CP Violation and Flavour

Lecture 4

Dottorato in Fisica – XXI Ciclo

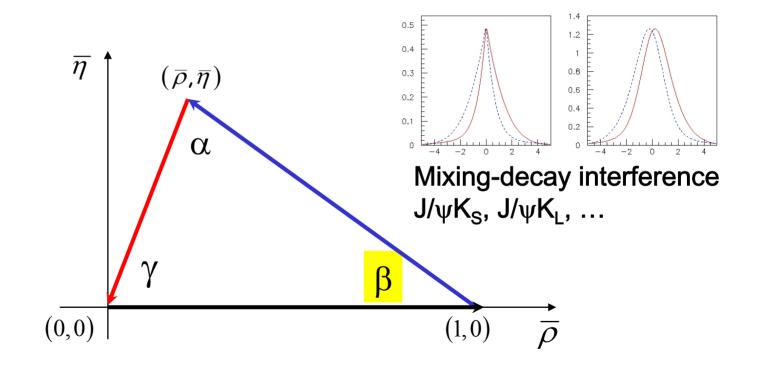
Livio Lanceri Università di Trieste and INFN

Recap of Lecture 3 and Outline

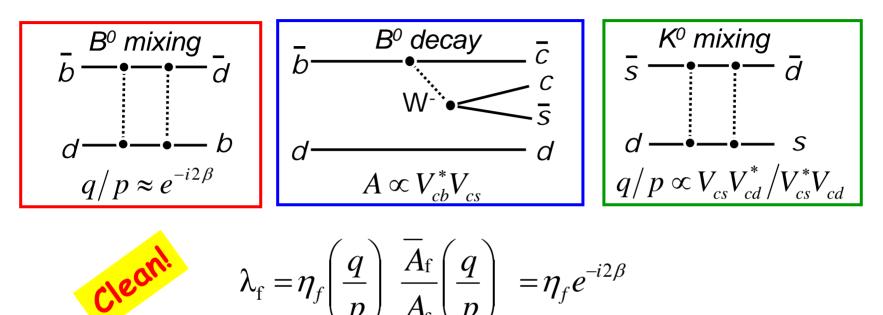
• B_s mixing from CDF and D0: still not seen

Seen !!!

- "Direct" CPV seen in $B_d \rightarrow K\pi$
- "Indirect" CPV in mixing (ASL) not seen yet


Now... Unitarity Angles!

• $sin2\beta$ ($sin2\phi_1$) - $b \rightarrow c\overline{c}s$ and $b \rightarrow s\overline{s}s$ MethodsResultsStatistics,systematics



$sin 2\beta (\phi_1)$: time-dependent CP asymmetries in b $\rightarrow c\overline{c}s$

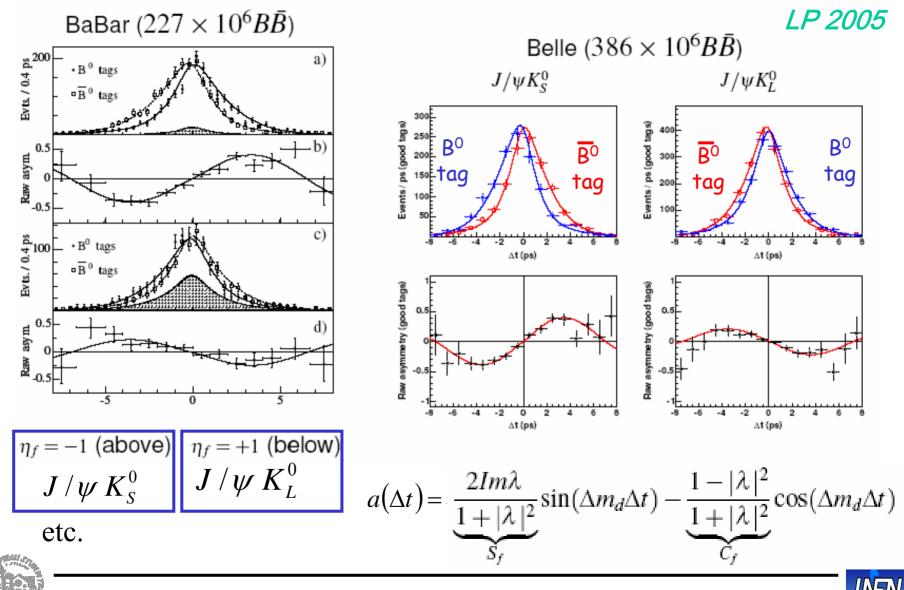
sin2 β from mixing & b \rightarrow ccs "tree" amplitudes

THEORY:

 all decay amplitudes have the same weak phase ⇒ clean prediction

$$\operatorname{Im}(\lambda_{\psi K_{S}}) = -\operatorname{Im}(\lambda_{\psi K_{L}}) = \sin(2\beta) = S$$

 $\psi K_{\rm S}$


EXPERIMENT:

- "Large" branching fractions, i.e.: BF(ψ (I⁺I⁻)K_s(π ⁺ π ⁻)) = 3.5 × 10⁻⁴
- High purity: up to 97% for J/ψK_s, somewhat less for other charmonium modes

Fit to tagged ∆t distributions

July 2006

L.Lanceri - CP Violation and Flavour

K.Abe

sin2 β (sin2 ϕ_1) fit results

K.Abe LP 2005

Winter 2005 Heavy Flavor Averaging Group (HFAG)

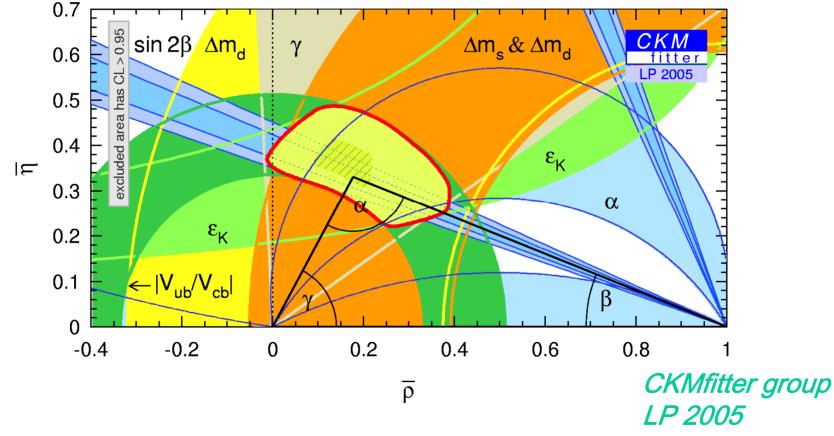
$$\sin 2\phi_1 = 0.725 \pm 0.037 \begin{cases} 0.722 \pm 0.040 \pm 0.023 \text{ (BaBar } 227 \times 10^6 B\bar{B}) \\ 0.728 \pm 0.056 \pm 0.023 \text{ (Belle } 152 \times 10^6 B\bar{B}) \end{cases}$$
$$C = 0.031 \pm 0.029 \begin{cases} +0.051 \pm 0.033 \pm 0.014 \text{ (BaBar)} \\ -0.007 \pm 0.041 \pm 0.033 \text{ (Belle)} \end{cases} \end{cases}$$

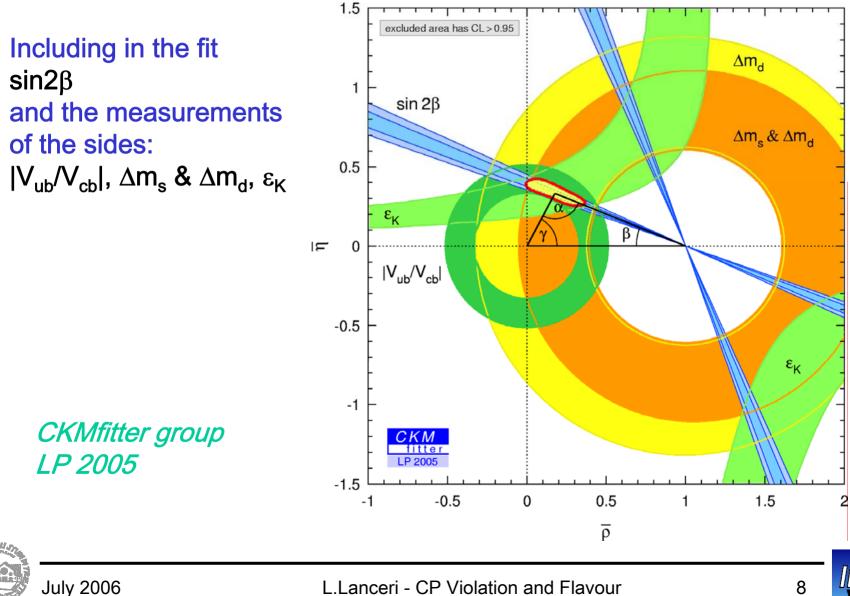
Excellent agreement between BaBar and Belle in spite of very different approaches for flavor-tagging and Δt fit. Techniques for time-dependent CPV analyses are well understood and constantly being refined.

LP05 update (Belle $386 \times 10^6 B\bar{B}$, $J/\psi K^0$ only)

 $\sin 2\phi_1 = 0.652 \pm 0.039 \pm 0.020$ $C = -0.010 \pm 0.026 \pm 0.036$

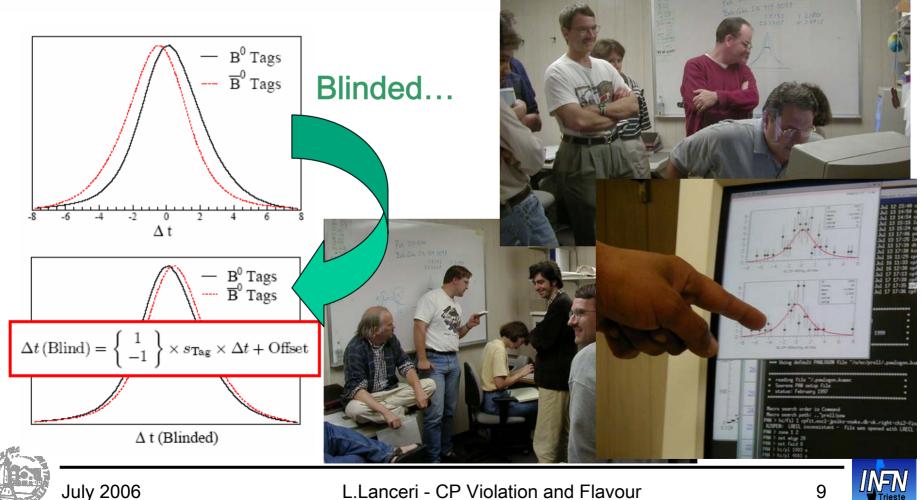
New BaBar/Belle Averages


 $\sin 2\phi_1 = 0.685 \pm 0.032$ $C = 0.016 \pm 0.046$

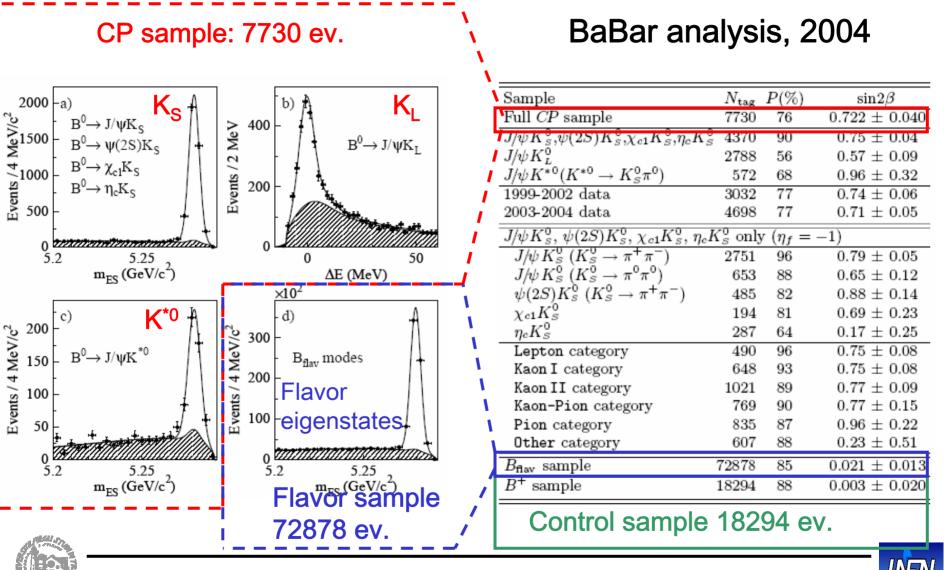

sin2 β in the ($\bar{\rho}$, $\bar{\eta}$) Unitarity Plane

sin2 β and the region constrained only by measurements of the sides: $|V_{ub}/V_{cb}|$, $\Delta m_s \& \Delta m_d$, ϵ_K

sin2β in the ($\bar{\rho}$, $\bar{\eta}$) Unitarity Plane


CP Analysis: a Blind Analysis

 \rightarrow

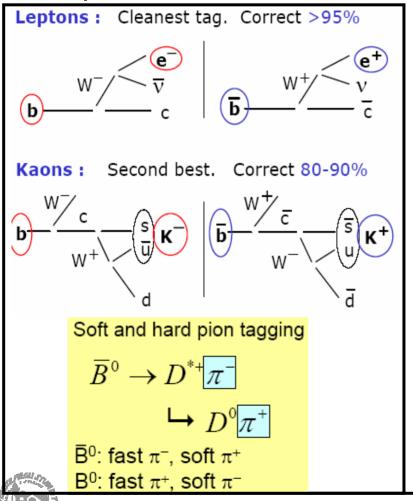

Exciting "unblinding parties"...

Blind Analysis in Particle Physics

Aaron Roodman Stanford Linear Accelerator Center, Stanford, CA 94025, USA PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003

CP Analysis: event samples

L.Lanceri - CP Violation and Flavour


July 2006

10

CP analysis: B Flavour Tagging

Tagging efficiency extracted from measurement of the dilution of mixing in the "flavor sample", where missing and wrong tags dilute the amplitude of the oscillation

July 2006

TABLE I: Efficiencies ϵ_i , average mistag fractions w_i , mistag fraction differences $\Delta w_i \equiv w_i(B^0) - w_i(\overline{B}^0)$, and Q extracted for each tagging category i from the B_{flav} sample.

a				
Category	ϵ (%)	w (%)	Δw (%)	Q (%)
Lepton	8.6 ± 0.1	3.2 ± 0.4	-0.2 ± 0.8	7.5 ± 0.2
Kaon I	10.9 ± 0.1	4.6 ± 0.5	-0.7 ± 0.9	9.0 ± 0.2
Kaon II	17.1 ± 0.1	15.6 ± 0.5	-0.7 ± 0.8	8.1 ± 0.2
Kaon-Pion	13.7 ± 0.1	23.7 ± 0.6	-0.4 ± 1.0	3.8 ± 0.2
Pion	14.5 ± 0.1	33.0 ± 0.6	5.1 ± 1.0	1.7 ± 0.1
Other	10.0 ± 0.1	41.1 ± 0.8	2.4 ± 1.2	0.3 ± 0.1
All	74.9 ± 0.2		(30.5 ± 0.4
$\sum arepsilon_i$	$(1-2\omega_i)$	$)^{2} = 30$	$.5 \pm 0.4\%$	V ₀
$\sum_i arepsilon_i arepsilon_i$		$()^2 = 30$		% aBar
i	tag ef		B	

L.Lanceri - CP Violation and Flavour

CP fit: likelihood parameters

Both Δm_d and sin2 β : global unbinned maximum likelihood fit on data:

tagged flavour sample Δm_d tagged flavour and CP samples sin2β

parameters modelling mistag, Δt resolution and backgrounds: floated to obtain an empirical description of these properties from data

parameter	#params	Determining subsample
sin2β	1	СР
w & ∆w	6 × 2 = 12	flavour
∆t resolution	7	flavour and CP
CP Bkgd τ	8	sidebands
Eff. differences	7	flavour
Flav Bkgd w, ∆w	24	sidebands
Flav Bkgd ∆t	3 + 3 = 6	sidebands

$sin2\beta$: systematic uncertainty

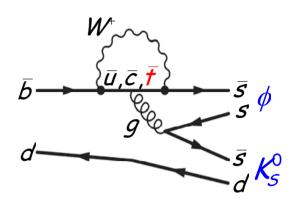
BaBar 2004:

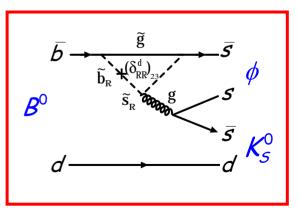
TABLE III: Sources of systematic error on $\sin 2\beta$ and $|\lambda|$.

Source	$\sigma(\sin 2\beta)$	$\sigma(\lambda)$
CP backgrounds	0.012	0.002
Δt resolution function	0.011	0.003
$J/\psi K_L^0$ backgrounds	0.011	N/A
Mistag fraction differences	0.007	0.001
Beam spot	0.007	0.001
$\Delta m_d, \tau_B, \Delta \Gamma / \Gamma, \lambda $	0.005	0.001
Tag-side interference	0.003	0.012
MC statistics	0.003	0.003
Total systematic error	0.023	0.013

$sin2\beta$: preliminary conclusions

- $b \rightarrow ccs$: very good agreement with SM (CKM) expectations
- Well understood and robust analysis methods
- The same methods can be applied to more challenging channels, looking for non-SM effects: $b \rightarrow s\bar{s}s$

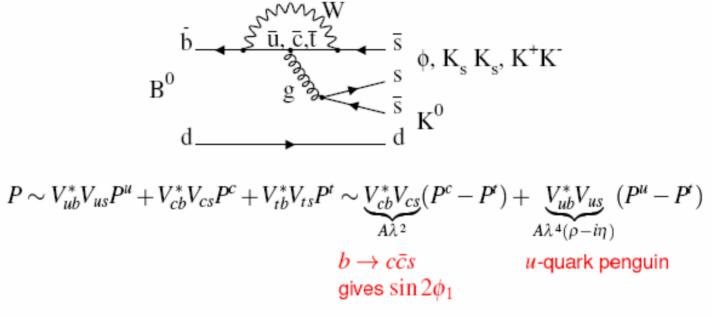




sin2 β from mixing & $b \rightarrow s$ "penguin" amplitudes

- The CKM model passed its first precision test !
 - The determination of (ρ,η) is now dominated by the measurement of $sin 2\beta$: what next?
- Start looking for non-SM effects
 - Best candidates: decays with the same (zero) weak phase, but loop ("penguin") diagrams
 - Look for effects of virtual non-SM particles in the loop
 - Experimentally, the best modes are ϕK_s , $\eta' K_s$; recently BaBar started also to study $\pi^0 K_s$, $f^0 K_s$, $K^* \gamma$
 - non-SM signature: pattern of different asymmetries for these channels

SM expectation: $\operatorname{Im}(\lambda_{\phi K_{s}}) = \sin(2\beta) = S$ C = 0



sin2 β from $b \rightarrow s$ "penguins"

K.Abe LP 2005

[Unitarity relation $V_{cb}^*V_{cs} + V_{ub}^*V_{us} + V_{tb}^*V_{ts} = 0$]

- Other $b \rightarrow s$ penguins
 - $B^0 \to \eta' K^0, \ f^0 K^0, \ \text{ contribution from } b \to u \text{ tree}(\mathscr{O}(A\lambda^4(\rho i\eta)))$
 - $B^0 \to \pi^0 K^0$, ωK^0 contribution from $b \to u$ tree, $b \to s \bar{d} d$ instead of $b \to s \bar{s} s$
- SM corrections of $\mathscr{O}(\lambda^2)\sim 5\%$ possible

sin2 β from $b \rightarrow s$ "penguins"

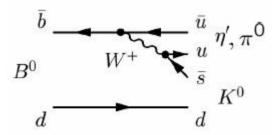
K.Abe LP 2005

SM expectations

Final State	η_{cp}	S_f	C_f	Corrections
ϕK_S^0	-1	$\sin 2\phi_1$	0	u-quark penguin
ϕK_L^0	+1	$-\sin 2\phi_1$	0	
$K_{S}^{0}K_{S}^{0}K_{S}^{0}$	+1	$-\sin 2\phi_1$	0	
$\eta' K_S^0$	-1	$\sin 2\phi_1$	0	u -quark penguin, $b \rightarrow u$ tree
$\eta' K_L^0$	+1	$-\sin 2\phi_1$	0	
$f_0(980)K_S^0$	+1	$-\sin 2\phi_1$	0	
$K^{+}K^{-}K^{0}_{S}$	mixture	$-(f_+ - f)\sin 2\phi_1$	0	
$K^{+}K^{-}K_{L}^{0}$	mixture	$-(f'_+ - f')\sin 2\phi_1$	0	
$\pi^{0}K_{S}^{0}$	-1	$\sin 2\phi_1$	0	$b \rightarrow sd\bar{d}$ different from $b \rightarrow ss\bar{s}$?
ωK_S^0	-1	$\sin 2\phi_1$	0	$b \rightarrow u$ tree

 $f_{+} = 0.89 \pm 0.08 \pm 0.06$, $f'_{-} = 0.92 \pm 0.07 \pm 0.06$ (BaBar) angular moment analysis $f_{\pm} = 0.93 \pm 0.09 \pm 0.05$ (Belle) isospin analysis

July 2006

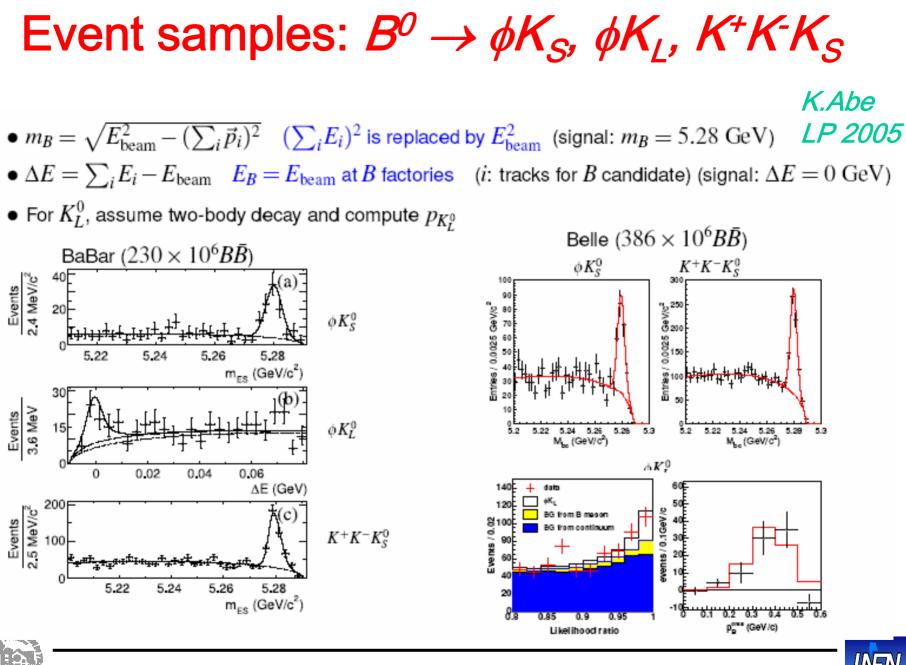


sin2 β from $b \rightarrow s$ "penguins": difficulties

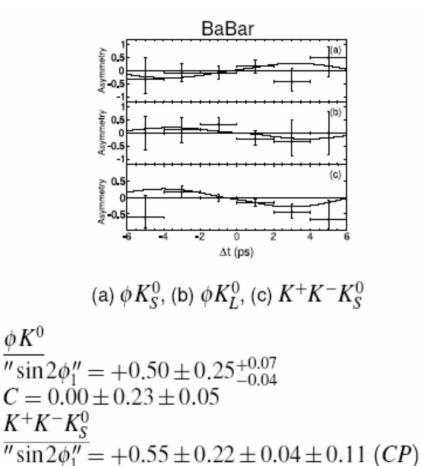
- Experimental challenge of $b \rightarrow s$ "penguins" :
 - Smaller branching fractions
 - smaller purities

Mode	BF(B→f) ×10 ⁻⁶	Π _i BF _i x10 ⁻⁶	Reco. Efficiency	Purity
$J/\psi K_s$	440	36.0	44%	97%
η′K _s	33	10.6	23%	~60%
ϕK_s	4	1.4	42%	~80%
$\pi^0 K_s$	6	4.1	17%	~50%
KKKs	25	8.6	26%	~77%

- Theoretical problems:
 - Sub-dominant SM contributions with non-zero weak phase
 - "u-quark penguin" is CKMsuppressed (~0.02), but η K_s and $\pi^0 K_s$ also have "b \rightarrow u tree"


SM breaking of $S=sin2\beta$				
Mode	Reasonable expectation	Bounds* from SU(3)		
ϕK_s	<0.05	<0.25		
η′K _s	~0.08	<0.35		
$\pi^0 K_s$	~0.08?	<0.20		
KKKs	~ 5%	< 0.25		

*Grossman, Ligeti, Nir, Quinn. PRD 68, 015004 (2003) Gronau, Grossman, Rosner hep-ph/0310020


July 2006

L.Lanceri - CP Violation and Flavour

19

$\Delta t \text{ distributions: } B^0 \rightarrow \phi K_S, \phi K_L, K^+ K^- K_S$

sd
$$g_{0}^{0} \rightarrow (K^{0})$$

hupunu /se $g_{0}^{0} \rightarrow (K^{0})$
 $g_{0}^$

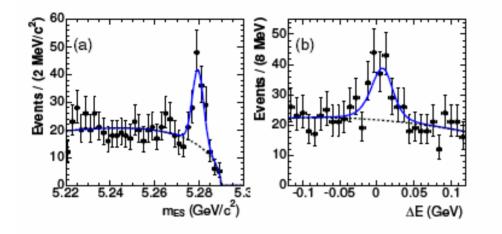
Belle

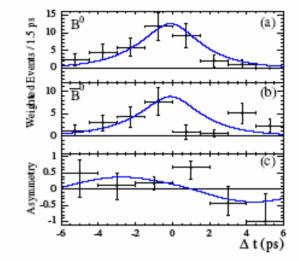
dotted line: Standard Model

$$\frac{\phi K^0}{"\sin 2\phi_1'' = +0.44 \pm 0.27 \pm 0.05} \\ C = -0.14 \pm 0.17 \pm 0.07 \\ \frac{K^+ K^- K_S^0}{"\sin 2\phi_1 = +0.60 \pm 0.18 \pm 0.04^{+0.19}_{-0.12}(CP)} \\ C = +0.06 \pm 0.11 \pm 0.07$$

K.Abe

LP 2005


 $K^{+}K^{-}K_{L}^{0}$


 $C = +0.10 \pm 0.14 \pm 0.04$

 $\overline{"\sin 2\phi_1''} = +0.09 \pm 0.33^{+0.13}_{-0.14} \pm 0.10 \ (CP)$

$B^0 \rightarrow K_S K_S K_S$ (plots from BaBar)

• At least two
$$K^0_S o \pi^+\pi^-$$
 "tracks" (allow one $K^0_S o \pi^0\pi^0$)

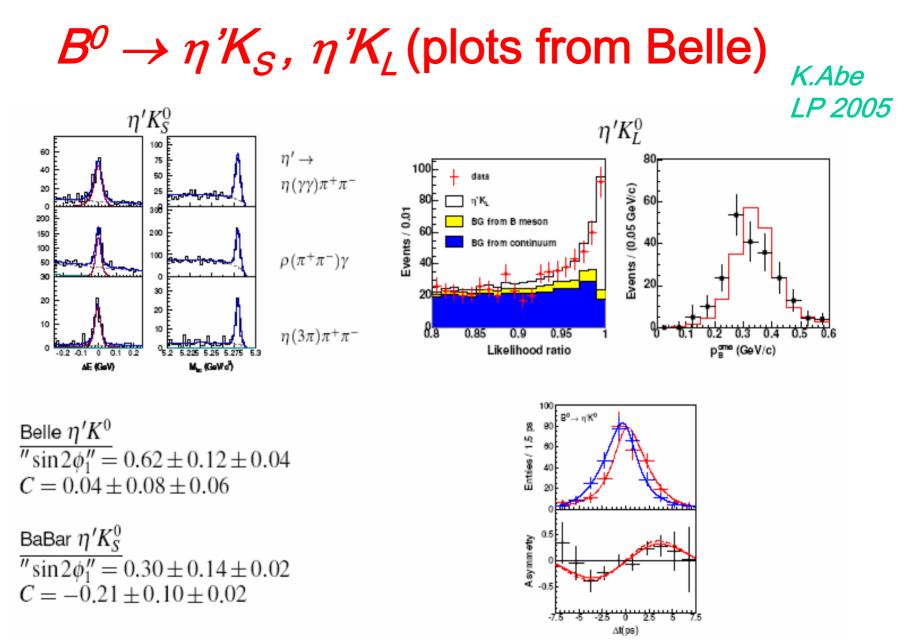
• Interception of three K^0_S tracks from IP-constrained fit gives z_{CP}

$$\sigma_{z_{CP}} = 75~\mu{
m m}$$
 (comparable to $50~\mu{
m m}$ for $J/\psi K_S^0$)

 $\sigma_{\!\Delta z} \simeq 200\,\mu m$ is still dominated by tagging-side resolution

BaBar

$\begin{array}{rcl} ''\sin 2\phi_1'' &=& 0.63 \substack{+0.32 \\ -0.28} \pm 0.04 \\ C &=& -0.10 \pm 0.25 \pm 0.05 \end{array}$

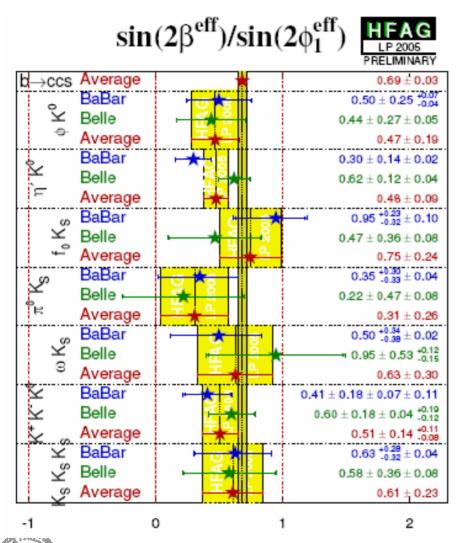

Belle

$$''\sin 2\phi_1'' = 0.58 \pm 0.36 \pm 0.08$$

 $C = -0.50 \pm 0.23 \pm 0.06$

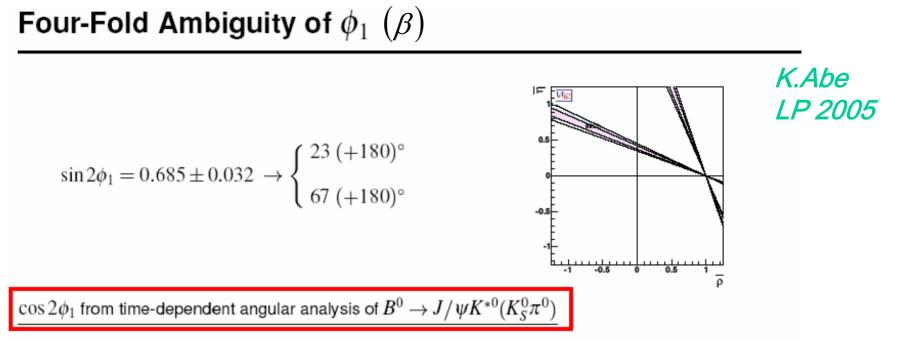
K.Abe LP 2005

July 2006


sin2 β from $b \rightarrow s$ "penguins": conclusions

K.Abe LP 2005

 $\Delta S \equiv "\sin 2\phi_1'' - \sin 2\phi_1$


- All except $\eta' K^0$ are within $\sim 1\sigma$
- All except $f_0 K_S^0$ have $\Delta S < 0$
- No choice but to go for higher precision measurements

July 2006

- · Sign ambiguity due to two choices of strong phases in the helicity amplitudes
- BaBar (88 \times 10⁶BB): Resolve the strong phase ambiguity δ by examining S-wave and P-wave interference near $K^*(892)$

 $\cos 2\phi_1 = +2.72^{+0.50}_{-0.79} \pm 0.27$ (fix $\sin 2\phi_1 = 0.731$)

Prefer 23° (+180°) solution at 86% CL

• Belle $(275 \times 10^6 B\bar{B})$: Assume s-quark helicity conservation (agrees with BaBar solution)

 $\cos 2\phi_1 = +0.87 \pm 0.74 \pm 0.12$ (fix $\sin 2\phi_1 = 0.726$) Belle: time-dependent Dalitz analysis $B^0 \rightarrow Dh^0$, $D \rightarrow K_s^0 \pi^+ \pi^-$

 $\phi_1 = (16 \pm 21 \pm 12)^\circ$ (95% CL region $-30^\circ < \phi_1 < 62^\circ$) Exclude $\phi_1 = 67^\circ$ solution at 95% CL

Summary of Lecture 4

- $sin 2\beta$ measurements:
 - b \rightarrow ccs : very good agreement with SM (CKM) expectations
 - b \rightarrow sss : ϕK_S update from Belle now consistent with BaBar and compatible with the SM
 - − b → sss : all compatible with the SM within ≈ 1σ, except η'K_S; all below the SM except f_0K_S ; more data needed to understand if there is a non-SM effect or not
- Next, lecture 5:
 - Review of results on $\pi\pi$, $\rho\pi$, $\rho\rho$ and implications for sin2 α
 - Measurements of γ
 - Wrap-up on the Unitarity Triangle and CKM fits

