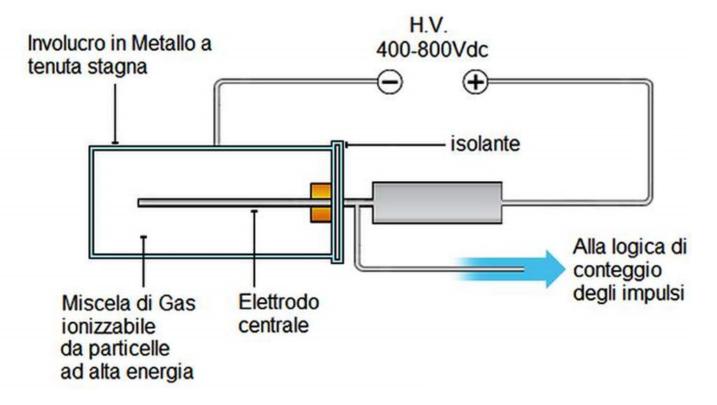


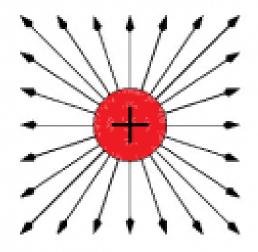
Tubo Geiger:

Funzionamento e acquisizione dati

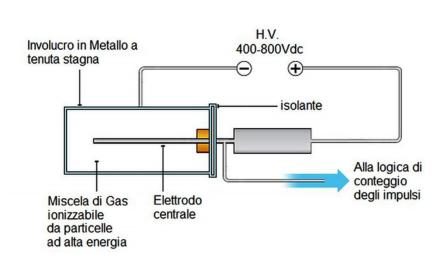

Il Contatore Geiger Muller è lo strumento più diffuso per rilevare la presenza di particelle e radiazioni ionizzanti, ovvero in grado di liberare elementi dotati di carica elettrica.

Queste particelle sono sempre presenti in natura, in quantità variabile da luogo a luogo.

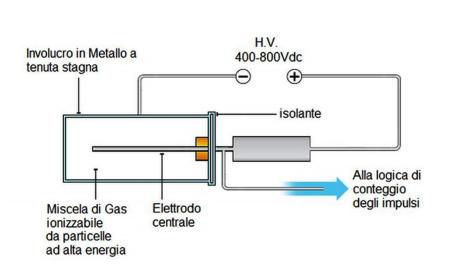
Per la sua semplicità e robustezza il contatore Geiger è stato, ed è ancora, in uso come misuratore di radio attività, misurata in proporzione al numero di particelle rivelate in un certo periodo di tempo.

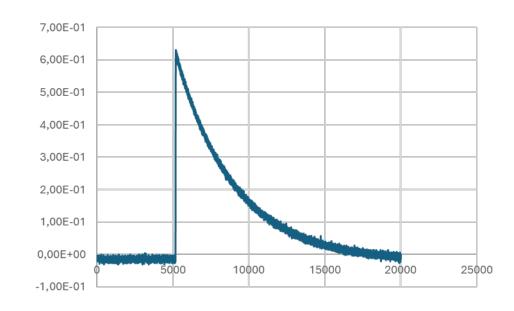


Il cuore del contatore è costituito da un tubo contenente un gas a bassa pressione, rivestito di materiale conduttivo e contenente un sottile tubo metallico. Tra il filo e il tubo si stabilisce una differenza di potenziale di alcune centinaia di volt (400 V nel nostro prototipo).




Le linee del campo elettrico, per la conformazione del sistema, si addensano attorno al filo sottile: un elettrone emesso per causa del passaggio di una particella precipita verso il filo, urtando altri atomi di gas e liberando altri elettroni. Il gas attorno al filo viene ionizzato e questa condizione permette un breve ma visibile passaggio di corrente, che viene rivelata dal tubo e dalle parti ad esso collegate.


In figura l'acquisizione del segnale come visibile sullo schermo di uno oscilloscopio....



... e in formato numerico per post analisi (R&S, RTB2004, max 2.5Gsa/s)

ESPERIENZA CON IL CONTATORE GEIGER: DISTANZA TEMPORALE TRA IMPULSI

COME SI MISURA IL TRASCORRERE DEL TEMPO?

La misura di passaggio di tempo «di ogni giorno» (minuti, ore) usa un cronometro. Il cronometro misura i secondi intercorsi tra un evento di inizio e uno di fine. Un buon cronometro ha quindi un ottimo generatore del secondo.

La misura di tempi più brevi avviene in maniera simile ma con intervallo elementare inferiore.

COME SI MISURA IL TRASCORRERE DEL TEMPO?

L'evento segnale geiger ha una frequenza media dell'ordine dei secondi; di conseguenza, abbiamo scelto una distanza minima temporale dell'ordine del millisecondo (ms), che chiameremo clock, generata a partire da un orologio molto preciso.

MISURA CON ARDUINO

La piattaforma Arduino (due) è perfetta per la realizzazione del misuratore di intertempi in quanto dispone:

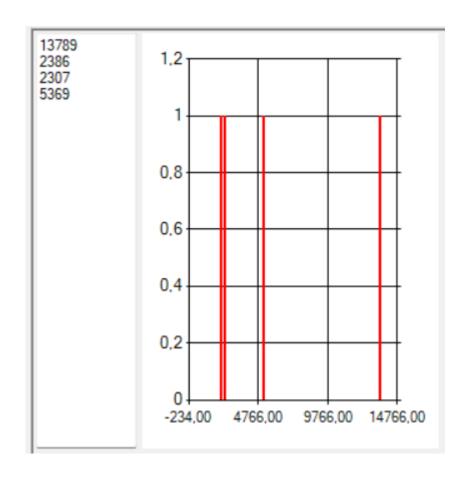
- Di una base dei tempi precisa (48 Mhz) che genera i millisecondi;
- Di una gestione veloce degli eventi (interrupt)

All'arrivo dell'impulso il microprocessore fa proprio quanto detto:

dummy= millis()-previousMillis; //STOP: leggi il tempo trascorso

previousMillis= millis(); // START: Riparti a contare da adesso

Il numero di millisecondi letto viene trasferito al PC tramite usb in formato 16 bit e rappresentato su un istogramma.

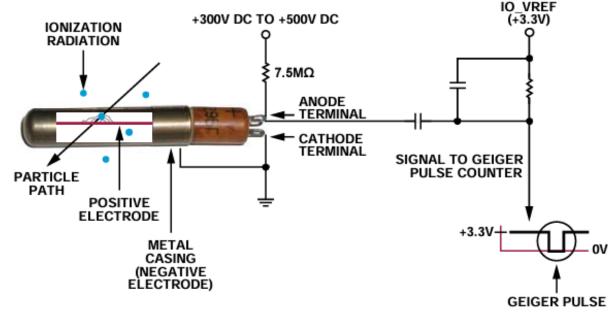

ISTOGRAMMA DEGLI INTERTEMPI

Il programma su PC si occupa di elaborare i dati prodotti dalla postazione.

Sono di particolare interesse gli «Istogrammi» che rappresentano in forma grafica la distribuzione degli intertempi.

Ogni colonna rossa risponde alla domanda: Quante volte il tempo è stato compreso tra 13.000 e 14.00? E tra 2300 e 2400?...

Dipartimento di Fisica

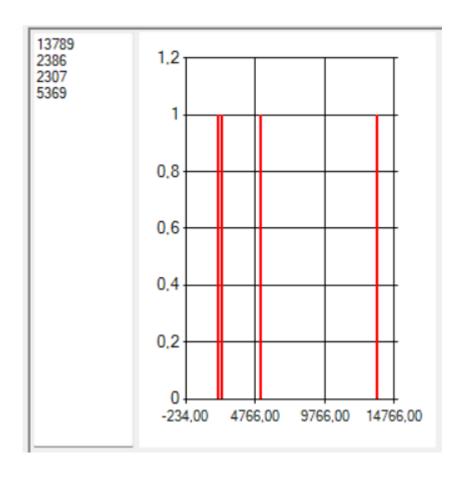


COME SI MISURA IL TEMPO TRA L'ARRIVO DI DUE PARTICELLE?

Ogni particella è segnalata da un impulso in uscita del tubo: lo chiameremo «evento di fisica».

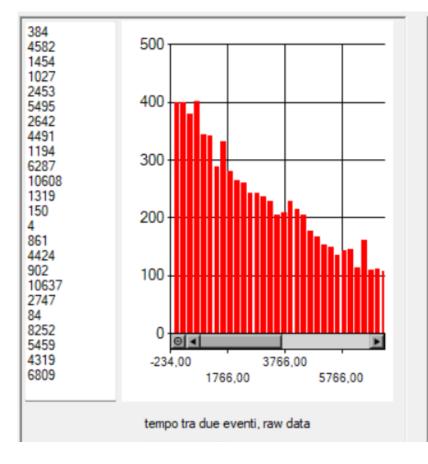
Supponiamo che il primo evento di fisica abbia messo in moto il cronometro.

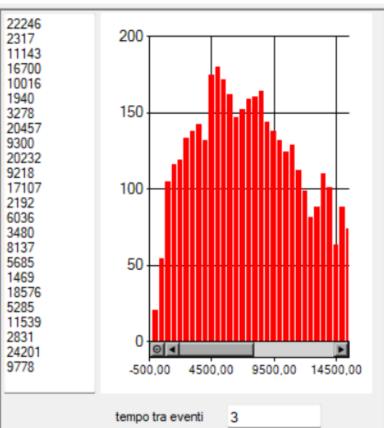
Il prossimo evento sarà STOP per il conteggio precedente e START per il conteggio successivo. Abbiamo realizzato questa semplice procedura con un microprocessore notissimo: il nostro amico Arduino (DUE).

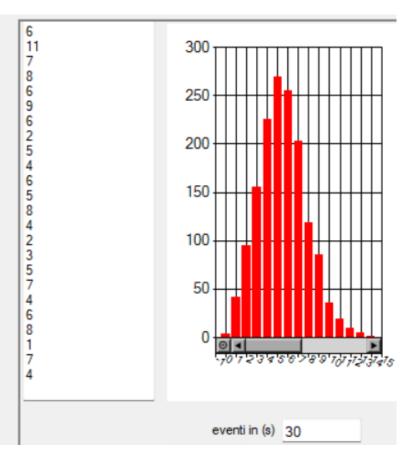

ISTOGRAMMA DEGLI INTERTEMPI

La forma del grafico che si ottiene dà una indicazione della statistica dell'evento che è tanto più accurata quanto minore l'intervallo e quanto numerosi sono i punti dell'intervallo stesso.

La scelta deve quindi tener conto di.. quanto tempo ho a disposizione per l'esperimento!


Se ho 1000 intervalli (bin) e voglio almeno 100 punti per intervallo di un evento che capita una volta ogni minuto, di quanto avrò bisogno di attendere ?


Dipartimento di Fisica



ISTOGRAMMA DEGLI INTERTEMPI: 12 ore

Analisi dei dati

Una volta che i dati sono a disposizione, possiamo effettuare una serie di analisi e verificare che seguono una distribuzione prevista. Ad esempio, nei grafici:

- dati originali: tempo tra due eventi

- Prima elaborazione : tempo tra n eventi

- Seconda elaborazione : eventi in una unità di tempo a scelta

I dati elaborati sono ottenibili per analisi con un metodo a scelta dei dati originali. Provateci!

SIAMO A DISPOSIZIONE SE VOLETE GIOCARE CON IL GEIGER!

Accordatevi con il docente se volete provare a realizzare qualche misura con Arduino!

Andrea e Maicol