

http://www.fz-juelich.de/ikp/pax

PAX Status Report

P. Lenisa - Università di Ferrara and INFN

CSN III - Trieste, 19.09.06

Part I: The PAX proposal at FAIR

Part II: Spin-filtering studies at COSY and AD

PAX Collaboration

180 physicists 35 institutions (15 EU, 20 NON-EU)

TIMELINE

- Jan. 04 Letter of Intent for FAIR
- May 04 QCD-PAC meeting at GSI
- Aug. 04 Workshop on polarized antiprotons at GSI
- Jan. 05 Technical Proposal for FAIR
- Mar. 05 QCD-PAC meeting at GSI
- Nov. 05 LoI to CERN-SPSC to perform spin-filtering experiments with antiprotons at the AD ring

Apr. 06 LoI to COSY-PAC for spin filtering experiments with protons at COSY

Physics Motivations

Leading Twist Distribution Functions

Physics Polarizatian Statgingeposignals Timeline

Transversity

Properties:

- Probes relativistic nature of quarks
- No gluon analog for spin-1/2 nucleon
- Different Q^2 evolution than Δq
- Sensitive to valence quark polarization

Chiral-odd: requires another chiral-odd partner

Drell-Yan process

$$\begin{array}{ll} \mbox{Elementary LO interaction:} & q\overline{q} \rightarrow \gamma^* \rightarrow l^+ l^- \\ \\ \mbox{$\frac{d^2\sigma}{dM^2dx_F}$} = \frac{4\pi\alpha^2}{9\frac{M^2s}{M^2s}}\frac{1}{x_1 + x_2}\sum_q e_q^2 [q(x_1)\,\overline{q}(x_2) + \overline{q}(x_1)\,q(x_2)] \end{array} \right\} \begin{array}{l} \mbox{$\frac{q=u,\overline{u},d,\overline{d},...}{M$ invariant Mass}$} \\ \\ \mbox{$\frac{d=u,\overline{u},d,\overline{d},...}{M$ invariant Mass}$} \\ \\ \mbox{$\frac{x_F=x_1-x_2}{x_1x_2}=M^2/s\equiv\tau$} \\ \end{array} \right. \begin{array}{l} \mbox{$x_F=2Q_L/\sqrt{s}$} \end{array}$$

h₁ from pbar-p Drell-Yan at GSI

PAX : $M^2/s = x_1 x_2 \sim 0.1 - 0.3 \rightarrow \text{valence quarks} (A_{TT} \text{ large } \sim 0.2 - 0.4)$

P. Lenisa

What about p-p?

$$A_{TT} = \frac{\mathrm{d}\sigma^{\uparrow\uparrow} - \mathrm{d}\sigma^{\uparrow\downarrow}}{\mathrm{d}\sigma^{\uparrow\uparrow} + \mathrm{d}\sigma^{\uparrow\downarrow}} = \hat{a}_{TT} \frac{\sum_{q} e_{q}^{2} \left[h_{1q}(x_{1}) h_{1\overline{q}}(x_{2}) + h_{1\overline{q}}(x_{1}) h_{1q}(x_{2}) \right]}{\sum_{q} e_{q}^{2} \left[q(x_{1}) \overline{q}(x_{2}) + \overline{q}(x_{1}) q(x_{2}) \right]}$$

 $h_{1\bar{q}}(x, Q^2)$ **‡** $h_{1q}(x, Q^2)$

 $h_{1q}(x, Q^2)$ small and with much slower evolution than $\Delta q(x, Q^2)$ and $q(x, Q^2)$ at small x

DY in p-p: A_{TT}

Asymmetries evoluted from the assumptions: $\frac{1}{2}h_{1\bar{q}}(x,Q_0^2) = \Delta \overline{q}(x,Q_0^2)$

•Aymmetry is large at PAX energy (> 0.1)

•Sign of the asymmetry will distinguish between the two models.

•It will give indications about calculation of sea distributions.

P. Lenisa

DY events distribution (/s~15 GeV)

p-pbar +p-p -> complete map of transversity

for 0.15<x<0.5

PAX Accelerator Setup

- Antiproton Polarizer Ring (APR)
- Asymmetric Antiproton-Proton Collider (CSR)
- High Energy Synchrotron Ring (HESR)

Antiproton Polarizer Ring

Energy	250 MeV			
3	250 mm mrad			
Circumf.	86 m			

Staging: Phase I (PAX@CSR)

Experiment: pol./unpol. pbar on internal polarized target

Independent from HESR running

Physics: Transversity

EXPERIMENT: Asymmetric collider: polarized antiprotons in HESR (p=15 GeV/c) polarized protons in CSR (p=3.5 GeV/c)

Second IP with minor interference with PANDA

Towards higher luminosity

Parameter	Bund	ched	Coas	sting	
	CSR	HESR	CSR	HESR	
Particles	pbar	р	pbar	р	
Circum. [m]	183	574	183	574	
P _{max} [GeV/c]	3.65	15	3.65	15	
s _{max} [GeV ²]	~ 2	200	~ 200		
No. bunches	10	30	-	-	
No. particles	5×10 ¹¹	2.4×10 ¹²	5×10 ¹¹	1×10 ¹³	
Lifetime [hs]	~1500	~300	~1500	~300	
Lum. [cm ⁻² s ⁻¹]	5×10 ³⁰		1.2×10 ³¹		
Polar.	$\uparrow\uparrow,\rightarrow\rightarrow$		$\uparrow\uparrow,\rightarrow\rightarrow$		
р-р	ye	25	yes		

PAX Detector Concept

Precision in h₁ measurement

1 year of data taking at 15+3.5 GeV collider $L = 2 \cdot 10^{30}$ cm⁻²s⁻¹

10 % precision on the h_1^u (x) in the valence region

P. Lenisa

PAX status report

Evaluation by QCD-PAC (March 2005)

... the PAC would like to stress again the uniqueness of the program with polarized anti-protons and polarized protons that could become available at GSI.

Recommendation of the STI of FAIR (Sept. 2005) The STI requests R&D work to be continued on the proposed asymmetric collider experiment with both polarized anti-protons and protons:

-to demonstrate that the required luminosity for decisive measurements can be reached (-> practically solved thanks to Y. Shatunov & A. Smirnov)

- to demonstrate that a high degree of anti-proton polarisation can be reached

The STI believes that PAX should become part of the FAIR core research program based on its strong scientific merit once the open problems are convincingly solved.

Part I: The PAX proposal at FAIR

Part II: Spin-filtering studies at COSY and AD

P. Lenisa

Polarized antiprotons

Intense beam of polarized pbar never produced:

- Conventional methods (ABS) not appliable
- •Polarized pbar from antilambda decay •I< $1.5 \cdot 10^5 s^{-1}$ (P ≈ 0.35)
- •Pbar scattering off liquid H₂ target •I< $2 \cdot 10^3 \text{ s}^{-1}$ (P ≈ 0.2)
- •Stern-Gerlach separation of a stored beam (never tested and withdrawn?)
- 05.2006 (Th. Walcher et al) polarized electron beam (withdrawn)

Spin-filtering is the only succesfully tested technique

Principle of spin-filtering

$$\sigma_{tot} = \sigma_0 + \sigma_{\perp} \cdot \vec{P} \cdot \vec{Q} + \sigma_{\parallel} \cdot (\vec{P} \cdot \vec{k}) (\vec{Q} \cdot \vec{k})$$
P beam polarization
Q target polarization
k || beam direction

Principle of spin-filtering

$$\sigma_{tot} = \sigma_0 + \sigma_{\perp} \cdot \vec{P} \cdot \vec{Q} + \sigma_{\parallel} \cdot (\vec{P} \cdot \vec{k}) (\vec{Q} \cdot \vec{k})$$
P beam polarization
Q target polarization
k || beam direction

1992 Filter Test at TSR with protons

Polarized atomic beam source

1992 Filter Test at TSR with protons

PAX status report

Two interpretations of FILTEX result

Observed polarization build-up: dP/dt = \pm (1.24 \pm 0.06) x 10⁻² h⁻¹ P(t)=tanh(t/T₁), 1/T₁= σ_1 Qd_tf

 $\sigma_1 = 72.5 \pm 5.8 \text{ mb}$

Spin-filtering works! But how?

1994. Meyer and Horowitz: three distinct effects

- 1. Selective removal through scattering beyond θ_{acc} =4.4 mrad ($\sigma_{R\perp}$ =83 mb)
- 2. Small angle scattering of target prot. into ring acceptance ($\sigma_{S\perp}$ =52 mb)
- 3. Spin-transfer from pol. el. of target atoms to stored prot. (σ_{FI} =-70 mb)

 $\sigma_1 = \sigma_{R\perp} + \sigma_{S\perp} + \sigma_{E\perp} = 65 \text{ mb}$

2005. Milstein & Strakhovenko + Nikolaev & Pavlov: only one effect

1. Selective removal through scattering beyond θ_{acc} =4.4 mrad ($\sigma_{R\perp}$ =85.6 mb) No contribution from other two effects (cancellation between scattering and transmission)

 $\sigma_1 = 85.6 \text{ mb}$

Spin-filtering: Present situation

Spin filtering works, but:

Controversial interpretations of only experiment with protons
 No experimental basis for antiprotons

Experimental tests needed with:

- 1. Protons at COSY
- 2. Antiprotons at AD

Spin-filtering studies at COSY

Objective:

- Understanding of spin-filtering mechanism:
- Disentangle electromagnetic and hadronic contributions to the polarizing cross section

Polarizing cross sections from the two models

A measurement of σ_{eff} to 10% precision requires polarization measurement with $\Delta P/P = 10\%$.

P. Lenisa

How to disentangle hadronic and electromagnetic contributions to σ_{eff} ?

(Polarization build-up experiments)

Injection of different combinations of hyperfine states

- Different electron and nuclear polarizations
- Null experiments possible:

•Pure electron polarized target ($P_z = 0$), and

•Pure nuclear polarized target ($P_e=0$)

Inj. states	P _e	Pz	Interaction	Holding field		
1>	+1	+1	Elm. + had.	transv. + longit.	weak (20 G)	
1> + 4>	0	+1	only had.	only had.		
1> + 2>	+1	0	only elm.	iongi i udinai	Strong (3KG)	

Strong fields can be applied only longitudinally (minimal beam interference)

- Snake necessary

AD Experiments require both transverse and longitudinal (weak)fields.

AD Experiments will be performed also with D target.

Target polarimetry requires BRP for pure electron and D polarization.

Preliminary test: do unpolarized electrons affect the polarization of a proton beam?

(Polarization "build-down" experiment)

Meyer: "If polarized electrons polarize an initially unpolarized beam, then, unpolarized electrons should depolarize an initially polarized beam!"

Test with unpolarized ⁴He target (no hadronic effects):

Measure of depolarization of a polarized proton beam.

Will allow to test the electromagnetic contribution (and Walcher's proposal)

•Use of ANKE interaction point

•Beam lifetime studies

•Measurements spring 2007

Experimental setup

- · Low-beta section
- Polarized target (former HERMES target)
- Detector
- Snake
- Commissioning of AD setup

Low beta section

 $\beta_{x,y}^{new} = 0.3 \text{ m} \rightarrow \text{increase}$ in density with respect to ANKE: factor 30

- Lower buildup time, higher rates
- Larger polarization buildup rate due to higher acceptance
- Use of former HERMES target

S.C. quadrupole development applicable to AD experiment

ANKE vs new IP: Polarization

Expectations based on Budker-Jülich for:

- T = 40 MeV
- N_{ini}=1.5x10¹⁰ protons

PIT	Filter. time	Polar.	Total rate	Meas. Time (∆P/P=10%)
ANKE	2τ = 16 h	1.2 %	7.5×10² s ⁻¹	44 min
	5t = 42 h	3.5 %	5x10 s⁻¹	26 min
New IP	2τ = 5 h	16 %	2.2×10 ⁴ s ⁻¹	1 s
	5τ = 13 h	42 %	1.5×10 ³ s ⁻¹	< 1 s

P. Lenisa

Detector concept

- Will measure beam polarization by using the analysing power of: •p-p elastic (COSY)
 - •pbar-p elastic (AD)
- Good azimuthal resolution (up/down asymmetries)
- Low energy recoil (<8 MeV)
 - Silicon telescopes
 - •Thin 5µm Teflon cell needed
- Angular resolution for the forward particle for p-pbar at AD
- AD experiment will require an openable cell

Measurement of effective polarization cross-section.

Both transverse and longitudinal. Variable acceptance at target Polarized D target

First measurement at all for spin correlations in pbar-p (and pbar-D)

P. Lenisa

Timeline

Fall 2006	Submission of proposal to COSY-PAC
	Beam depolarization studies
	(Beam lifetime studies)
Spring 2007	Submission of FP 7 application
Fall 2007	Technical proposal to COSY-PAC for spin filtering
	Technical proposal to SPSC for spin filtering at AD
2006-2007	Design and construction phase
2008-2009	Spin-filtering studies at COSY
	Commissioning of AD experiment
2009	Installation at AD
2009-2010	Spin-filtering studies at AD

Institutional Responsibilities

	Instit	rution	Coordination	Target & BRP	Slow Control	Accelerator & Magnets	DAQ	Detector	Simulations & Data Analysis	Theory
1	Ba	ri			•					
2	Brook	haven				•				
3	Dub	olin								•
4	Dub	ona				•	•		•	•
5	Erlar	ngen		•						
6	Ferr	ara	•	•				•		•
		IKP	•			•		•		•
7	Jülich	ZAT		•		•		•		
		ZEL			•		•	•		
8	Gatc	hina				•			•	
9	Novos	ibirsk				•				
10	Tbi	lisi							•	•
11	Tor	ino								•
12	Upp	sala							•	
13	Madis	on (?)		•						

Italian participation

2006:

Ferrara:

Coordination HERMES target at FZJ cell for ANKE ion-deflector for Lamb-shift polarimeter Bari expressed interest Ex Roma Sanità expressed interest

Future:

Ferrara: Coordination Target polarimeter Cell Detector Bari (?): Slow control

Previsione di spesa (solo Ferrara)

	2006	2007	2008	2009	2010
FTE	3.5	6.3	8.5	~10	~10
MI	-	10	20	20	20
ME	55	150	200	220	220
Cons. + trsp	30	30	50	70	50
Inv. + App.	-	112	140	30	10
Totale	85	302	410	340	300

(Assegnati) Richiesti

Previsione di spesa (solo Ferrara)

	2006	2007	2008	2009	2010
FTE	3.5	6.3	8.5	~10	~10
MI	-	10	20	20	20
ME	55	150	200	220	220
Cons. + trsp	30	30	50	70	50
Inv. + App.	-	112	140	30	10
Totale	85	302	410	340	300

(Assegnati) Richiesti

Richieste 2007 (keuro)

		Richie	ste	Referee		
Missioni	Interno	10		6		
	Estero	150 (23 m.u.)	- Coordinazione 3 mesi/uomo - Bersaglio 9 mesi/uomo - Rivelatore 6 mesi/uomo - Misure 4 mesi/uomo	74 (16 m.u.)		
Consumo	·	30	- Sviluppo e test cell - Consumi bersaglio e polarimetro - Cavetteria rivelatori - Consumi camera pulita	16		
Inv+App		112	- Rivelatori silicio (5 moduli) - Elettronica - Camera tests	15	35	
Totale		302		111	35	

P. Lenisa

Funding (besides INFN)

BMBF financed application by prof E. Steffens (U. Erlangen)

Application to FZJ innovation fund SC quads for low-beta section

Application to FP7 for spin-filtering studies

Kinematics for Drell-Yan

Hydrogen data

CERN NA51

450 GeV/c

Drell-Yan

7

8

 (GeV/c^2)

Signal

6

5

Mass

H. Shimizu, G. Sterman, W. Vogelsang and H. Yokoya, hep-ph/0503270

V. Barone et al.,

(evts/0.1 GeV/c²)

₩₽/10

 10^{2}

10

Background

3

(from $\mu^*\mu^*$ and $\mu^-\mu^*$

2

 Q^2 >4 GeV²

Cross-section

Asymmetry

Italian participation

PAX Coordination board

		Spokespersons:								
		Technical Coordinator:								
		P. Le	enisa and F. Ratl	nmann						
		(until Tech	nical Coordinate	or is named)						
Target	Detector	Detector Slow Control DAQ Simulation and Accelerator								
+ BRP				Data Analysis		2				
Coordinator	Coordinator	Coordinator	Coordinator	Coordinator	Coordinator	Coordinator				
A. Nass	R. Schleichert	R. Schleichert H. Kleines S. Trusov M. Nekipelov B. Lorentz								
Deputy	Deputy	Deputy Deputy Deputy Deputy Deputy								
M. Capiluppi	M. Contalbrigo	J. Haidenbauer a								
Local Contact	Local Contact	Local Contact	Local Contact	Local Contact	Local Contact	Local Contact				
A. Nass	R. Schleichert	H. Kleines	P. Wüstner	M. Nekipelov	B. Lorentz	J. Haidenbauer				

Antiproton Beam Polarization (Hadronic Interaction: Longitudinal Case)

