Commissione I — Roma, 17-18 Maggio 2004

ASSIA LOI

Marco Maggiora Dip. "A. Avogadro" – Università e INFN - Torino

Dzhelepov Laboratory of Nuclear Problems, JINR - Dubna, Russia Dipartimento di Fisica "A. Avogadro" e INFN – Torino, Italy Dipartimento di Fisica Teorica e INFN – Torino, Italy Università e INFN – Brescia, Italy Università del Piemonte Orientale – Italy Czech Technical University – Prague, Czech Republic DAPNIA, CEN – Saclay, France Inst. of Scientific Instruments Academy of Sciences – Brno, Czech Republic NSC Kharkov Physical Technical Institute – Kharkov, Ukraine Laboratori Nazionali Frascati, INFN – Frascati, Italy Università dell'Insubria e INFN – Como, Italy Università e INFN – Trieste, Italy

Introduction

• SIS300 @ GSI: \bar{p} , $P_{\bar{p}} \ge 40 \text{ GeV/c}$ $(\lambda = 4 \cdot 10^{-2} \text{ fm})$

- A complete description of nucleonic structure requires:
 proton and gluon distribution functions
 quark fragmentation functions
 @ leading twist and @ NLO
- Physics objectives:
 - Drell-Yan di-lepton production
 - spin observables in hadron production
 - electromagnetic form factors

κ_{T} -dependent Parton Distributions

Drell-Yan Di-Lepton Production $\overline{p}p \rightarrow \mu^+\mu^- X$

Why Drell Yan?

Asymmetries depend on PD only (SIDIS→convolution with QFF)

Why \overline{p} ?

Each valence quark can contribuite to the diagram

Kinematics

$$x_{1} = \frac{M^{2}}{2P_{1} \bullet q} \quad x_{2} = \frac{M^{2}}{2P_{2} \bullet q}$$

$$X_{F} = X_{1} - X_{2}$$

$$\tau = X_{1}X_{2} = \frac{M^{2}}{s}$$

Drell-Yan Di-Lepton Production $\overline{p}p \rightarrow \mu^+ \mu^- X$

$$\frac{d^2\sigma}{dM^2dx_F} = \frac{4\alpha^2\pi}{9M^2s} \frac{1}{x_1 + x_2} \sum_{a} e_a^2 \left[f^a(x_1) \bar{f}^a(x_2) + \bar{f}^a(x_1) f^a(x_2) \right]$$

Phase space for Drell-Yan processes

Drell-Yan Asymmetries — Polarised beam and target

Ideal because:

- h₁ not to be unfolded with fragmentation functions
- chirally odd functions not suppressed (like in DIS)

Drell-Yan Asymmetries — Polarised beam and target

$$A_{LL} = \frac{\sum_{a} e_{a}^{2} g_{1}^{a}(X_{1}) \overline{g}_{1}^{a}(X_{2})}{\sum_{a} e_{a}^{2} f_{1}^{a}(X_{1}) \overline{f}_{1}^{a}(X_{2})} \quad A_{TT} = \frac{\sin^{2}\theta\cos 2\phi}{1+\cos^{2}\theta} \frac{\sum_{a} e_{a}^{2} h_{1}^{a}(X_{1}) \overline{h}_{1}^{a}(X_{2})}{\sum_{a} e_{a}^{2} f_{1}^{a}(X_{1}) \overline{f}_{1}^{a}(X_{2})} \\ A_{LT} = \frac{2\sin 2\theta \cos \phi}{1+\cos^{2}\theta} \frac{M}{\sqrt{\varphi^{2}}} \frac{\sum_{a} e_{a}^{2} \left(g_{1}^{a}(X_{1}) X_{2} g_{T}^{\overline{a}}(X_{2}) - X_{1} h_{L}^{a}(X_{1}) \overline{h}_{1}^{a}(X_{2})\right)}{\sum_{a} e_{a}^{2} f_{1}^{a}(X_{1}) \overline{f}_{1}^{a}(X_{2})}$$

To be corrected for:

$$\frac{1}{P_{B} \text{ f } P_{T}}$$
NH₃ polarised target:

$$f = \frac{3}{17} = 0.176$$

$$P_{T} \approx 0.85$$

Drell-Yan Asymmetries — Unpolarised beam and target

 $\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}\left(1+\lambda\cos^2\theta + \mu\sin^2\theta\cos\varphi + \frac{\nu}{2}\sin^2\theta\cos2\varphi\right)$

NLO pQCD: $\lambda \sim 1$, $\mu \sim 0$, $\upsilon \sim 0$ Experimental data ^[1]: $\upsilon \sim 30$ %

^[1] J.S.Conway et al., Phys. Rev. D39(1989)92.

 υ involves transverse spin effects at leading twist ^[2]: cos2 ϕ contribution to angular distribution provide:

 $\mathbf{h}_{1}^{\perp}(\mathbf{x}_{2,}\boldsymbol{\kappa}_{\perp}^{2})\overline{\mathbf{h}}_{1}^{\perp}(\mathbf{x}_{1,}\boldsymbol{\kappa}_{\perp}^{\prime 2})$

^[2] D. Boer et al., Phys. Rev. D60(1999)014012.

Angular distribution in CS frame

Conway et al, Phys. Rew. D39 (1989) 92

• 30% asymmetry observed for π^-

Angular distributions for \overline{p} and $\pi^- - \pi - N, \overline{p} N @ 125 \text{ GeV/c}$

Drell-Yan Asymmetries — Unpolarised beam, polarised target

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega} \propto \left(1 + \cos^2\theta + \frac{\nu}{2} \sin^2\theta \cos 2\phi + \rho |S_{1T}| \sin^2\theta \sin(\phi + \phi_{S_1}) + \cdots \right)$$
$$\lambda \sim 1, \mu \sim 0$$
$$A_T = |S_{1T}| \frac{2\sin 2\theta \sin(\phi + \phi_{S_1})}{1 + \cos^2\theta} \frac{M}{\sqrt{Q^2}} \frac{\sum_a e_a^2 \left[x_1 f_1^{a\perp}(x_1) \overline{f}_1^{a}(x_2) + x_2 h_1^{a}(x_1) \overline{h}_1^{a\perp}(x_2) \right]}{\sum_a e_a^2 f_1^{a}(x_1) \overline{f}_1^{a}(x_2)}$$

Even unpolarised beam is a powerful tool to investigate κ_T dependence of QDF

D. Boer et al., Phys. Rev. D60(1999)014012.

Hyperon production Spin Asymmetries

 Λ production in unpolarised pp collision:

Several theoretical models:

• Static SU(6) + spin dependence in parton

fragmentation/recombination^[1-3]

• pQCD spin and transverse momentum of hadrons in fragmentation ^[4]

^[1] T.A.DeGrand et al., Phys. Rev D23 (1981) 1227.
^[2] B. Andersoon et al., Phys. Lett. B85 (1979) 417.
^[3] W.G.D.Dharmaratna, Phys. Rev. D41 (1990) 1731.
^[4] M. Anselmino et al., Phys. Rev. D63 (2001) 054029.

Analysing power $A_{N} = \frac{1}{P_{B} \cos \theta} \frac{N_{\uparrow}(\phi) - N_{\downarrow}(\phi)}{N_{\uparrow}(\phi) + N_{\downarrow}(\phi)}$ Depolarisation $D_{NN} = \frac{1}{2P_{B} \cos \phi} \left[P_{\Lambda\uparrow} (1 + P_{B}A_{N} \cos \phi) - P_{\Lambda\downarrow} (1 - P_{B}A_{N} \cos \phi) \right]$ Key to distinguish between these models

 Data available for D_{NN} :

 3.67 GeV/c
 $D_{NN} < 0$

 13.3 -18.5 GeV/c
 $D_{NN} \sim 0$

 200 GeV/c
 $D_{NN} > 0$
 $D_{NN} @$ 40 GeV/c MISSING

Hyperon production Spin Asymmetries

Polarised target: $\overline{p}p^{\uparrow} \rightarrow \overline{\Lambda} + \Lambda$.

^[1] complete determination of

the spin structure of reaction

ALLER BOLLER

Transverse target polarisation

Existing data: PS185 (LEAR)^[2]

[1] K.D. Paschke et al., Phys. Lett. B495 (2000) 49.[2] PS185 Collaboration, K.D: Paschke et al., Nucl. Phys. A692 (2001) 55.

Models account correctly for cross sections. Models do not account for D_{NN}^{Λ} or K_{NN}^{Λ} .

NEW DATA NEEDED

Transverse Single Spin Asymmetries

$$A_{N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} - d\sigma^{\downarrow}} \qquad p^{\uparrow}p \to \pi X \qquad \overline{p}^{\uparrow}p \to \pi X$$

- π Production @ large x_F originate from valence quark: π^+ : $A_N > 0$; π^- : $A_N < 0$ Correlated with expected u and d-quark polarisation
- A_N similar for $P_{\overline{p}}$ ranging from 6.6 up to 200 GeV A_N related to fundamental properties of quark distribution/fragmentation

•
$$A_{N, \overline{p}p^{\uparrow} \to \pi X} vs A_{N, \overline{p}^{\uparrow}p \to \pi X}$$

New experiment with polarised nucleon target, and \overline{p} in a new kinematical region:

- new data available
- DY-SSA possible only @ RICH, p[↑]p-scattering: $\sigma_{\overline{p}p}^{DY}$ @ smaller s >> σ_{pp}^{DY} @ large s $\overline{p}p \rightarrow \mu^{+}\mu^{-}X$ @ GSI unique possibility

Electromagnetic form-factors

FF in TL region ($\overline{p}p \rightarrow e^+e^-$) related to nucleon structure New information with respect to SL FF (eN-scattering)

TL-FF: • low statistic• no polarisation phenomena

$$\overline{p}p \rightarrow \mu^+ \mu^- X$$
 : $\frac{d\sigma}{d\Omega}$ alternative way to FF
• analysing power

angular distribution analysing power → transverse polarisation of target p[↑] leads to non zero analysing power Different prediction for models well reproducing SL data

Excellent but do not fit key requirement:

E > 40 GeV

 $\rightarrow 1.5 \cdot 10^7 \text{ p/}$

PANDA: design not compatible with polarised target

SIS300:

- $E_{\overline{p}} \ge 40 \text{ GeV}$, slow extraction
- $\frac{\Delta p}{p} \approx 2 \cdot 10^{-4}$, largely enough
- accumulation rate $7 \cdot 10^{10} \overline{p}/h$
- injection/extraction efficiency ~ 0.9

 NH_3 10g/cm³ : 2 x 10cm cells with opposite polarisation

$$f = \frac{3}{17} \qquad P_{T} \approx 0.85$$
$$L = \frac{3}{17} \cdot 10 \cdot 6 \cdot 10^{23} \cdot 1.5 \cdot 10^{7} = 1.5 \cdot 10^{31} \text{ m}^{-2} \text{s}^{-1}$$

GSI modifications:

- extraction SIS100 \rightarrow SIS300 or injection CR \rightarrow SIS300
- slow extraction SIS300 \rightarrow beamline adapted to $E_{\overline{p}} \ge 40 \text{ GeV}$
- experimental area adapted to handle expected radiation from $2 \cdot 10^7 \frac{p}{s}$

TARGET

COMPASS like Transverse and longitudinal polarisation

BEAMhigh luminosity and intensity \overline{p} Eventually polarised \overline{p} -beam from SIS300

UNIQUE TOOL TO INVESTIGATE NUCLEON STRUCTURE

Alternative GSI solution

- Luminosity comparable to external target \rightarrow KEY IUSSUE
- dilution factor f~1
- difficult to achieve polarisation $P_p \sim 0.85$
- required \sqrt{s} achievable with present HESR performances (15 GeV/c)
- only transverse asymmetries can be measured
- p^{\uparrow} beam required polarisation proton source and $P_p \ge 15$ GeV/c acceleration scheme preserving polarisation
- no additional beam extraction lines needed
- EXPERIMENTAL SETUP COMPLETELY DIFFERENT

Experimental setup

Possible setup scheme similar to the COMPASS first spectrometer

- SM1 magnet (1Tm, stands $1.5 \cdot 10^7 \overline{p}/s$)
- GEM, MICROMEGA detetors $\sigma \le 70 \,\mu m$ smaller angle
- MWPC, STRAW detectors $\sigma \leq 1.5 \text{ mm}$ larger angle
- expected $\Lambda, \overline{\Lambda}$ resolution $\sigma \approx 2.5 \text{ MeV/c}^2$
- vertex resolution $\sigma = 2 \text{ mm} \div 1 \text{ cm}$
- HODOSCOPEs → Trigger
- sandwiches iron plates, Iarocci tubes, scintillator slabs $\rightarrow \mu Id$
- beam vacuum pipe along the apparatus

Summary

Main goal: spin physics ⇒ nucleon structure DY di lepton production ⇒distribution functions Spin observables in hadron production⇒fragmentation Electromagnetic form factors
Ideal tools: polarised p̄ beam, polarised nucleon target
Key iussue: √s in CM frame to span large x₁,x₂ domain

Slow extraction from SIS300

polarised target, both P_L and P_T

HESR as a $\overline{p} - p$ collider

no diluition factor

MORE WORK, SIMULATIONS NEEDED DISCUSSION WITH GSI MANAGEMENT:

- what is feasable
- physics iussues