Esercizio 2

PARTE 1

Misurando la differenza di potenziale in funzione del tempo si sono ottenuti i seguenti risultati:

t (ms)	V (Volt)		
0	10.0	\pm	0.1
1	7.2	\pm	0.1
2	5.1	\pm	0.1
4	2.6	\pm	0.1
8	0.69	\pm	0.01
10	0.36	\pm	0.01

con incertezze date dalla risoluzione di lettura dello strumento (errori massimi) per Ve trascurabili per t.

Assumendo una relazione del tipo $V(t) = V_0 \, e^{-t/c}$, stimare i parametri $V_0 \, e \, c$ usando le formule ottenute con il metodo del Maximum Likelihood.

Riportare i valori misurati (e le incertezze) in un grafico e sovrapporre la funzione V(t) calcolata usando i valori stimati dei parametri.

PARTE 2

Misurando le gradezze Xe Y si sono ottenuti i seguenti valori nelle corrispondenti unità di misura:

X		Y	
0	2.3006	±	0.0058
1	1.9781	±	0.0081
2	1.611	±	0.011
4	0.974	±	0.022
8	-0.3564	±	0.0083
10	-1.0380	±	0.016

con incertezze trascurabili su X e statistiche su Y.

Assumendo una relazione del tipo Y=mX+q, stimare i parametri m e q usando le formule usate per la parte 1.

Riportare i valori misurati (e le incertezze) in un grafico e sovrapporre la funzione Y(X) calcolata usando i valori stimati dei parametri