CP Violation and Flavour

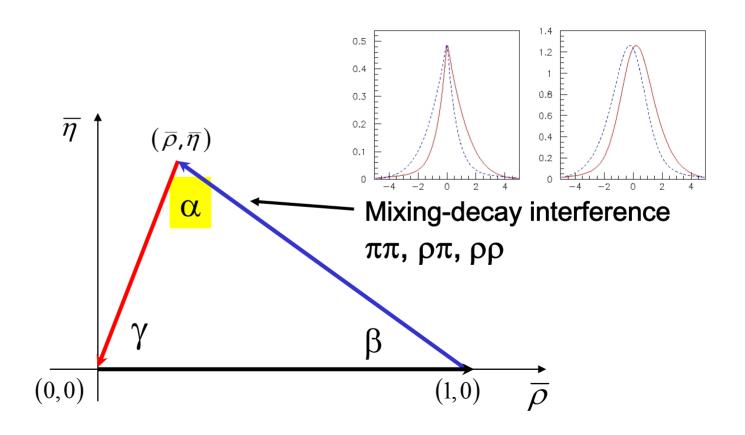
Lecture 5

Dottorato in Fisica – XXI Ciclo

Livio Lanceri Università di Trieste and INFN

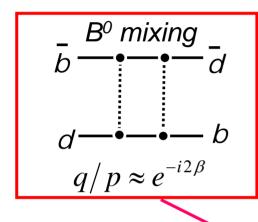
Recap and Outline

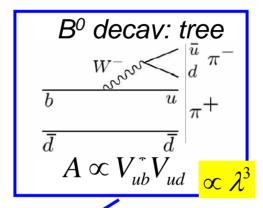
sin2β measurements (Lecture 4):


- b \rightarrow ccs : very good agreement with SM (CKM) expectations
- b → ss̄s : φK_S update from Belle now consistent with BaBar and compatible with the SM
- − b → sss : all compatible with the SM within ≈ 1σ , except η'K_S; all below the SM except f_0K_S ; more data needed to understand if there really is a non-SM effect

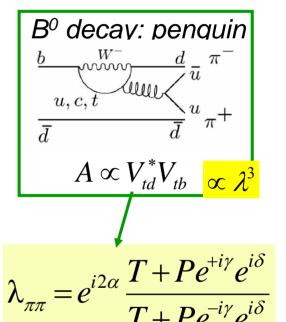
Today:

- Review of results on $\pi\pi$, $\rho\pi$, $\rho\rho$ and $\sin 2\alpha$ (ϕ_2)
- Measurements of γ (ϕ_3)
- Wrap-up on the Unitarity Triangle and CKM fits




$sin2\alpha$ (ϕ_2) from time-dependent CP asymmetries in b \rightarrow uūd

$sin2\alpha$ from B $\rightarrow \pi\pi$, $\rho\pi$, $\rho\rho$


Interference of suppressed $b \rightarrow u$ "tree" decay with mixing

$$\lambda_{\pi\pi} = \frac{q}{p} \frac{\overline{A}_{\pi\pi}}{A_{\pi\pi}} = e^{-i2\beta} e^{-i2\gamma} = e^{i2\alpha}$$

but: "penguin" is sizeable!

 \rightarrow

Coefficients in time-dependent CP Asymmetry:

Neglecting penguins:

$$\begin{vmatrix} S_{\pi\pi} = \sin 2\alpha \\ C_{\pi\pi} = 0 \end{vmatrix}$$

But: large penguins expected!

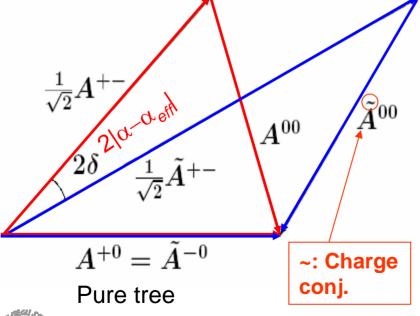
|P/T| ~ 0.3 ⇒

$$S_{\pi\pi} = \sqrt{1 - C_{\pi\pi}^2} \sin 2\alpha_{eff}$$

$$C_{\pi\pi} \propto \sin \delta$$

NB: Experimental challenge: BFs down to ~ 10⁻⁶; purities also are lower!

Isospin analysis for $\kappa = \alpha - \alpha_{eff}$


Use SU(2) (u and d quarks) to relate amplitudes of all $\pi\pi$ ($\rho\rho$) modes.

$$\mathbf{A}^{+-} = \mathbf{A}(B^0 \to h^+ h^-)$$

$$\mathbf{A}^{+0} = \mathbf{A}(B^+ \to h^+ h^0)$$

$$\mathbf{A}^{00} = \mathbf{A}(B^0 \to h^0 h^0)$$

$$hh = \pi\pi, \rho\rho$$

Gronau, London: PRL65, 3381 (1990)

$\pi\pi$ favored for isospin analysis

 $\pi^0\pi^0$ measured: too small for isospin analysis, too large for limits

$\rho\rho$ has 3 polarization amplitudes

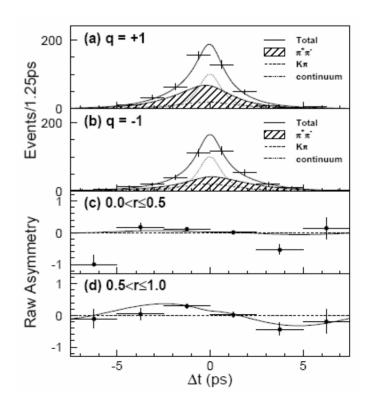
Expected dilution because of mixed CP, but instead...

...almost 100% longitudinally polarized: pure CP-even state

Larger branching fraction than $\pi\pi$ $\rho^0\rho^0$ not observerd yet (small)

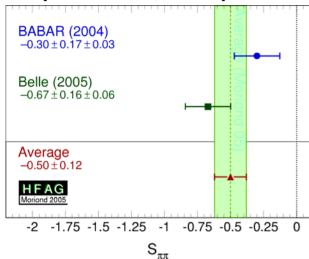
 \rightarrow good limit on α - α_{eff}

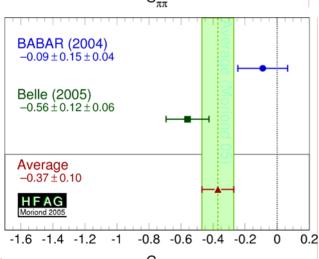
 $\rho\rho$ gives best determination of α



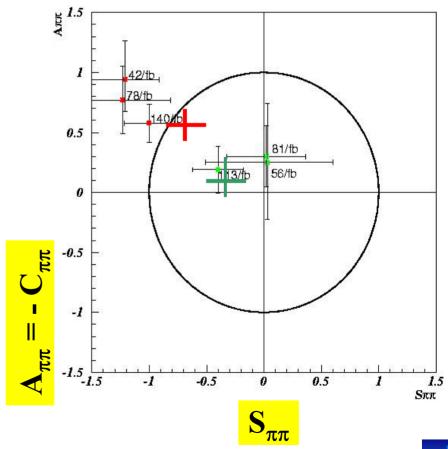
$B^0 \rightarrow \pi^+\pi^-$

BaBar (227 M B-pairs)


B⁰ tags Weighted Events / 1 ps B⁰ tags b) 10 Asymmetry / 2 ps 0.5 -5 0 Δt (ps)

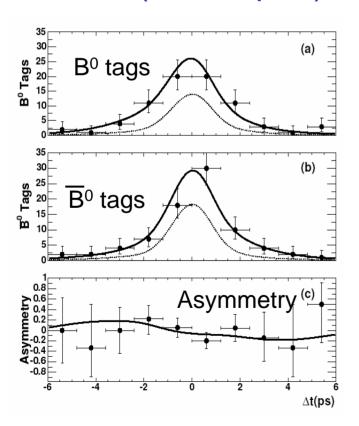

Belle (275 M B-pairs)

CP fit results: $S_{\pi\pi}$ and $C_{\pi\pi}$

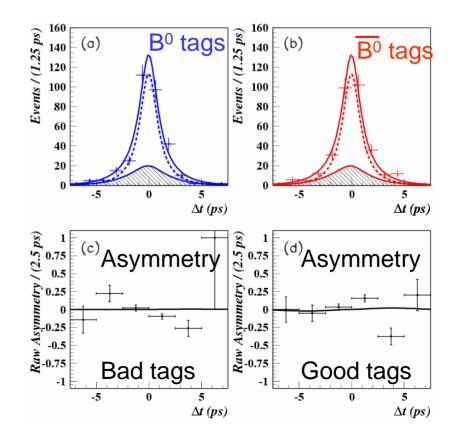

Improved agreement (CL=0.019, 2.3σ)

BaBar, hep-ex/0501071 • BaBar Belle, hep-ex/0502035 • Belle

Belle claim: 4.0 σ evidence of direct CPV



$B \rightarrow \pi\pi$: experimental issues


- Higher backgrounds than charmonium; $K-\pi$ separation to distinguish $\pi\pi$ from $K\pi$; otherwise the analysis is as "simple"
 - m_{ES} , ΔE , "Fischer", θ_C^+ , θ_C^- ; Δt , "tag"
- For the isospin analysis:
 - $B^0 \rightarrow \pi^0 \pi^0$: BF = (1.45 ± 0.29) ×10⁻⁶
 - Too small, not enough
- Direct CPV evidence from Belle (4.0σ), not seen by BaBar

$B^0 \rightarrow \rho \rho$

BaBar (232 M B-pairs)

Belle (275 M B-pairs)

$$B \rightarrow \rho^+ \rho^-$$

• Reconstruct the $\rho^{+(-)} \rightarrow \pi^{+(-)} \pi^0$

- As for ππ, CP fit based on: kinematical signal identification + π/K separation + event shape variables; and Δt, tag
- From the polarization measurement (f_L): almost pure CP eigenstate
- It can be treated as a "two-body" decay, but: larger backgrounds! Not only continuum, also from other B decays, and "self-cross-feed" (SCF)

$B \rightarrow \rho^+ \rho^-$

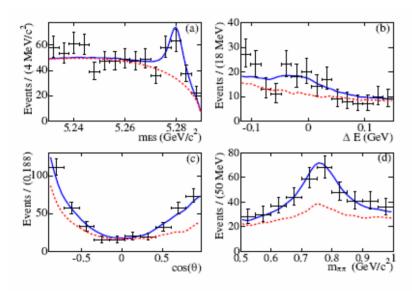


FIG. 1: The distributions for the highest purity tagged events for the variables $m_{\rm ES}$ (a), ΔE (b), cosine of the ρ helicity angle (c) and $m_{\pi^{\pm}\pi^{0}}$ (d). The dotted lines are the sum of backgrounds and the solid lines are the full PDF.

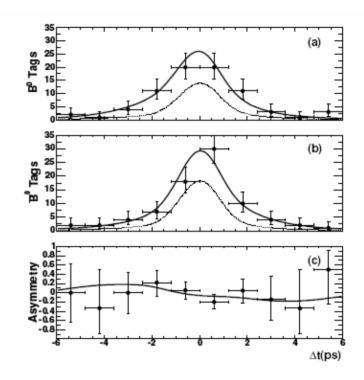
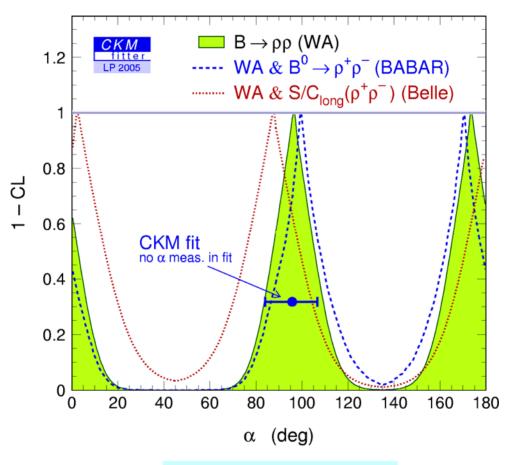


FIG. 2: The Δt distribution for a sample of events enriched in signal for B^0 (a) and \bar{B}^0 (b) tagged events. The dotted lines are the sum of backgrounds and the solid lines are the sum of signal and backgrounds. The time-dependent CP asymmetry (see text) is shown in (c), where the curve is the measured asymmetry.

11

Isospin analysis with $B \rightarrow \rho \rho$

Almost complete polarization f_L
⇒ ≈ CP eigenstate

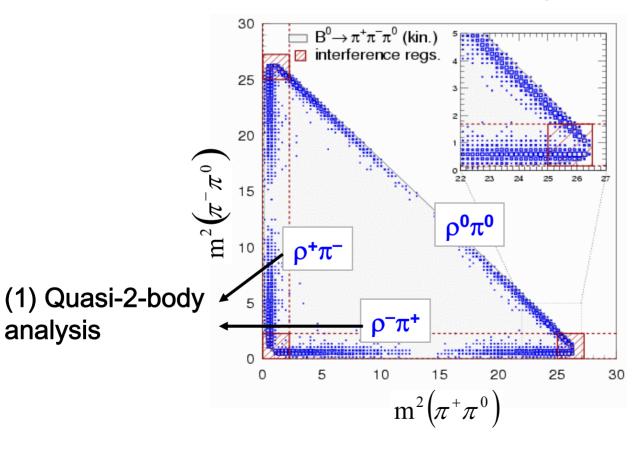

Time-dep. fit $S_{\rho\rho,\,L}$, $C_{\rho\rho,\,L}$

Branching Fractions isospin-related channes

Ne	W BABAR	BELLE
f_L	$0.978 \pm 0.014^{+0.021}_{-0.029}$	$0.951^{+0.033+0.029}_{-0.039-0.031}$
$\mathcal{S}_{\! ho ho,L}$	$-0.33 \pm 0.24^{+0.08}_{-0.14}$	$0.09 \pm 0.42 \pm 0.08$
$\mathcal{C}_{\! ho ho,L}$	$-0.03\pm0.18\pm0.09$	$0.00\pm0.30^{+0.09}_{-0.10}$
$B_{\rho+ ho-}$	$(30\pm4\pm5)\times10^{-6}$	$(24.4\pm2.2^{+3.8}_{-4.1})\times10^{-6}$
$B_{\rho+\rho0}$	$(22.5^{+5.7}_{-5.4}\pm5.8)\times10^{-6}$	$(31.7\pm7.1^{+3.8}_{-6.7})\times10^{-6}$
$B_{ ho 0 ho 0}$	$<1.1\times10^{-6}$	-

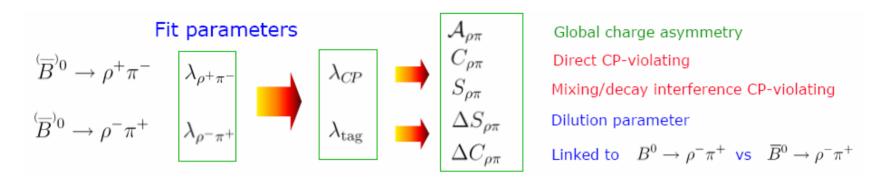
Use averages for BF and S/C coefficients
Use BABAR $\rho^0\rho^0$ limit, which dominates the error. $|\alpha-\alpha_{\rm eff}|<11^\circ$

Isospin analysis with $B \rightarrow \rho \rho$



$$\alpha[\rho\rho] = 96 \pm 13^{\circ}$$

$$B^0 \rightarrow \rho \pi$$


$B^0 \rightarrow \pi^+ \pi^- \pi^0$ "Dalitz plot"

(2) Full "Dalitz" analysis

(1) "Quasi 2-body" parameters

Not a CP eigenstate: time dependence is more complicated: 5 coefficients instead of just 2:

These coefficients are related to two more intuitive asymmetries:

$$A_{-+} \equiv \frac{\mathcal{N}(\overline{B}^{0} \to \rho^{+}\pi^{-}) - \mathcal{N}(B^{0} \to \rho^{-}\pi^{+})}{\mathcal{N}(\overline{B}^{0} \to \rho^{+}\pi^{-}) + \mathcal{N}(B^{0} \to \rho^{-}\pi^{+})}$$

$$= \frac{\mathcal{A}_{\rho\pi} - C_{\rho\pi} - \mathcal{A}_{\rho\pi} \times \Delta C_{\rho\pi}}{1 - \Delta C_{\rho\pi} - \mathcal{A}_{\rho\pi} \times C_{\rho\pi}}$$

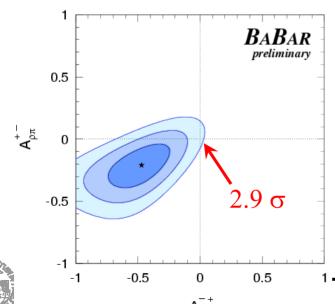
$$A_{+-} \equiv \frac{\mathcal{N}(\overline{B}^{0} \to \rho^{-}\pi^{+}) - \mathcal{N}(B^{0} \to \rho^{+}\pi^{-})}{\mathcal{N}(\overline{B}^{0} \to \rho^{-}\pi^{+}) + \mathcal{N}(B^{0} \to \rho^{+}\pi^{-})}$$

$$= \frac{\mathcal{A}_{\rho\pi} + C_{\rho\pi} + \mathcal{A}_{\rho\pi} \times \Delta C_{\rho\pi}}{1 + \Delta C_{\rho\pi} + \mathcal{A}_{\rho\pi} \times C_{\rho\pi}}$$

"Quasi 2-body" parameters F.Forti, LP05

$$A_{\rho\pi}^{-+} \cong \begin{bmatrix} & & & \\ B & & & \\ & & & \\ & & & \\ & = -0.47^{+0.14}_{-0.15} \pm 0.06 \end{bmatrix}$$

Belle [152M] ±0.09


$$A_{CP}^{\rho\pi} = -0.16_{-0.10}^{+0.09} = -0.088 \pm 0.049 \pm 0.013$$

$$S = -0.28 \pm 0.23 ^{+0.10}_{-0.08} = -0.10 \pm 0.14 \pm 0.04$$

$$C = 0.25 \pm 0.17^{+0.02}_{-0.06} = 0.34 \pm 0.11 \pm 0.05$$

$$A^{+-} -0.02 \pm 0.16 ^{+0.05}_{-0.02} -0.21 \pm 0.11 \pm 0.04$$

Hint of direct CP-violation

 A^{-+} $(-0.53 \pm 0.29 ^{+0.09}_{-0.04})$

 $-0.47 \pm 0.15 \pm 0.06$

BABAR [213M]

combined 3.6σ

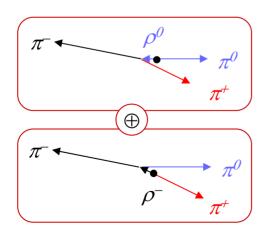
$$\alpha = (102 \pm 11 \pm 15)^{\circ}$$

[Based on factorization & SU(3); Gronau & Zupan]

hep-ex/0408003

 $\alpha = (113 + 27 \pm 6)^{\circ}$

BABAR CONF-04/038


"Full Dalitz" analysis

A full time-dependent Dalitz plot analysis can constrain α .

Time-dependent decay rate: Snyder, Quinn : PRD 48, 2139 (1993)

$$|\mathcal{A}_{3\pi}^{\pm}(\Delta t)|^{2} = \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} \left[|\mathcal{A}_{3\pi}|^{2} + |\overline{\mathcal{A}}_{3\pi}|^{2} \mp \left(|\mathcal{A}_{3\pi}|^{2} - |\overline{\mathcal{A}}_{3\pi}|^{2} \right) \cos(\Delta m_{d} \Delta t) \right]$$

Interference at equal massessquared gives information on strong phases between resonances

$$\pm 2 \mathrm{Im} \left[\overline{\mathcal{A}}_{3\pi} \mathcal{A}_{3\pi}^* \right] \sin(\Delta m_d \Delta t) \right] ,$$

$$A_{3\pi} = f_{+}A^{+} + f_{-}A^{-} + f_{0}A^{0}$$

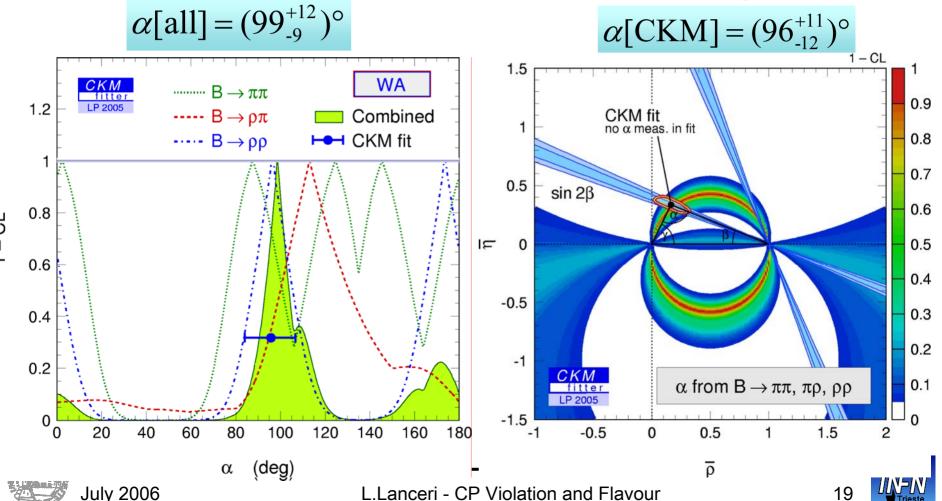
$$\overline{A}_{3\pi} = f_{+}\overline{A}^{+} + f_{-}\overline{A}^{-} + f_{0}\overline{A}^{0}$$

script $\{+,-,0\}$ refers to $\{\rho^+,\rho^-,\rho^0\}$

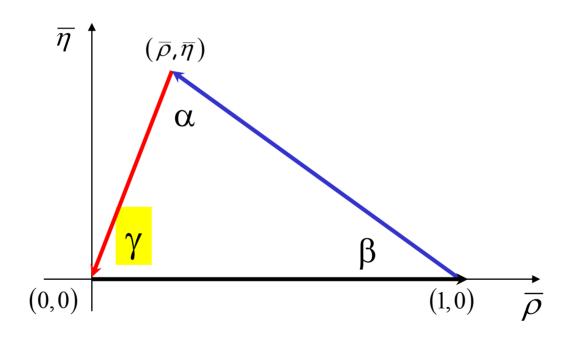
The "f"s are functions of the Dalitz-plot and describe the kinematics of $B \rightarrow \rho \pi$ (S \rightarrow VS).

The "A"s are the complex amplitudes containing weak and strong phases. They are independent of the Dalitz variables.

Experimental & analysis issues

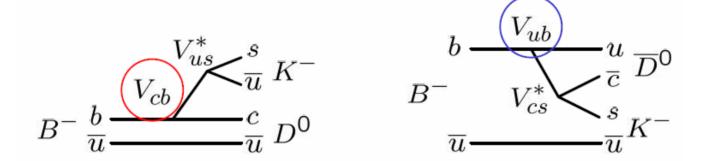

- Signal and backgrounds: also here, not only continuum but also "other B" and "self-cross-feed": keep migrations in the interference regions under control!
- Rather long path from fitted coefficients to the Unitarity Angle, through parametrizations of the tree and penguin amplitudes and their phases

α determination


 $\pi\pi$ determination: limited power ρρ best individual measurement

Mirror solution are disfavored, thanks to $\rho\pi$.

Same precision as global CKM fit.



gamma (ϕ_3)

Methods to measure γ

The challenge: directly measure the b→u phase (γ) relative to the b→c phase (0).

• These amplitudes *interfere* for D final states that both D⁰ and D

o can decay to.

$$r_b \equiv rac{A(b
ightarrow u)}{A(b
ightarrow c)} = R_{\mathsf{U}} \, F_{\mathsf{CS}}$$

Fcs is an *unknown* colorsuppression factor. Expected to be in the range [0.2,0.5]. $\begin{array}{c} \text{larger } r_b \Rightarrow \text{larger interference term} \\ \Rightarrow \text{more sensitivity to } \gamma \end{array}$

 R_u is the left side of the Unitarity Triangle (\sim 0.4).

$$r_b \approx 0.1 \div 0.2$$

21

Methods to measure γ

•
$$B^- \to D^{(*)0} K^{(*)-}$$
, $B^- \to \overline{D}^{(*)0} K^{(*)-}$

- $D^{(*)0}$, $\overline{D}^{(*)0}$ decay to same final state.

• D⁰_{CP}

Gronau-London-Wyler (*GLW*)

D⁰_{Non-CP}

Atwood-Dunietz-Soni (*ADS*)

• $D^0 \rightarrow K_s \pi^+ \pi^-$ Dalitz Giri-Grossman-Soffer-Zupan

Problems: Squashed triangles Small triangles Model dependence

The best results at present

- $\sin(2\beta + \gamma)$ in $B^0 \rightarrow D^{(*)\pm}\pi^{\mp}$
 - Via $B\overline{B}$ mixing.

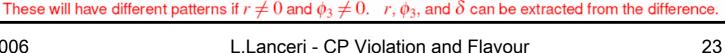
Alternative interference method: 2β from mixing (time-dependent!), γ from suppressed b—u decays

Large number of events, but: small time-dependent asymmetry

$R^- \rightarrow D^{(*)0}K^-$ Dalitz

Interference since both $D^0 \rightarrow K^0_S \pi^+ \pi^-$ and $\overline{D}{}^0 \rightarrow K^0_S \pi^+ \pi^-$

$$B^{-} \xrightarrow{D^{0}K^{-}} (K_{S}^{0}\pi^{+}\pi^{-})K^{-} CP \xrightarrow{D^{0}K^{+}} \xrightarrow{D^{0}K^{+}} (K_{S}^{0}\pi^{+}\pi^{-})K^{+}$$

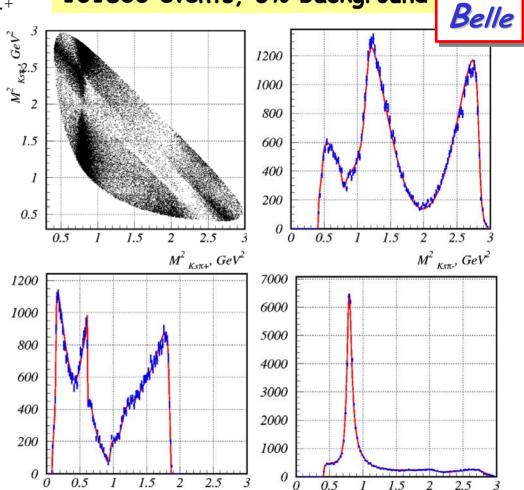

Sensitivity to γ enters via amplitude $\propto V_{ub}$; interference occurs in Dalitz plot for $D^0(D^0) \rightarrow K^0_S \pi^+ \pi^-$

$$\begin{aligned} M_{+} &= f\left(m_{+}^{2}, m_{-}^{2}\right) + re^{i(\delta + \gamma)} f\left(m_{-}^{2}, m_{+}^{2}\right) \\ M_{-} &= f\left(m_{-}^{2}, m_{+}^{2}\right) + re^{i(\delta - \gamma)} f\left(m_{+}^{2}, m_{-}^{2}\right) \end{aligned} \qquad r = \frac{A(b \to u)}{A(b \to c)} = \frac{A(B^{-} \to \overline{D}^{0} K^{-})}{A(B^{-} \to D^{0} K^{-})}$$

Dalitz distributions

$$\left| f(m_+^2, m_-^2) + r e^{i(+\phi_3+\delta)} f(m_-^2, m_+^2) \right|^2 \text{ and } \left| f(m_-^2, m_+^2) + r e^{i(-\phi_3+\delta)} f(m_+^2, m_-^2) \right|^2$$

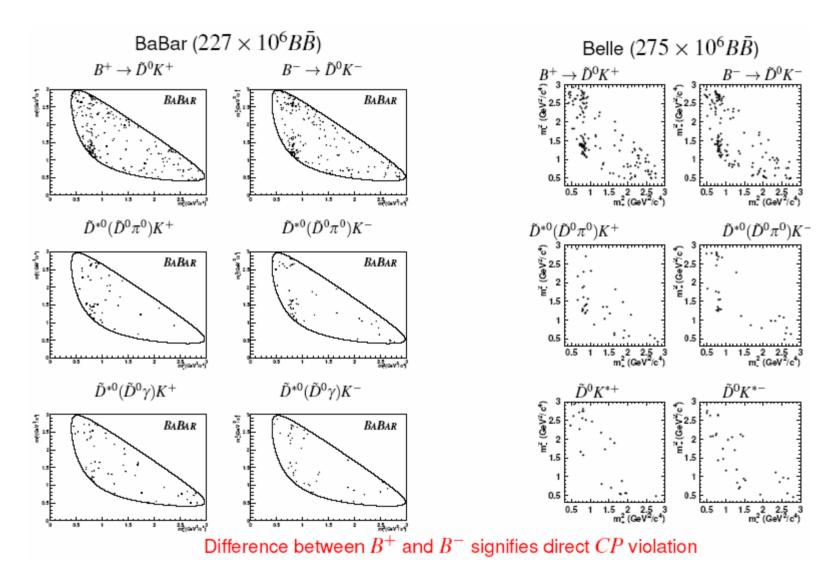
July 2006


D⁰ Dalitz Plot Model (old plots)

Select D° sample from

 $\mathcal{D}^{\star_{+}} \to \mathcal{D}^{0} \left[\to \mathcal{K}_{S}^{0} \pi^{+} \pi^{-} \right] \pi^{+}$

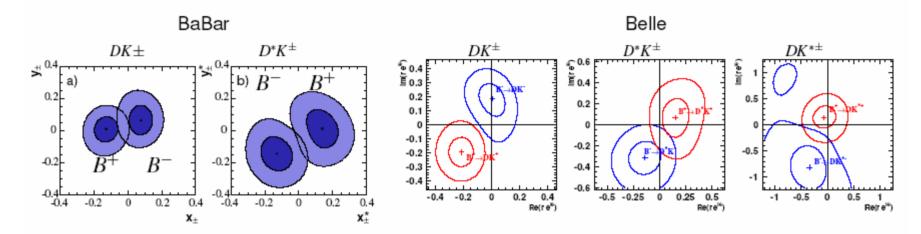
Resonance	Our fit		
Resolution	Amplitude	Phase, °	Fit fraction
$\sigma_1 K_s$	1.66±0.11	218.0±3.8	11%
ρ(770) K _S	1	0	21%
ω K _s	(3.30±1.13)·10 ⁻²	114.3±2.3	0.4%
f ₀ (980) K _s	0.405±0.008	212.9±2.3	4.8%
$\sigma_2 K_s$	0.31±0.05	236±11	0.9%
f ₂ (1270) K _s	1.36±0.06	352±3	1.5%
f ₀ (1370) K _s	0.82±0.10	308±8	0.9%
K* (892)-π+	1.656±0.012	137.6±0.6	60%
K*(892)+π-	0.149±0.007	325.2±2.2	0.5%
K* _g (1430) ·π ⁺	1.96±0.04	357.3±1.5	5.8%
$K^*_{g}(1430)^+\pi^-$	0.30±0.05	128±8	0.1%
K [*] ₂ (1430) ⁻ π ⁺	1.32±0.03	313.5±1.8	2.8%
K [*] ₂ (1430) +π -	0.21±0.03	281.5±9	0.07%
K*(168θ) +π-	2.56±0.22	70±6	0.4%
K*(1680) -π+	1.02±0.22	102±11	0.07%
Non resonant	6.1±0.3	146±3	24%


 $M^2_{\pi+\pi^2}$, GeV^2

 $M^2_{Ks\pi+}$, GeV^2

Dalitz distributions

Fitting for $Re(r_{\pm}e^{i(\pm\phi_3+\delta)})$ and $Im(r_{\pm}e^{i(\pm\phi_3+\delta)})$


Dalitz distributions

$$B^{+}: |f(m_{+}^{2}, m_{-}^{2}) + r_{+}e^{i(\phi_{3}+\delta)}f(m_{-}^{2}, m_{+}^{2})|^{2} B^{-}: |f(m_{-}^{2}, m_{+}^{2}) + r_{-}e^{i(-\phi_{3}+\delta)}f(m_{+}^{2}, m_{-}^{2})|^{2}$$

Physically $r_{+}=r_{-}$, allow them to vary separately for better statistical behaviour

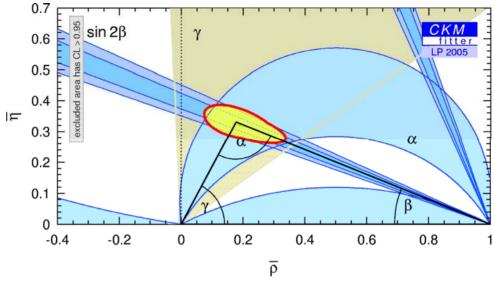
- Determine $x_{\pm} = Re(r_{\pm}e^{i(\pm\phi_3+\delta)}), y_{\pm} = Im(r_{\pm}e^{i(\pm\phi_3+\delta)})$ for each decay mode
- Perform pseudo-experiment technique (Toy Monte Carlo)

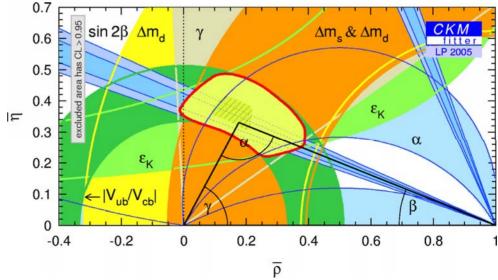
$$(x_{\pm}, y_{\pm}) \times \text{decay mode} \rightarrow (r, \delta) \times \text{decay modes and } \phi_3$$

γ (ϕ_3) Dalitz fit results

	Modes	r	δ (°)	φ ₃ (°)
BaBar	DK	$0.118 \pm 0.079 \pm 0.034^{+0.036}_{-0.034}$	$104 \pm 45^{+17}_{-21}{}^{+16}_{-24}$	
	D^*K	$0.118 \pm 0.079 \pm 0.034^{+0.036}_{-0.034} 0.169 \pm 0.096^{+0.030}_{-0.028} ^{+0.029}_{-0.026}$	$296 \pm 41^{+14}_{-12} \pm 15$	
	combined	31025 31025		$70 \pm 31^{+12}_{-10}{}^{+14}_{-11}$
Belle	DK	$0.21 \pm 0.08 \pm 0.03 \pm 0.04$	$157 \pm 19 \pm 11 \pm 21$	
	D^*K	$0.12^{+0.16}_{-0.11} \pm 0.02 \pm 0.04$	$321 \pm 57 \pm 11 \pm 21$	
	combined			$68^{+14}_{-15} \pm 13 \pm 11$
	DK^*	$0.25^{+0.17}_{-0.18} \pm 0.09 \pm 0.04 \pm 0.08$	$358 \pm 35 \pm 8 \pm 21 \pm 49$	$112 \pm 35 \pm 9 \pm 11 \pm 8$

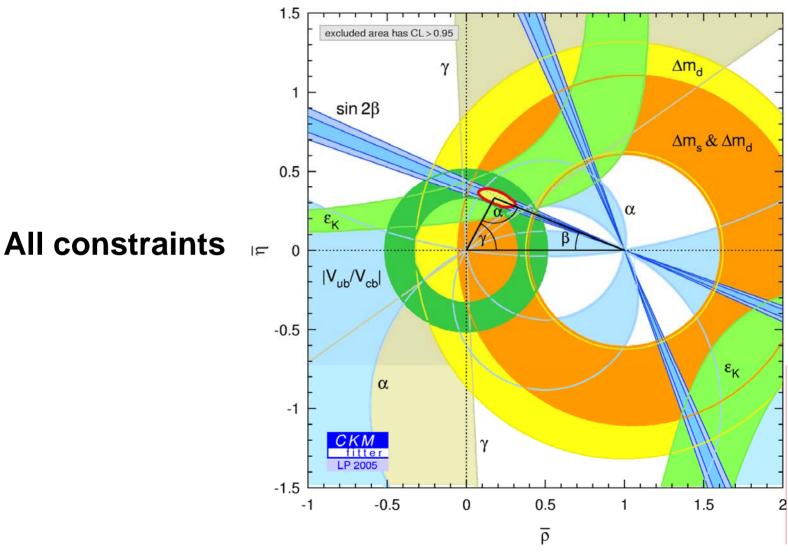
Errors: statistical, detector systematic, $D \to K_S \pi \pi$ decay model, non-resonant $DK\pi$


2σ allowed interval BaBar 12° - 137° Belle 22° - 113° $\frac{\text{Significance of direct }CPV}{\text{BaBar} \quad 2.4\sigma}$ Belle $\quad 2.3\sigma$


CKM fits

CKM fits (CKMfitter group)

Angles only


No angles

Putting it all together

Conclusions on B mesons - 1

"Direct" CPV

- − Observed by BaBar and Belle in B → $K^+\pi^-$
- Evidence by Belle in B $\rightarrow \pi^+\pi^-$, not seen by BaBar

CPV in mixing

Expected to be small (≈ 10⁻³), not seen yet

• $\sin 2\beta$

- Precision measurement with charmonium modes dominate now CKM fits, in agreement with SM expectation
- Looking at b → s penguins for non-SM effects : φK⁰ from Belle now compatible with SM; if present, effects are not large ⇒ more data required

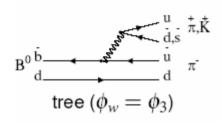
Conclusions - 2

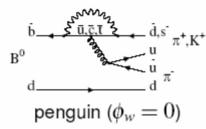
• $\sin 2\alpha$

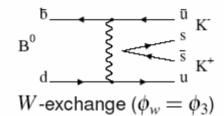
- π⁺π[−] interesting, also penguins \Rightarrow isospin analysis needed for sin2α, too few $\pi^0\pi^0$...
- $-\rho^+\rho^-$ smaller corrections
- $-\rho^+\pi^-$ asymmetries measured in "quasi-two-body" approach; first results also from Dalitz analyses, work in progress
- γ
 - − DK and Dπ methods: few events, sensitivities depend on r_b (CKM and color suppression factor of interfering amplitudes) ⇒ Dalitz method is the best up to now: need more data...
- CKM fits are giving a consistent picture (SM works!) and also feedback on B decay mechanisms

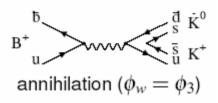
Conclusions - 3

- Short term prospects for the B factories, very successful up to now:
 - Double the integrated luminosity at least twice with the present detectors:
 - ~ 500 fb⁻¹ per experiment by 2006 (KEK-B is almost there!)
 - > 1 ab⁻¹ per experiment by 2008-09
 - This will not exhaust the B physics program...
- Hadron collider experiments: B_s, γ, some rare decays
 - Tevatron, CDF/D0: upgrades and new triggers, preliminary results for B_s mixing: SEEN! Compatible with SM
 - LHC-B at LHC: expected on line in ~2007; BTeV terminated
- Long term future of B-factories: physics case of a Super B-Factory
 - Prospects under discussion by the interested community




Backup slides


A_{CP} in charmless $B \rightarrow PP$


K.Abe, LP05

Decay Mode	BaBar	Belle	SM diagrams
$K^+\pi^-$	$-0.133 \pm 0.030 \pm 0.009$	$-0.113 \pm 0.021 \pm 0.008$	tree, penguin
$K^+\pi^0$	$+0.06 \pm 0.06 \pm 0.01$	$+0.04 \pm 0.04 \pm 0.02$	tree, penguin
$K_S^0\pi^+$	$-0.09 \pm 0.05 \pm 0.01$	$+0.05 \pm 0.05 \pm 0.01$	penguin
$K_S^0\pi^0$	$-0.06 \pm 0.18 \pm 0.03$	$+0.16 \pm 0.29 \pm 0.05$	penguin
$\pi^+\pi^-$	$+0.09 \pm 0.15 \pm 0.04$	$+0.52 \pm 0.14$	tree, penguin
$\pi^{+}\pi^{0}$	$-0.01 \pm 0.10 \pm 0.02$	$+0.02 \pm 0.08 \pm 0.01$	tree
$\pi^0\pi^0$	$+0.12 \pm 0.56 \pm 0.06$	$0.44^{+0.53}_{-0.52} \pm 0.17$	tree, penguin
K^+K^-	signal not seen	signal not seen	W-exchange
K^+K^0	seen	seen	penguin, annihilation
$K^0 \bar{K}^0$	seen	seen	penguin

Extraction of ϕ_3 may be difficult due to hadronic effects. Hope to learn about them from measurements. (e.g. Why $A_{CP}(K^+\pi^0) \neq A_{CP}(K^+\pi^-)$? Expect the same based on naive factorization)