tau_{fs}} = 1.43 \pm 0.05 ps$$

$$\Rightarrow \frac{\Delta \Gamma}{\Gamma} = 0.23^{+0.16}_{-0.17}$$

D0 sensitivity for 4 fb⁻¹


 Δm_s from $B_s \rightarrow D_s / v$, $D_s \pi$

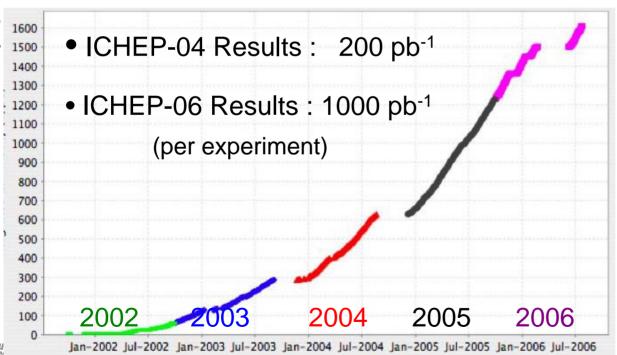
Tevatron

Collider, experiments B_s mixing measurement

$$P(B_s \to \overline{B}_s) \propto e^{-t/\tau_s} (1 - \cos x_s t/\tau_s)$$

$$x_s = \frac{\Delta m_s}{\Gamma_s} \quad \Gamma_s = \frac{\hbar}{\tau_s}$$

LEP, SLD, CDF-I
$$\Delta m_s > 14.5 \, ps^{-1} \qquad x_s > 21.1$$

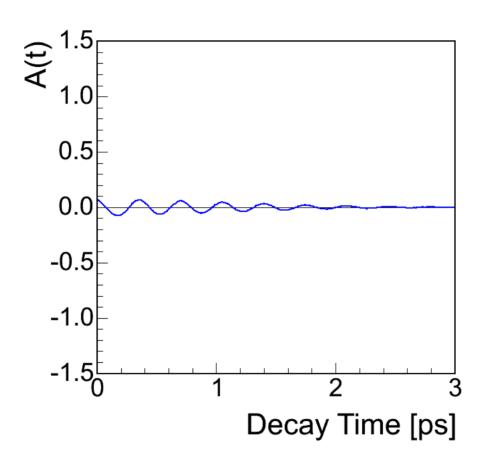

$$\frac{x_{s}}{x_{d}} = \frac{m_{B_{s}} \eta_{B_{s}} B_{B_{s}} f_{B_{s}}}{m_{B_{d}} \eta_{B_{d}} B_{B_{d}} f_{B_{d}}} \frac{|V_{ts}|^{2}}{|V_{td}|^{2}}$$

Present (1): Tevatron, Run II

- Tevatron @ FNAL: pp collider (CDF, D0)
 - Large cross section *and* backgrounds, at E_{cm} = 1.96 TeV:

$$\sigma_{bb} \cong 10^5 \text{ nb}$$
 , $\sigma_{bb} / \sigma_{had} \cong 0.001$

- All species of b-hadrons: B[±], B⁰, B_S, B_C, Λ_b , Ξ_b ; $\gamma\beta c\tau \cong 3$ mm
- Present peak luminosity:
 ² 10³² cm⁻² s⁻¹


Max. recordable rate, all processes ≈ 50 Hz

B rate ≈ 300 Hz

⇒ a selective trigger
 is essential
 also on hadrons,
 not only on leptons

B_s Mixing: Basics

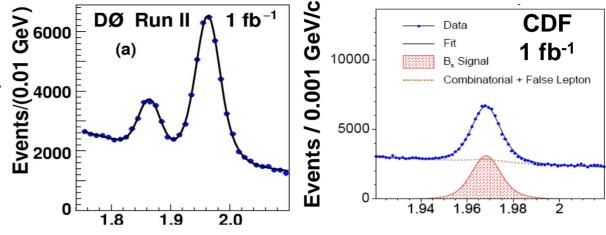
Actual Detector

B_s Mixing: Ingredients

- For each event they need to determine
 - 1) B_s or B_s at production? mixed determined using "Flavor Taggers" or ϵD^2 unmixed?
 - 2) B_s or \overline{B}_s at decay? unmixed? determined by reconstruction of B_s at decay $\longrightarrow N_B$
 - 3) Proper decay time

determined by reconstruction of B_s at decay $\rightarrow \delta_t$

Signif =
$$\sqrt{\frac{N_B \varepsilon D^2}{2}} e^{\frac{-(\Delta m_s \delta_t)^2}{2}} \sqrt{\frac{N_B}{N_{\text{total}}}}$$

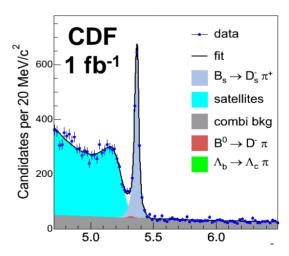

B_s Mixing: 1) Identify Sample

semi-leptonic decays

$$B_s \rightarrow D_s^- e^+ \nu_s$$

D0: $N_B = 36500$

CDF: $N_B = 37000$

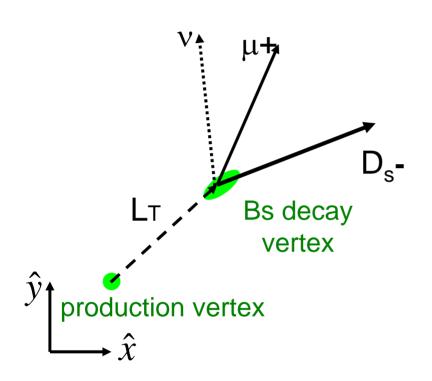


D_s mass [GeV/c²]

hadronic decays:

$$B_s \to D_s^- \pi^+, D_s^- \pi^+ \pi^- \pi^+$$

CDF: $N_{B} = 3600$


Mass of B_s (GeV/c²)

B_s Mixing: 2) Proper Decay Time

Determine proper decay time from final state:

$$\tau = \frac{L_T M_{B_s}}{P_T^{vtx}} \quad \kappa$$

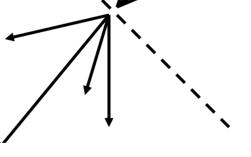
κ determined from Monte Carlo (MC) simulation

Semileptonic Decays

 $<\delta> \sim 45 \mu m$

Hadronic Decays

 $<\delta> \sim 25 \mu m$



B_s Mixing: 3) Flavor Tagging

- B-Hadron Production at the Tevatron
 - Predominantly produced in bb pairs
 - b and b̄ hadronize independently

A) Opposite Side Tag (OST)

Infer production flavor knowing flavor of the other b in the event

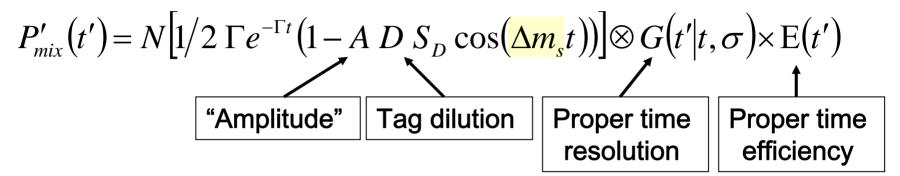
$$B_d$$
, B^+ , Λ_b , ...

B) Same Side Tag (SST)

Infer production flavor knowing flavor of fragmentation tracks

D0: -

CDF: $\varepsilon D^2 = 3.5\%$



D0: $\varepsilon D^2 = 2.5\%$

CDF: $\varepsilon D^2 = 1.5\%$

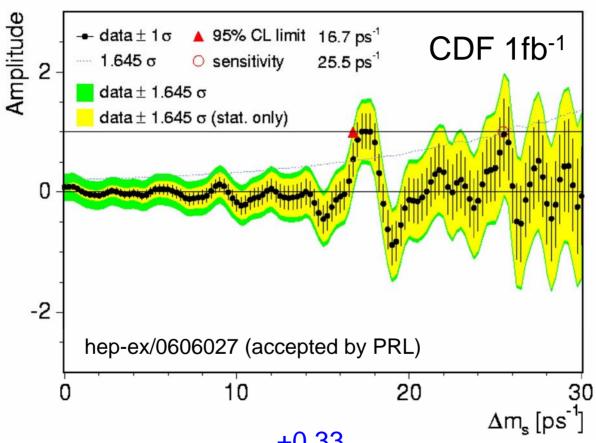
△m_s: Likelihood and "amplitude scan"

Signal PDF

The complete likelihood function includes terms for four different types of backgrounds; their parameters are determined by control samples (sidebands) and simulations. Perform an "amplitude A scan" vs Δm_s values

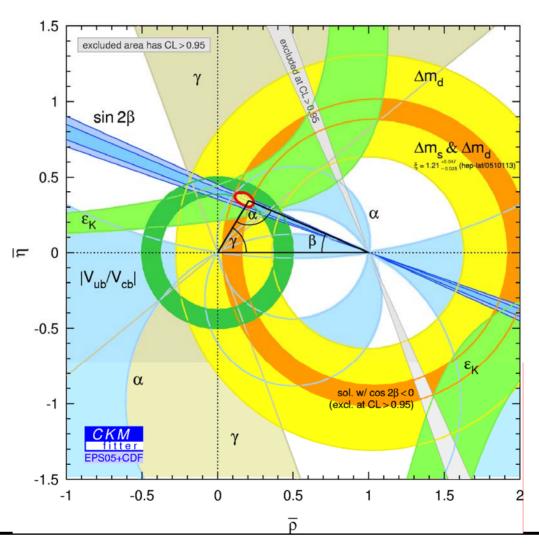
"Amplitude scan"

If $\Delta m_s \approx$ true value, A=1 is expected within its uncertainty σ_A


If Δm_s far from the true value, A = 0 is expected

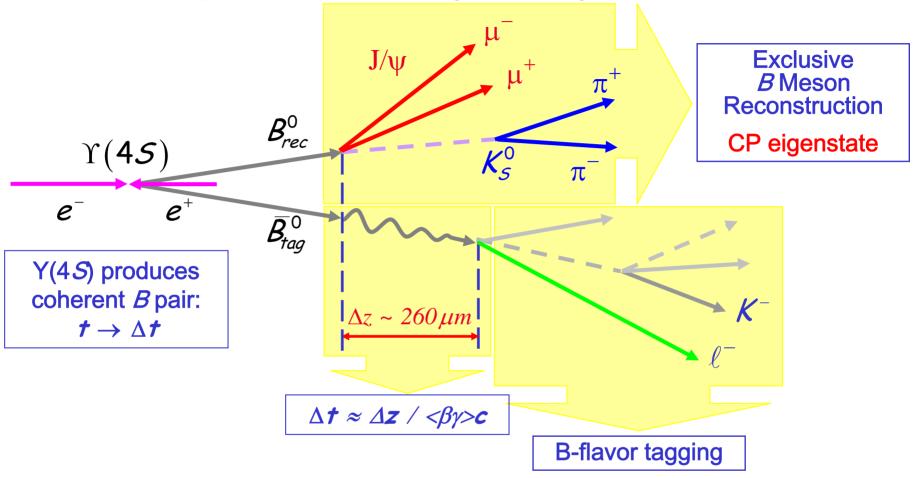
The Δm_s value can be excluded at 95% CL if (A + 1.645 σ_A)< 1

B_s Mixing: CDF Results (Apr-06)


 $\Delta m_s = 17.31^{+0.33}_{-0.18}(sta) \pm 0.07 (sys)$

0.2% probability Random tags would look as significant

B_s Mixing: UT constraints

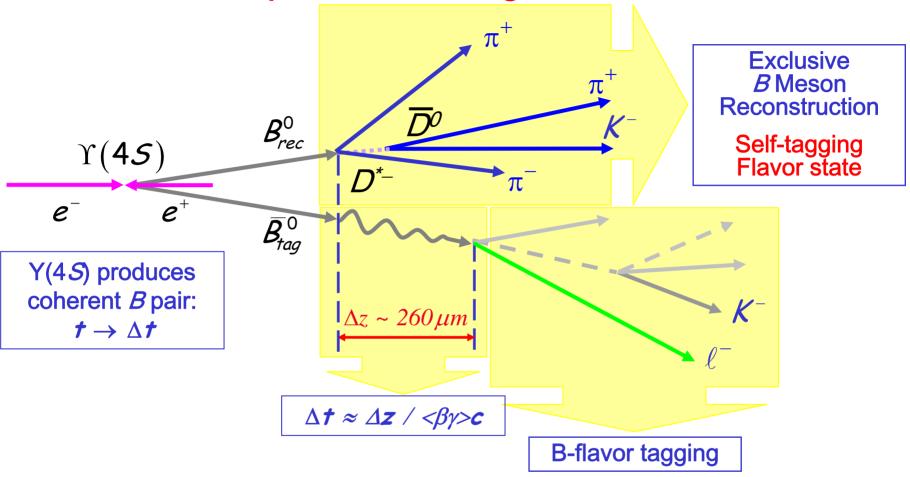


B-factory detectors

BABAR and BELLE:

Optimized for time-dependent CP asymmetries

Time-Dependent CP Asymmetry Measurement



B-flavor tagging efficiency and Δt resolution function are obtained from data (measurement of mixing, with exclusively reconstructed self-tagging flavor states)

Time-Dependent Mixing Measurement

B-flavor tagging efficiency and Δt resolution function are obtained from data (measurement of mixing, with exclusively reconstructed self-tagging flavor states)

"Back-of-the-envelope" sensitivity

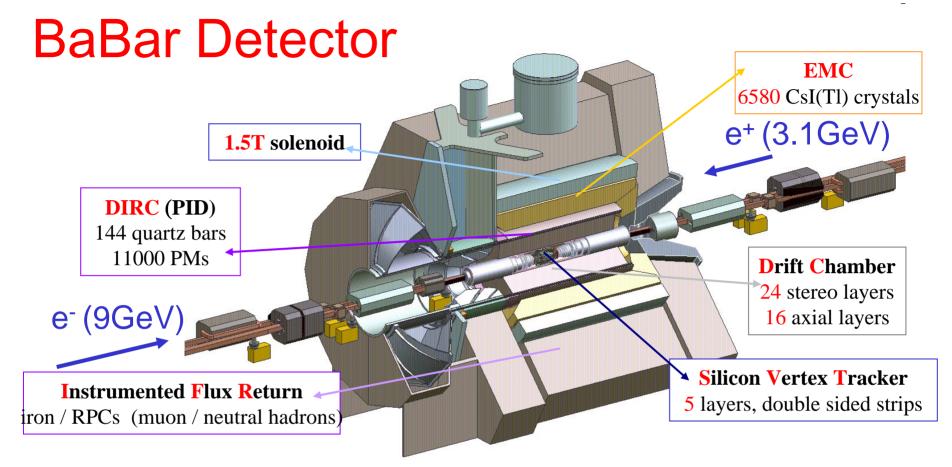
- **CP** asymmetry: sensitivity
 - Observed asymmetry: diluted! $A_{obs} = D A_{CP}$
 - Uncertainty on $A_{CP} = A_{obs} / D$:

$$\delta A_{CP} \simeq rac{1}{D\sqrt{N_{obs}}} = rac{1}{D\sqrt{\epsilon imes Br imes N_{prod}}}$$

examples and numbers: see for instance **BaBar Physics Book**

- Figures of merit
 - Number of produced events

$$N_{prod} = \int Ldt \times \sigma_{b\bar{b}} \times 2f_0$$


$$\mathcal{E} = \mathcal{E}_{\text{det}} \times \mathcal{E}_{CP} \times \mathcal{E}_{tag}$$

- Dilution factors
$$D = d_{mix} \times d_{tag} \times d_{bkg}$$

$$d_{mix} = x/(1+x)^2 \approx 0.47$$
, for time-integrated

SVT: vertexing and tracking: crucial for Δt and low p_T tracks

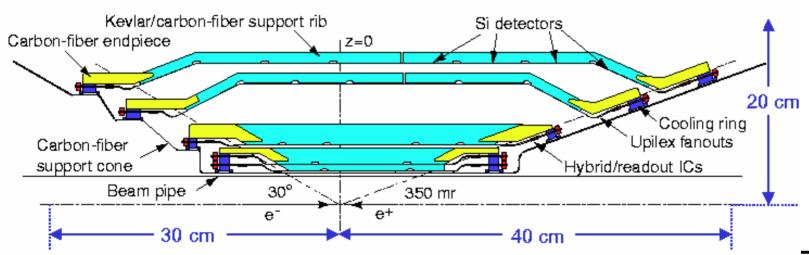
DCH: main tracking device, also dE/dx for particle ID

DIRC: K- π separation > 3.4 σ for P < 3.5GeV/c

EMC: very good energy resolution; electron ID, π^0 and γ reco.

IFR: Muon and neutral hadrons (K⁰_L) ID

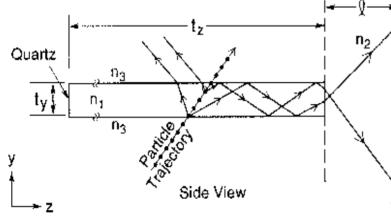
BaBar: the Silicon Vertex Tracker

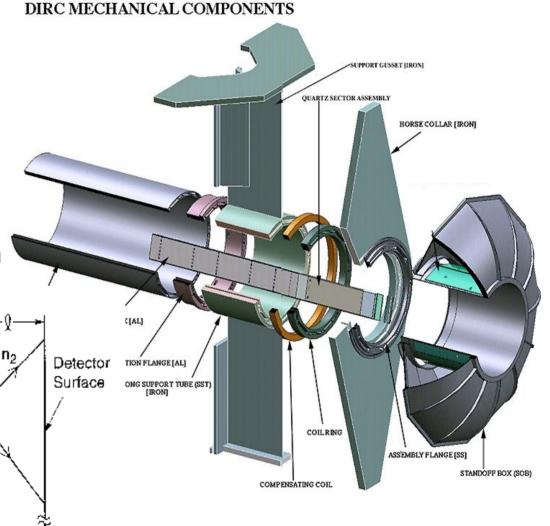

double-sided Si microstrip detectors

5 layers: 340 wafers, 150000 readout channels

 $20^{\circ} < \theta < 150^{\circ}$

 $\sigma_{\text{point}} \approx 10\text{-}15~\mu\text{m for the inner}$ layers




Particle identification: the DIRC

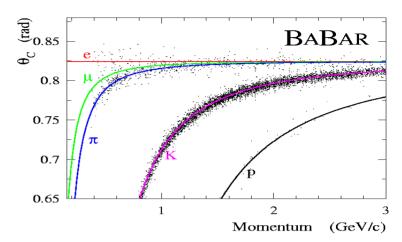
 Detector of Internally Reflected Cherenkov light

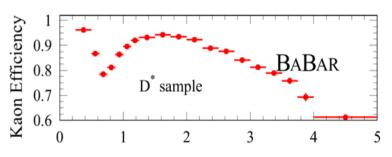
> 144 quartz bars (1.5 cm thick) 11000 PMTs, 25-50 p.e./particle,

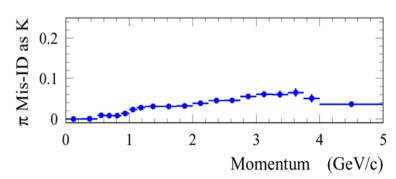
9mrad single photon resolution

K identification performance

Charged K identified by


DIRC: Cerenkov angle


DCH: dE/dx (p < 0.7 GeV/c)


Efficiency and purity measured on control samples (soft pion tag)

$$D^{*+} \rightarrow D^0 \pi^+$$
, $D^0 \rightarrow K^- \pi^+$

> 3.4σ π/K separation up to ≈ 3.5 GeV/c

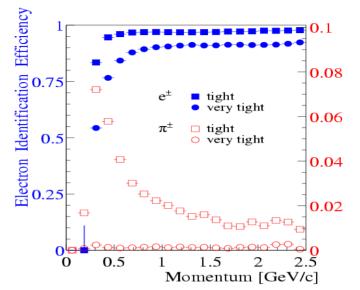
Lepton identification performance

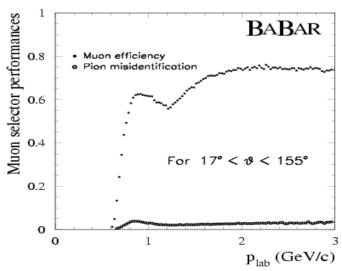
electrons

Ingredients: track matching, E/p, EMC cluster shape, dE/dx consistency

Typical tight selection efficiency (E>0.5GeV):

 $\varepsilon \approx 92\%$, 0.1% π misID


Measured on control samples

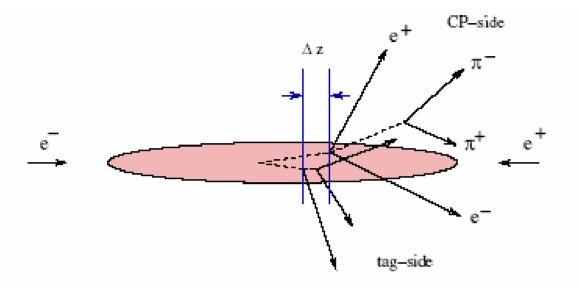

muons

IFR penetration and hit pattern, MIP consistency in EMC

Typical tight selection efficiency (E>1.5GeV):

 $\varepsilon \approx 75\%$, 3% π misID

Belle detector at KEK


Both BaBar and Belle: optimized for CP asymmetries

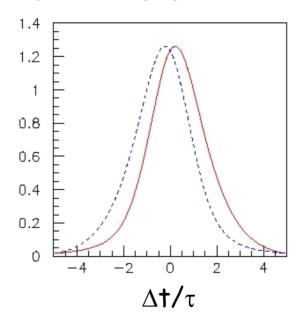
Δt from $(\Delta z)_{LAB}$

K.Abe LP 2005

- $\Delta z = z_{cp} z_{tag}$ $\Delta t \simeq \Delta z / (\gamma \beta c)$
- Interaction Point $\gg \Delta z$ B flight-length in x-y: only $\sim 30 \mu$
- ullet C conservation in $\Upsilon(4S) \to Bar{B}$ $\psi(t) = |B_1^0 > |B_2^0 > -|B_1^0 > |B_2^0 >$ (one is B^0 and other is B^0 at any time)

The other B provides time reference and flavor tagging at $\Delta t = 0$


Parameters	BaBar	Belle
e^+e^- energy	3.1 × 9 GeV	3.5 × 8.5 GeV
$\gamma \beta$	0.56	0.425
Interaction point $(h \times v \times l)$	120μ m \times 5μ m \times $8.5 m$ m	$80 \mu \text{m} \times 2 \mu \text{m} \times 3.4 \text{mm}$
Typical Δz	260μm	200μm
σ_z (CP-side)	50 μm	75μm
σ_z (tag-side)	$100 \sim 150 \mu\mathrm{m}$	140μm



∆t resolution effect

CP time-dependent asymmetry (C=0, S≠0)

Tag from "other B"

perfect resolution

Time-integrated asymmetry = 0 \Rightarrow Need both Δt and tag!

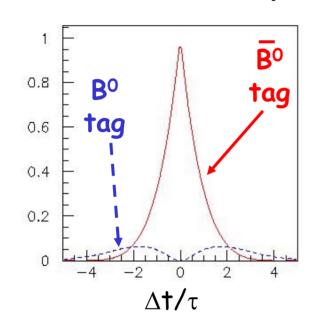
$$B^0(\overline{B}^{\,0}) \rightarrow f_{CP}$$

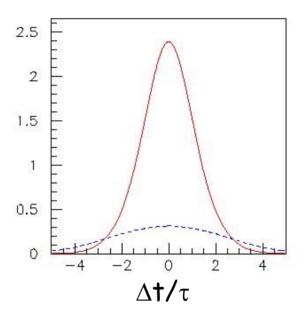
smeared resolution

∆t resolution dominated by tag side:

 \sim 1 ps \Leftrightarrow 170 μ m

 $\tau_{\text{R}} \sim 1.6 \text{ ps} \iff 250 \text{ }\mu\text{m}$





∆t resolution effect

time-dependent mixing

Tag from "other B"

perfect resolution

Measure mixing and tag efficiency using self-tagging decays

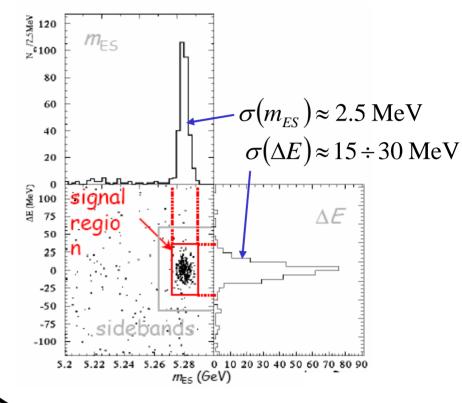
$$\overline{B}^0 \to \overline{f}_{\text{self-tag}}$$

smeared resolution

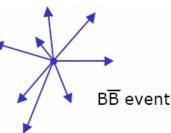
 Δt resolution dominated by tag side:

~1 ps \Leftrightarrow 170 μ m

 $\tau_{\text{R}} \sim 1.6 \text{ ps} \Longleftrightarrow 250 \text{ } \mu\text{m}$

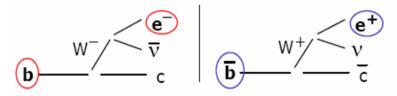

Exclusive B decay reconstruction

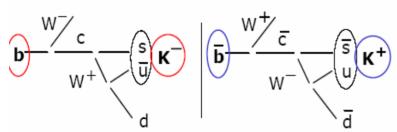
- Likelihood fits with discriminating variables:
 - Kinematics:


$$m_{ES} = \sqrt{E_{beam}^{*2} - p_{B}^{*2}}$$

$$\Delta E = E_{B}^{*} - E_{beam}^{*}$$

- Particle ID: π , K, e, μ , ...
- Event shape variables, to separate the continuum bkgd (use "off-resonance" data as control sample!!!)
- Efficiency
 - Typically ε ≈ 15÷40%
- Purity
 - Up to 97% (for $J/\psi K_s$)




B Flavour Tagging

CP asymmetry is between $B^0 \to f$ and $\overline{B^0} \to f$ Must tag flavor at $\Delta t = 0$ (when we know flavor of two Bs is opposite). Use decay products of *other* (tag) B.

Leptons: Cleanest tag. Correct >95%

Kaons: Second best. Correct 80-90%

Soft and hard pion tagging

$$\overline{B}^{0} \to D^{*+} \pi^{-}$$

$$\hookrightarrow D^{0} \pi^{+}$$

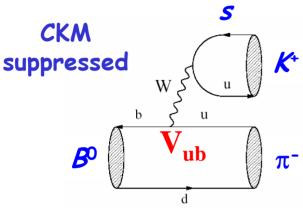
 $\overline{\mathsf{B}}^0$: fast π^- , soft π^+ B^0 : fast π^+ , soft π^-

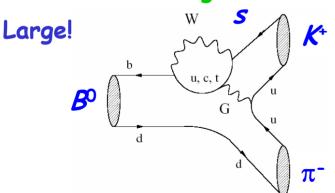
Overall tagging performance

$$\sum_{i} \varepsilon_{i} (1 - 2\omega_{i})^{2} \approx 28\%$$

recently improved to 30.5%

BaBar


- ε_i tag efficiency
- ω_i wrong tag probability


Direct CP Violation in B decays

$B^0 \rightarrow h^+h^-$: direct CPV?

Tree-level $b \rightarrow u = T$

Internal Penguin = P

$$BF(B^{0} \rightarrow K^{+}\pi^{-}) = \begin{cases} (18.5 \pm 1.0) \times 10^{-6} \end{cases}$$
 Penguin dominated:
$$A_{K\pi} = \lambda^{2} e^{i\gamma} T + P$$

Penguin dominated:

$$A_{K\pi} = \lambda^2 \mathbf{e}^{i\gamma} T + P$$

Expect direct CPV asymmetry and constraints on γ (theoretically difficult!)

$$A = \frac{\Gamma(B \to f) - \Gamma(\overline{B} \to \overline{f})}{\Gamma(B \to f) + \Gamma(\overline{B} \to \overline{f})} =$$

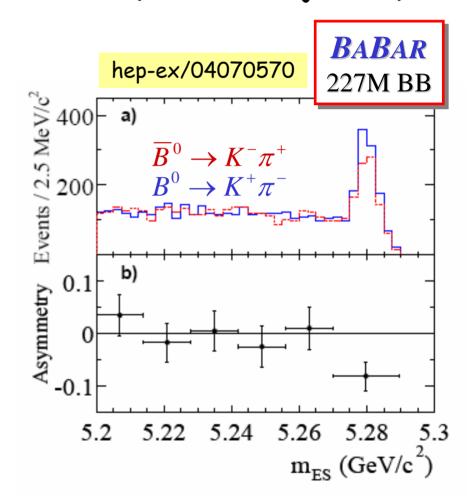
$$= \frac{2|T||P|\sin\delta\sin\gamma}{|T|^2 + |P|^2 + 2|T||P|\cos\delta\cos\gamma}$$

(where δ = CP-conserving strong phase complicated by long-distance & re-scattering)

Look for direct CPV!

Direct CP asymmetry in B⁰ \rightarrow K⁺ π ⁻!

- BaBar analysis (2004)
 - 227 M BB events
 - 68030 selected events
- Extended ML fit:
 - discriminating variables:


$$\vec{x}_j = \{m_{\rm ES}, \Delta E, \mathcal{F}, \theta_c^+, \theta_c^-\}$$

- Fisher, Cherenkov angles
- Fitted parameters
 - Yields for $K\pi$, $\pi\pi$, KK

$$n_{K\pi} = 1606 \pm 51$$

 $n_{\pi\pi} = 467 \pm 33$
 $n_{KK} = 3 \pm 12$

– asymmetries for signal and background $A_{K\pi}$, $A_{K\pi}^{b}$

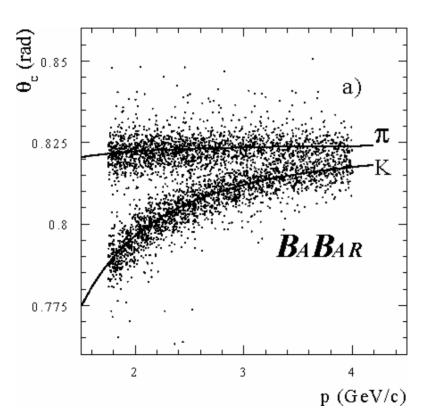
(Likelihood Projection!)

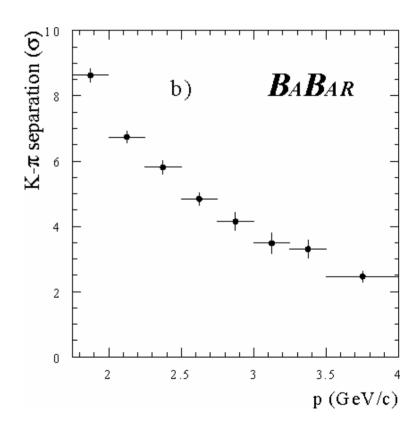
Observation in 2004

BaBar result (significance: 4.3σ), soon confirmed by Belle

$$A_{K\pi} = \frac{n(K^{-}\pi^{+}) - n(K^{+}\pi^{-})}{n(K^{-}\pi^{+}) + n(K^{+}\pi^{-})} = -0.133 \pm 0.030 \text{ (stat)} \pm 0.009 \text{ (syst)}$$

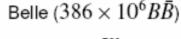
- Systematic uncertainty
 - Dominated by the asymmetry of identified charged tracks
 - Controlled by the background asymmetry, compatible with zero; the bkgd is from real K and π with the correct kinematics, from opposite jets of continuum cc events
- Coherent results in all subsamples

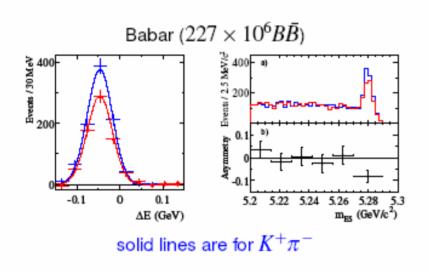

	$N_{B\overline{B}}$	$n_{K\pi}$	$\mathcal{A}_{K\pi}$	${\cal A}_{K\pi}^{ m b}$
1999–2001	21.1	142 ± 15	-0.240 ± 0.102	0.006 ± 0.026
2002	66.4	479 ± 27	-0.102 ± 0.055	-0.008 ± 0.015
2003	34.1	241 ± 19	-0.109 ± 0.079	0.007 ± 0.021
2004	104.9	743 ± 33	-0.142 ± 0.044	0.004 ± 0.012

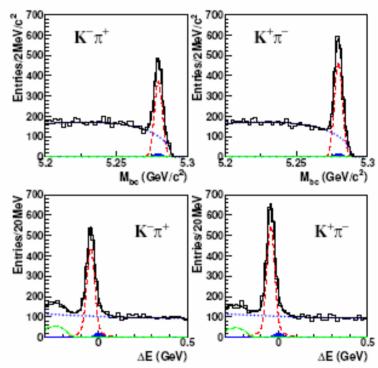


K-π separation

Crucial ingredient to distinguish B $\to K\pi$ from B $\to \pi\pi$ particle identification: K/ π separation > 3 σ up to 3.5 GeV

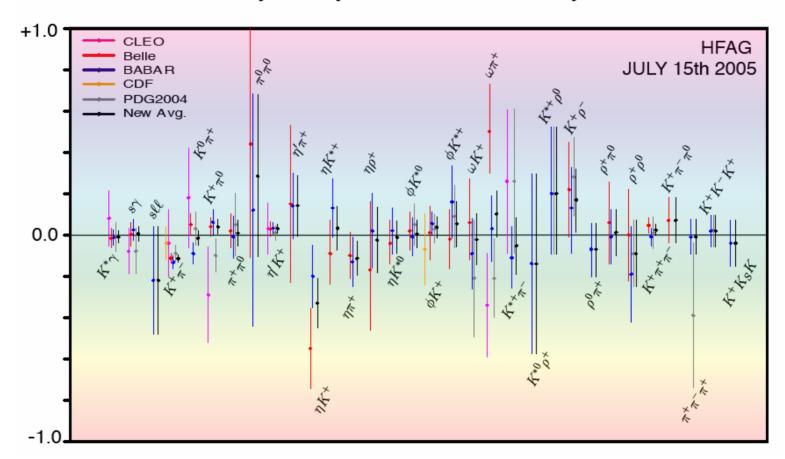





Update at LP 2005

K.Abe LP 2005

 $ar{B}^0
ightarrow K^- \pi^+$ is Different from $B^0
ightarrow K^+ \pi^-$


$$A_{CP}(K^+\pi^-) = -0.133 \pm 0.030 \pm 0.009$$

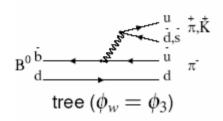
$$A_{CP}(K^+\pi^-) = -0.113 \pm 0.022 \pm 0.008$$

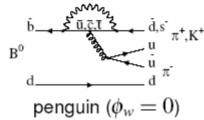
(was $-0.101 \pm 0.025 \pm 0.005$ with $275 \times 10^6 B\bar{B}$)

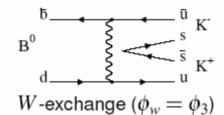
"direct" A_{CP}: experimental status

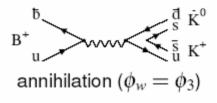
CP Asymmetry in Charmless B Decays

No other evidence up to now






A_{CP} in charmless $B \rightarrow PP$

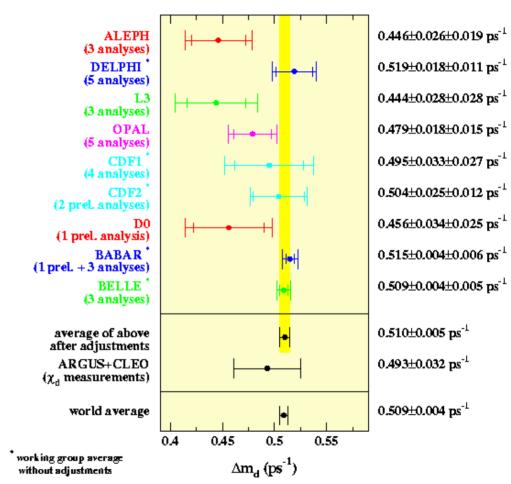

K.Abe, LP05

Decay Mode	BaBar	Belle	SM diagrams
$K^+\pi^-$	$-0.133 \pm 0.030 \pm 0.009$	$-0.113 \pm 0.021 \pm 0.008$	tree, penguin
$K^+\pi^0$	$+0.06 \pm 0.06 \pm 0.01$	$+0.04 \pm 0.04 \pm 0.02$	tree, penguin
$K_S^0\pi^+$	$-0.09 \pm 0.05 \pm 0.01$	$+0.05 \pm 0.05 \pm 0.01$	penguin
$K_S^0\pi^0$	$-0.06 \pm 0.18 \pm 0.03$	$+0.16 \pm 0.29 \pm 0.05$	penguin
$\pi^+\pi^-$	$+0.09 \pm 0.15 \pm 0.04$	$+0.52 \pm 0.14$	tree, penguin
$\pi^{+}\pi^{0}$	$-0.01 \pm 0.10 \pm 0.02$	$+0.02 \pm 0.08 \pm 0.01$	tree
$\pi^0\pi^0$	$+0.12 \pm 0.56 \pm 0.06$	$0.44^{+0.53}_{-0.52} \pm 0.17$	tree, penguin
K^+K^-	signal not seen	signal not seen	W-exchange
K^+K^0	seen	seen	penguin, annihilation
$K^0 \bar{K}^0$	seen	seen	penguin

Extraction of ϕ_3 may be difficult due to hadronic effects. Hope to learn about them from measurements. (e.g. Why $A_{CP}(K^+\pi^0) \neq A_{CP}(K^+\pi^-)$? Expect the same based on naive factorization)

B_d : limits on CPV in mixing

B_d lifetime and mixing: status


HFAG, Winter 2005

(from all ALEPH, DELPHI, L3, OPAL, CDF, D0, BABAR, BELLE, ARGUS and CLEO measurements)

assuming

$$\tau_{Bd} = 1.528 \pm 0.009 \text{ ps}$$

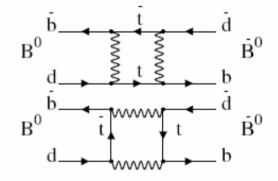
$$\Delta m_d = 0.509 \pm 0.004 \text{ ps}^{-1}$$
 $x_d = 0.778 \pm 0.008$
 $\chi_d = 0.189 \pm 0.002$

A_{SL} and CPV in mixing

CPV in $B\bar{B}$ Mixing (Analogous to \mathcal{E}_K in K^0 System)

CPV in mixing $\rightarrow |q/p| \neq 1$

This can occur if M_{12} and Γ_{12} have different phases


•
$$\left| \frac{\Gamma_{12}}{M_{12}} \right| \simeq \frac{3\pi}{2} \frac{m_b^2}{m_W^2} \frac{1}{S_0(m_t^2/m_W^2)} \sim \mathcal{O}(\frac{m_b^2}{m_t^2})$$

$$\bullet \ \phi_{M_{12}} - \phi_{\Gamma_{12}} = \pi + \mathscr{O}(rac{M_c^2}{m_b^2}) \qquad (\phi_{M_{12}} = \phi_1 \ ext{in SM})$$

•
$$1 - \left| \frac{q}{p} \right|^2 \simeq Im \left(\frac{\Gamma_{12}}{M_{12}} \right) \sim \mathcal{O}(10^{-3})$$

Mass and flavor eigenstates:

$$|B_1> = p | B^0> +q | \bar{B}^0>$$

 $|B_2> = p | B^0> -q | \bar{B}^0>$

Charge asymmetry in same-sign dilepton events $A_{\rm SL} = (1 - |q/p|^4)/(1 + |q/p|^4)$

at the B-factories:

$$\mathbf{A}_{SL} \equiv \frac{P(\overline{B}^{0} \to B^{0}) - P(B^{0} \to \overline{B}^{0})}{P(\overline{B}^{0} \to B^{0}) + P(B^{0} \to \overline{B}^{0})} = \frac{\Gamma_{Y(4S) \to l^{+}l^{+}} - \Gamma_{Y(4S) \to l^{-}l^{-}}}{\Gamma_{Y(4S) \to l^{+}l^{+}} + \Gamma_{Y(4S) \to l^{-}l^{-}}}$$

A_{SI} , |q/p|, ϵ_{B} are related

A_{SI} observable and CP parameters:

$$A_{SL} \equiv \frac{P(\overline{B}^{0} \to B^{0}) - P(B^{0} \to \overline{B}^{0})}{P(\overline{B}^{0} \to B^{0}) + P(B^{0} \to \overline{B}^{0})}$$

$$\mathbf{A}_{SL} = \frac{\Gamma_{\mathbf{Y}(4S) \to l^+l^+} - \Gamma_{\mathbf{Y}(4S) \to l^-l^-}}{\Gamma_{\mathbf{Y}(4S) \to l^+l^+} + \Gamma_{\mathbf{Y}(4S) \to l^-l^-}} =$$
 at the B-factories

$$= \frac{|p/q|^2 - |q/p|^2}{|p/q|^2 + |q/p|^2} = \frac{1 - |q/p|^4}{1 + |q/p|^4} \cong \frac{4\operatorname{Re}\varepsilon_B}{1 + |\varepsilon_B|^2} \qquad \text{equivalent to } \varepsilon_K$$
 in the K system

$$= \frac{4\operatorname{Re}\varepsilon_{B}}{1+\left|\varepsilon_{B}\right|^{2}}$$

$$\varepsilon_B = \frac{p - q}{p + q} \implies \frac{q}{p} = \frac{1 - \varepsilon_B}{1 + \varepsilon_B} \qquad \left| \frac{q}{p} \right| = \sqrt[4]{\frac{1 - A_{SL}}{1 + A_{SL}}}$$

$$\left| \frac{q}{p} \right| = \sqrt[4]{\frac{1 - A_{SL}}{1 + A_{SL}}}$$

CPV in B_d mixing: A_{SI}

Experimental status:

from measurements at LEP, CLEO, BaBar and Belle:

$$|q/p| = 1.0013 \pm 0.0067$$

$$A_{SL} = -0.0026 \pm 0.0034$$

$$\frac{\text{Re }\varepsilon_B}{1 + |\varepsilon_B|} = -0.0007 \pm 0.0017$$

HFAG, Winter'05 average

Not easy to improve: systematics!

For example, the most recent paper: *BELLE*, hep-ex/0505017:

$$A_{\rm sl} = (-1.1 \pm 7.9({\rm stat}) \pm 7.0({\rm sys})) \times 10^{-3},$$
$$|q/p| = 1.0005 \pm 0.0040({\rm stat}) \pm 0.0035({\rm sys}).$$
$$\frac{{\rm Re}(\epsilon_B)}{1 + |\epsilon_B|^2} = (-0.3 \pm 2.0({\rm stat}) \pm 1.7({\rm sys})) \times 10^{-3}$$

BELLE 2005 $(78 + 9) \text{ fb}^{-1}$

< 1/5 of the available data!

A_{SL}: what does it take?

To measure the charge asymmetry in dilepton events, Quoting from *BELLE*, hep-ex/0505017:

careful charge-dependent corrections, in several steps.

Subtraction of the background from continuum $e+e-\rightarrow q\overline{q}$ (where q = u, d, s or c), using off-resonance data.

From control samples: corrections of all detected lepton tracks:

charge asymmetries in the efficiencies for track finding (< 1%) and for lepton identification (< 1%)

charge-dependent probabilities of mis-identifying hadrons as leptons (main effect: 2% "fake" μ^\pm are K[±], with 0.02×0.5 ≈ 1% charge asymmetry)

Separation of the remaining backgrounds from $B^0\overline{B^0}$ and B^+B^- using their different behavior in the Δt (Δz) distributions.

A_{SI}: typical systematic uncertainties

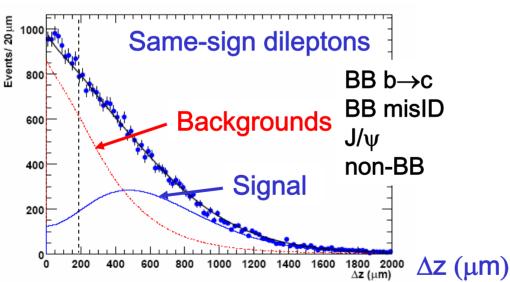
TABLE II: Source of systematic errors for the measurement of A_{sl} .

Category	Source	$\Delta A_{\rm sl}~(\times 10^{-3})$
Event selection	Track selection	± 2.61
	$\cos \theta^*_{\ell\ell}$ cut	± 0.63
	Lepton pair veto	± 2.33
Continuum subtraction		± 4.88
Track corrections	Track finding efficiency	± 1.56
	Electron identification efficiency	± 0.56
	Muon identification efficiency	± 1.98
	Fake electrons	± 0.45
	Fake muons	±0.81
	Relative multiplicity	± 0.56
Δz fit for dileptons	Detector response function	± 0.07
	Δm_d	± 0.08
	$ au_{B^0}$	± 0.07
	69 µm smearing of background Δz	± 0.13
	Statistics of signal MC	± 0.01
	Statistics of background MC	± 0.19
	Fitting range	± 0.04
	Assuming $N_b^{++} = N_b^{}$	± 1.59
Δz fit for $A_{\rm sl}$	Fitting range	± 1.30
Total		± 6.97

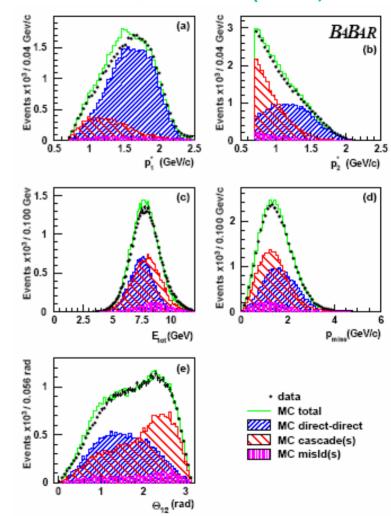
Control samples:

$$e^+e^-
ightarrow \left(e^+e^-\right) e^+e^- \,, \quad e^+e^- \gamma$$
 simulation embedded in data $K_S^0
ightarrow \pi^+\pi^-, \quad \phi
ightarrow K^+K^-, \ \Lambda
ightarrow p\pi, \ \left(D^{*-}
ightarrow \overline{D}^0\pi^-, \quad \overline{D}^0
ightarrow K^-\pi^+
ight)$

systematic uncertainty *BELLE*, hep-ex/0505017 $0.007 = 7 \times 10^{-3}$



Older BaBar result (23 M B-pairs)


$$A_{T/CP} = (0.5 \pm 1.2(\text{stat}) \pm 1.4(\text{syst})) \%$$

 $|q/p| = 0.998 \pm 0.006(\text{stat}) \pm 0.007(\text{syst}).$

Type of systematic error	$\sigma(A_{T/CP})(\%)$
Electron charge asymmetry in the detection	0.5
Muon charge asymmetry in the detection	0.6
Non- $B\overline{B}$ background charge asymmetry	0.7
$B\overline{B}$ background charge asymmetry	0.9
Correction of the background dilution	0.01
Total	1.4

PRL 88, 231801 (2002)

Lecture 3: Summary

Bs mixing from CDF and D0:

Still $x_s > 21$, significant work needed to improve (...LHCb?)

• "Direct" CPV seen in $B_d \to K\pi$!

$$A_{CP}(K^+\pi^-) = -0.133 \pm 0.030 \pm 0.009$$
 BaBar 2004

$$A_{CP}(K^+\pi^-) = -0.113 \pm 0.022 \pm 0.008$$
 Belle update 2005

"Indirect" CPV in mixing (ASL) not seen yet

$$A_{SL} = -0.0026 \pm 0.0034$$
 HFAG world average, winter 2005

Next: ... Unitarity Angles!

