PAX status report: Spin-filtering studies at COSY

http://www.fz-juelich.de/ikp/pax

Paolo Lenisa - Università di Ferrara and INFN - ITALY

Roma, CSN III, 30 maggio 2006

 Preparatory work: Commissioning of ANKE Polarized Internal Target
 Spin-studies at COSY

.Goal

- Request for new interaction point
- •Experimental setup
- Preparation of AD experiment

• Timeline

Jan. 04	Letter of Intent for FAIR
Jan. 05	Technical Proposal for FAIR
Nov. 05	LoI to CERN-SPSC to perform spin-filtering experiments with antiprotons at the AD ring
Apr. 06	LoI to COSY-PAC for spin filtering experiments with protons at COSY

Commissioning of ANKE PIT Propedeutical studies to spin-filtering experiments

Goal: installation of a storage cell with a polarized target in COSY Electron-cooling at injection with storage cell Stochastic cooling at 700 MeV Cooler stacking to increase particles in the ring

Storage Cell Setup (coll. Ferrara - FZJ)

Beam tube :

Storage cell and stochastically cooled beam

Target Thickness (from $pp \rightarrow d\pi$ +)

Method	Jet [atoms/cm ²]	Storage Cell [atoms/cm ²]
ABS flux (+ cell geometry)	(1.6±0.1)·10 ¹¹	(1.9±0.1)·10 ¹³
Rates (pp→dπ+)	(1.5±0.1)·10 ¹¹	(2.1±0.1)·10 ¹³

Cooler Stacking into the Storage Cell

28 stacks followed by

- 2s electron cooling
- after 58s acceleration to T_p =600 MeV

Cooler Stacking allows for higher polarized beam intensities with cell. 2.5.10¹⁰ protons have been injected in the ring

Next step: Installation of the Lamb-shift polarimeter October 2006

Ferrara is building an ion-deflector

Polarized antiprotons: present situation

Intense beam of polarized pbar never produced:

- Conventional methods (ABS) not appliable
- Polarized pbar from antilambda decay
 •I< 1.5·10⁵ s⁻¹ (P ≈ 0.35)
- Pbar scattering off liquid H₂ target
 •I< 2·10³ s⁻¹ (P ≈ 0.2)
- Stern-Gerlach separation of a stored beam (never tested)
 M. Conte and M. Pusterla asked for support

•15.05.2006 (Th. Walcher et al) polarized electron beam

Spin-filtering is the only succesfully tested technique

1992 Filter Test at TSR with protons

Two interpretations of FILTEX result

Observed polarization build-up: dP/dt = \pm (1.24 \pm 0.06) x 10⁻² h⁻¹ P(t)=tanh(t/T₁), 1/T₁= σ_1 Qd_tf

 $\sigma_1 = 72.5 \pm 5.8 \text{ mb}$

Spin-filtering works! But how?

1994. Meyer and Horowitz: three distinct effects

- 1. Selective removal through scattering beyond θ_{acc} =4.4 mrad ($\sigma_{R\perp}$ =83 mb)
- 2. Small angle scattering of target prot. into ring acceptance ($\sigma_{S\perp}$ =52 mb)
- 3. Spin-transfer from pol. el. of target atoms to stored prot. ($\sigma_{E\perp}$ =-70 mb)

 $\sigma_1 = \sigma_{R\perp} + \sigma_{S\perp} + \sigma_{E\perp} = 65 \text{ mb}$

2005. Milstein & Strakhovenko + Nikolaev & Pavlov: only one effect

1. Selective removal through scattering beyond Θ_{acc} =4.4 mrad ($\sigma_{R\perp}$ =85.6 mb) No contribution from other two effects (cancellation between scattering and transmission)

 $\sigma_1 = 85.6 \text{ mb}$

Spin-filtering: Present situation

Spin filtering works, but:

- controversial interpretations of TSR result
- no experimental basis for antiprotons

Experimental tests: - Protons (COSY) - Antiprotons (AD)

Spin-filtering studies at COSY

Goal: deeper understanding spin-filtering mechanism Disentangle between two interpretations of TSR result. •Electromagnetic + hadronic contributions •Only hadronic

Polarizing cross-section for the two models

A measurement of σ with 10 % precision is needed.

Polarization measurement with $\Delta P/P = 10\%$ requested.

How to disentangle had. and elm contributions?

- 1: Injection of different combination of hyperfine states
 - Different combinations of elm. and hadronic contributions:

Null experiment (elm. component = 0) possible in strong holding field

Inj. states	Pe	Pz	Interaction	Holding field	
1>	+1	+1	Elm. + had.	Transv. + Long.	Weak (20 G)
1>+ 4>	0	+1	Only had.	Long.	Strong. (3kG)
1>+ 2>	+1	0	Only elm		

Strong field can be applied only longitudinally (minimal beam interference)

- Snake necessary

Target polarimetry difficult for pure electron polarization.

At ANKE only weak transverse field possible.

Experiment at AD will require both transverse and longitudinal (weak)field.

How to disentangle had. and elm contributions?

2: Use of different energy dependence of the processes Measurement at different energies

Experimental setup

- · Low-beta section
- Polarized target (HERMES)
- Detector
- Snake
- Commissioning of AD setu-up

Low beta section

- $\beta_{x,y}^{new}=0.3$ -> increase a factor 30 in density respect ANKE •Lower buildup time, higher rates
- Higher polarization buildup-rate due to higher acceptance
 Use of HERMES target (in Jülich since March 2006)

S.C. quadrupole development applicable to AD experiment

Detector concept

•Reaction:

•p-p elastic (COSY)
•p-pbar elastic (AD)
•Good azimuthal resolution (up/down + left/right asymmetries)
•Low energy recoil (<8 MeV)
•Teflon cell requested

Teflon cell (IUCF - 2002)

Detector concept

•Reaction:

•p-p elastic (COSY)•p-pbar elastic (AD)

Good azimuthal resolution (up/down asymmetries)

- Low energy recoil (<8 MeV)
 - •Teflon cell
 - Silicon tracking telescope

The ANKE silicon tracking telescope

 3 silicon detector layers → 69 µm silicon → 300/500 µm silicon 128 x 151 segments 51 x 66 mm (≈400 µm pitch) \rightarrow >5 mm Si(Li) 96 x 96 strip 64 x 64 mm (≈666 μm Pitch) COSY beam

Detector concept

•Reaction:

•p-p elastic (COSY)•p-pbar elastic (AD)

Good azimuthal resolution (up/down asymmetries)

- Low energy recoil (<8 MeV)
 - •Teflon cell
 - Silicon tracking telescope
- •Angular resolution on the forward particle for p-pbar

•AD experiment will require an opening-cell

ANKE vs new interaction point

Cross sections

Lifetimes

Acceptance @ ANKE Acceptance @ new-IP

ANKE vs new interaction point

PIT	Filter. time	Polar.	Total rate	Meas. Time ($\Delta P/P=10\%$)
ANKE	$2\tau = 16 h$	1.2 %	7.5×10 ² s ⁻¹	44 min
	5τ = 42 h	3.5 %	5×10 s ⁻¹	26 min
New IP	2τ = 5 h	16 %	2.2×10 ⁴ s ⁻¹	1 s
	5τ = 13 h	42 %	1.5×10 ³ s ⁻¹	≺1s

Measurements at AD at CERN (2009-2010)

study of spin-filtering in pp scattering

Measurement of effective polarization cross-section. Both transverse and longitudinal.

Variable ring acceptance.

First measurement at all for spin correlations in pp (not pure text experiment!)

Low-beta section

To be designed and constructed (with AD in mind)

Polarized target

Already at FZJ (from HERMES)

Detector Use of ANKE STT development Additional forward detector needed for AD

Snake for longitudinal running

COSY beam-lifetime studies needed

Italian contribution

Groups: Ferrara Work already done: HERMES target at FZJ cell for ANKE ion-deflector for Lamb-shift polarimeter Bari (E. Nappi & N. Colonna) expressed interest Ex Roma Sanità (F. Garibaldi) expressed interest

Future involvment:

Design and construction of interaction point (coll. with FZJ) Opening mechanism Cell Silicon tracking telescope

Funding (besides INFN)

BMBF financed application by prof E. Steffens (U. Erlangen)

Application to FZJ innovation fund SC quads for low-beta section

Application to FP7 for spin-filtering studies

Timeline

Fall 2006	Submission of Technical Proposal for COSY
Spring 2007	Submission of Technical Proposal for AD
2006-08	Design and construction phase COSY
2008	Spin-filtering studies at COSY Commissioning of AD experiment
2009	Installation at AD
2009-2010	Spin-filtering studies at AD

1992 Filter Test at TSR with protons

Polarized atomic beam source

Hadronic Interaction in p-pbar: Longitudinal Case Beam Polarization

