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Abstract

We investigate the relations between spinors and null vectors in
Clifford algebra of any dimension with particular emphasis on the con-
ditions that a spinor must satisfy to be simple (also: pure). In partic-
ular we prove: i) a new property for null vectors: each of them bisects
spinor space into two subspaces of equal size; ii) that simple spinors
form one-dimensional subspaces of spinor space; iii) a necessary and
sufficient condition for a spinor to be simple that generalizes a theorem
of Cartan and Chevalley which becomes a corollary of this result. We
also show how to write down easily the most general spinor with a
given associated totally null plane.

1 Introduction

Exactly a century ago Élie Cartan [8, 9] introduced spinors that were later
thoroughly investigated by Claude Chevalley [11] in the mathematical frame
of Clifford algebra; in this work spinors were identified as elements of mini-
mal left ideals of the algebra. The interplay between spinors and null (also:
isotropic) vectors, pioneered by Cartan, and thus sometimes called the Car-
tan map, is central and have been visited many times since then, see e.g.
[7, 13] and references therein. This relation is pivotal to many fields of
physics, the Weyl equation being just one prominent application.

Among spinors, simple (also: pure) spinors play a principal role both
in this relation and in many fields in physics like string theory, gravity and
supergravity and also in geometry [1, 2, 12] and the characterization of
simple spinors is thus relevant for many applications.

Finding properties to identify simple spinors has proved to be an elu-
sive subject and the main available result is a theorem due to Cartan and
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Chevalley (see e.g. [16] proposition 5) stating that a spinor is simple iff a
certain number of constraints are satisfied. Unfortunately, the number of
constraints grows exponentially with the dimension of the vector space that
render its use impractical already in spaces of moderate dimension. Up to
now this has been the only available result to characterize simple spinors
and is about 60 years old indicating that the subject is mature, which is not
to say that everybody is familiar with it.

In this paper we address the relation between spinors and null vectors
and will present two different means of characterizing simple spinors. Simple
spinors are known to be in one to one correspondence with vector subspaces
of null vectors and of maximal dimension. We will exploit this property to
show that simple spinors correspond to one-dimensional subspaces of spinor
space and this will allow us to write down immediately the most general
simple spinor corresponding to a given, maximal, totally null subspace. Af-
terwards, we will prove a necessary and sufficient condition for a spinor to be
simple that includes previous results and in particular the quoted theorem
of Cartan and Chevalley that will appear as a particular case of this more
general result.

We will investigate relations between spinors and null vectors in C2m and
R2m with signature (m,m), a standard choice in these studies, exploiting the
Extended Fock Basis (EFB) of Clifford algebra [3, 4], recalled in section 2.
With this basis any element of the algebra can be expressed in terms of
simple spinors: from scalars to vectors and multivectors. Sections 3 and 4
are dedicated, respectively, to the vector space V and to the spinor space(s)
S of Clifford algebra. In this last section we show how one can concisely
represent the most general spinor corresponding to a given vector subspace
made entirely of null vectors.

Section 5 deals with simple spinors and conveys the main result: a nec-
essary and sufficient condition for a spinor to be simple.

For the convenience of the reader we tried to make this paper as elemen-
tary and self-contained as possible.

2 The extended Fock basis of Clifford algebra

We start summarizing the essential properties of the EFB introduced in [3]
and [4]. We consider Clifford algebras [11] over field F, with an even number
of generators γ1, γ2, . . . , γ2m, a vector space F2m := V and a scalar product
g: these are simple, central, algebras of dimension 22m. As usual

2g(γi, γj) = γiγj + γjγi := {γi, γj}

and we stick to F = R with signature V = Rm,m; g(γi, γj) = δij(−1)i+1 i.e.
{

γ22i−1 = 1
γ22i = −1

i = 1, . . . ,m (1)
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but results also hold for F = C. Given the Rm,m signature we indicate the
Clifford algebra with Cℓm,m(g).

A Clifford algebra is the direct sum of its graded parts: field F := F(0),
vectors V := F(1) and multivectors F(k), 1 < k ≤ 2m

Cℓm,m(g) = F
(0) ⊕ F

(1) ⊕ · · · ⊕ F
(2m) (2)

and is isomorphic to F(2m), the algebra of matrices of size 2m × 2m.

The Witt, or null, basis of the vector space V is defined:

{

pi = 1
2 (γ2i−1 + γ2i)

qi = 1
2 (γ2i−1 − γ2i)

⇒

{

γ2i−1 = pi + qi
γ2i = pi − qi

i = 1, 2, . . . ,m (3)

that, with γiγj = −γjγi, easily gives

{pi, pj} = {qi, qj} = 0 {pi, qj} = δij (4)

that imply p2i = q2i = 0, at the origin of the name “null” given to these
vectors.

Following Chevalley we define spinors as elements of a minimal left ideal
we will indicate with S1. Simple spinors are those elements of S that are
annihilated by a null subspace of V of maximal dimension.

The EFB of Cℓm,m(g) is given by the 22m different sequences

ψ1ψ2 · · ·ψm := Ψ ψi ∈ {qipi, piqi, pi, qi} i = 1, . . . ,m (5)

in which each ψi is either a vector or a bi–vector and we will reserve Ψ for
EFB elements. The main characteristics of EFB is that all its elements are
simple spinors [3, 4].

The EFB essentially extends to the entire algebra the Fock basis [7] of its

spinor spaces and, making explicit the construction Cℓm,m(g) ∼=
m
⊗Cℓ1,1(g),

allows one to prove in Cℓ1,1(g) many properties of Cℓm,m(g) 2.

1in an algebra A a subset S is a left ideal if for any a ∈ A,ϕ ∈ S =⇒ aϕ ∈ S; it is
minimal if it does not contain properly any other ideal. For example in matrix algebra
the subset of matrices with only one nonzero column form a minimal left ideal.

2A technical remark: whereas it is customary to see Clifford algebra as a direct sum
of its graded parts (2), these parts are no more evident in EFB where all elements are
multivectors with grade between m and 2m. Consequently whereas the notation γ2

2i−1 = 1
is imprecise but usually acceptable, in EFB (4) appears harder to digest since in EFB there
are no field elements.

In EFB 1 = {q1, p1} {q2, p2} · · · {qm, pm} that agrees with Tr (1) = 2m = Tr
(

γ2
2i−1

)

and in EFB Tr ({qi, pi}) = Tr ({q1, p1} {q2, p2} · · · {qm, pm}) = 2m. On the other hand
Tr (piqi) = 2m−1 and the trace of one of the 2m EFB elements forming the expansion of
{q1, p1} {q2, p2} · · · {qm, pm} has Tr (Ψ) = 1 and they represent primitive idempotents. All
in all we will accept to trade rigor for clarity and we will omit the identity symbol 1 where
it would be formally needed and also omit unnecessary terms and write {pi, qi} = 1.
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2.1 h− and g−signatures

We start observing that γ2i−1γ2i = qipi − piqi := [qi, pi] and that for i 6= j

[qi, pi]ψj = ψj [qi, pi]. With (4) and (5) it is easy to calculate

[qi, pi]ψi = hiψi hi =

{

+1 iff ψi = qipi or qi
−1 iff ψi = piqi or pi

(6)

and the value of hi depends on the first null vector appearing in ψi. We have
thus proved that [qi, pi] Ψ = hiΨ. In EFB the identity 1 and the volume
element Γ have similar expressions:

1 := {q1, p1} {q2, p2} · · · {qm, pm}

Γ := γ1γ2 · · · γ2m = [q1, p1] [q2, p2] · · · [qm, pm]

with which

ΓΨ = η Ψ η :=

m
∏

i=1

hi = ±1 . (7)

Each EFB element Ψ has thus an “h−signature” that is a vector (h1, h2, . . . , hm) ∈
{±1}m and the eigenvalue η is the chirality. Similarly, the “g−signature” of
an EFB element is the vector (g1, g2, . . . , gm) ∈ {±1}m where gi is the parity
of ψi under the main algebra automorphism γi → −γi. With this definition
and with (6) we can easily derive that

ψi [qi, pi] = gi [qi, pi]ψi = higiψi (8)

and thus

Ψ Γ = ηθ Ψ ηθ = ±1 θ :=

m
∏

i=1

gi (9)

where the eigenvalue ηθ is the product of chirality times θ, the global parity
of the EFB element Ψ under the main algebra automorphism. We can
resume saying that all EFB elements are not only Weyl eigenvectors, i.e.
right eigenvectors of Γ (7), but also its left eigenvectors (9) with respective
eigenvalues η and ηθ.

2.2 EFB formalism

h− and g−signatures play a crucial role in this description of Cℓm,m(g):
first of all one easily sees that any EFB element Ψ = ψ1ψ2 · · ·ψm is uniquely
identified by its h− and g−signatures: hi determines the first null vector (qi
or pi) appearing in ψi and gi determines if ψi is even or odd.

It can be shown [4] that Cℓm,m(g), as a vector space, is the direct sum
of its 2m subspaces of:

• different h−signatures or:
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• different g−signatures or:

• different h ◦ g−signatures (where h ◦ g is the Hadamard (entrywise)
product of h− and g−signatures vectors).

We can thus uniquely identify each of the 22m EFB elements with any
two of these three “indices”. Since different h ◦ g−signatures will identify
different spinor spaces, denoted Sh◦g, it is convenient to choose respectively
the h−signature and the h ◦ g−signature i.e.

Ψab

{

a ∈ {±1}m is the h− signature
b ∈ {±1}m is the h ◦ g − signature

so that the generic element of µ ∈ Cℓm,m(g) can be written as µ =
∑

ab ξabΨab

with ξab ∈ F. With this choice of the indices one can prove [4] that:

ΨabΨcd = s(a, b, d) δbcΨad s(a, b, d) = ±1 (10)

where δbc is 1 if and only if the two signatures b and c are equal and the
sign s(a, b, d), quite tedious to calculate, depends on the indices; in [4] it is
shown how it can be calculated with matrix isomorphism. With this result
one can calculate the generic Clifford product

µν =

(

∑

ab

ξabΨab

)(

∑

cd

ζcdΨcd

)

=
∑

abcd

ξabζcdΨabΨcd =

=
∑

ad

Ψad

∑

b

s(a, b, d)ξabζbd :=
∑

ad

ρadΨad

having defined ρad =
∑

b s(a, b, d)ξabζbd.
This property shows also that EFB elements map directly to the iso-

morphic matrix algebra F(2m) where a and b are respectively the row and
column indices of Ψab when interpreted as binary numbers substituting:
1 → 0 and −1 → 1. Let e := (1, 1, 1, . . . , 1) ∈ {±1}m then, with the pro-
posed substitutions, e gives the binary expression of 0 and −e that of 2m−1,
see [4].

3 Vector space V

With the Witt basis (3) it is easy to see that the null vectors {pi} can build
vector subspaces made only of null vectors that we call Totally Null Planes
(TNP, also: isotropic planes) of dimension at maximum m [9]. Moreover the
vector space V is easily seen to be the direct sum of two of these maximal
TNP P and Q respectively:

V = P ⊕Q

{

P := Span (p1, p2, . . . , pm)
Q := Span (q1, q2, . . . , qm)

5



since P ∩ Q = {0} each vector v ∈ V may be expressed in the form

v =
m
∑

i=1
(αipi + βiqi) with αi, βi ∈ F. Using (4) it is easy to derive the

anticommutator of two generic vectors v and u =
m
∑

i=1
(γipi + δiqi)

{v, u} =

m
∑

i=1

αiδi + βiγi ∈ F ⇒
1

2
{v, v} = v2 =

m
∑

i=1

αiβi . (11)

We define

V0 = {v ∈ V : v2 = 0} V1 = {v ∈ V : v2 6= 0}

clearly V = V0 ∪ V1 and V0 ∩ V1 = ∅ but neither V0 nor V1 are subspaces
of V which is simple to see. Nevertheless V0 contains subspaces of dimen-
sion m, e.g. Q, and, similarly, V1 contains subspaces of dimension m, e.g.
Span (γ1, . . . , γ2k−1, . . . , γ2m−1).

Proposition 1. Given any nonzero v ∈ V , there exists a nonzero spinor
ω ∈ S such that vω = 0 if and only if v ∈ V0. Conversely for any v ∈ V1
and any nonzero ω ∈ S it follows vω 6= 0.

Proof. For any nonzero vector v ∈ V0 we can take any ω ∈ S, then either
vω = 0 and ω is the spinor we search, or vω 6= 0, but then, since S is a left
ideal we have ω′ := vω ∈ S, it is not zero and vω′ = 0. In turn for any v
such that vω = 0 it follows v2ω = 0 but since v2 ∈ F and ω 6= 0 necessarily
v2 = 0. The second part is a direct consequence but we strengthen the
result showing that given any v ∈ V1 the existence of an hypothetical ω ∈ S

such that vω = 0 leads to a contradiction. Let’s suppose such ω exists, from
vω = 0 we get v2ω = 0 and, since v2 6= 0, this would imply ω = 0. ✷

3.1 Conjugation in V

When F = C complex conjugation in vector space V is given by

v =

m
∑

i=1

αipi + βiqi ⇒ v̄ =

m
∑

i=1

β̄ipi + ᾱiqi (12)

that with (11) gives v̄2 = v̄2. For F = R, since ᾱi = αi, the conjugation is
obtained by exchanging basis vectors pi and qi (or, identically, exchanging
coefficients αi and βi) and in both cases conjugation defines an involutive
automorphism on V since ¯̄v = v;

For F = R we can go further: by (11) v̄2 = v2 and this conjugation is an
isometry on V that lifts uniquely to an automorphism on the entire algebra
and since our algebra is central simple all its automorphisms are inner. So
there must exist C such that v̄ = CvC−1.
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To find its explicit form let ∆± = (p1 ± q1) · · · (pm ± qm) and with (3)
it is easy to see that ∆+ = γ1 · · · γ2k−1 · · · γ2m−1 whereas ∆− is the product

of the even, spacelike, γ’s. With (1) one easily finds ∆2
± = (−1)

m(m∓1)
2 and

defining

C =

{

∆+

∆−

C−1 =

{

(−1)
m(m−1)

2 ∆+ for m odd

(−1)
m(m+1)

2 ∆− for m even
(13)

we can prove that v̄ = CvC−1: it suffices to write v in the Witt basis and
make the simple exercise of proving that CpiC

−1 = qi. One easily verifies

¯̄v = CCvC−1C−1 = CC−1vCC−1 = v .

Returning to the case F = C, it is obvious that also in this case C can
be defined and CpiC

−1 = qi so that, indicating with v⋆ the vector v with
complex conjugate field coefficients, we can write (12) as

v̄ = Cv⋆C−1

that holds also for F = R since in this case v⋆ = v and thus from now on we
will stick to this form for (complex) conjugation. It is an easy exercise to
verify that this form generalizes to any element of the algebra ω giving

ω̄ = Cω⋆C−1

and that, for both F = C and R,

v2 = 0 ⇐⇒ v̄2 = 0 .

Proposition 2. Given nonzero vector v and ω ∈ S such that vω = 0 it
follows v̄ω 6= 0, conversely v̄ω = 0 implies vω 6= 0.

Proof. We start showing that for any nonzero vector v and for both F = R

and C one has (v + v̄)2 > 0. With (12) one easily finds that v + v̄ =
∑m

i=1 γipi+γ̄iqi and with (11) (v+v̄)2 =
∑m

i=1 γiγ̄i > 0 3. With proposition 1
it follows that for any vector v: (v + v̄)ω 6= 0 that, if one of the terms is
zero, implies that the other must be nonzero. ✷

We remark that this result is just an implication holding only when one
of the two terms vω or v̄ω is zero since there are cases in which both terms
can be nonzero, e.g. v = p1, ω = q1q2 · · · qm + p1q1q2 · · · qm.

3note that also (v − v̄)2 < 0
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4 Spinor spaces

We have seen in section 2.2 that Cℓm,m(g), as a vector space, is the direct
sum of subspaces of different h ◦ g−signatures. Given the Clifford product
properties (10) these subspaces are also minimal left ideals of Cℓm,m(g) and
thus coincide with 2m different spinor spaces Sh◦g (that in turn correspond
to different columns of the isomorphic matrix algebra F(2m)). We choose
the spinor space with h ◦ g = −e so that when we speak of a generic S we
refer to the particular spinor space S−e used to build the Fock basis [7]. Its
generic element is described by: ω =

∑

a ξabΨab and, since the second index
of the h◦g−signature is constant, whenever possible we will omit it, writing
for the spinor expansion in the Fock basis

ω ∈ S ω =
∑

a

ξaΨa . (14)

Here we are interested mainly in the relations between spinors and TNP
and we try to investigate them independently of the particular basis.

For each nonzero spinor ω ∈ S we define its associated TNP as:

M(ω) := {v ∈ V : vω = 0}

and the spinor is simple iff the TNP is of maximal dimension, i.e. iff dimFM(ω) =
m. It is easy to see that all vectors in M(ω) are mutually orthogonal and
that M(ω) is a vector subspace of V contained in V0.

Since all EFB elements are simple spinors each of them has an associated
TNP of maximal dimension uniquely identified by the h−signature a of Ψa;
for example if a = (−1, 1, 1, . . . , 1) then Ψa := Ψ(−1,1,1,...,1) = p1q1q2q3 · · · qm
and M(Ψa) = Span (p1, q2, q3, . . . , qm).

Proposition 3. For any nonzero vector v and ω ∈ S such that vω = 0 it
follows vω̄ 6= 0, conversely vω̄ = 0 implies vω 6= 0.

Proof. By proposition 2 we know that vω = 0 implies v̄ω 6= 0 and thus

0 6= ¯̄ωv = ¯̄v ω̄ = vω̄ .

Similarly from vω̄ = 0 by propositions 2 one obtains v̄ ω̄ 6= 0 and thus
vω 6= 0. ✷

Corollary 4. For any nonzero v ∈ V0, given nonzero ω ∈ S such that
vω = 0 it follows vCω⋆ 6= 0, conversely vCω⋆ = 0 implies vω 6= 0.

Proof. By proposition 2 we know that vω = 0 implies v̄ω = C−1v⋆Cω 6= 0
and since S is a minimal left ideal it follows v̄ω ∈ S. Then since C is made of
vectors with length ±1 and with proposition 1, we get 0 6= Cv̄ω = v⋆Cω and
also the “starred” form of this relation is nonzero thus 0 6= (v⋆Cω)⋆ = vCω⋆.
The other case is similar. ✷
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4.1 The “generic” spinor Φ

Given the spinor expansion (14) we call Φ the “generic” spinor of S

Φ :=
∑

a

ξaΨa (15)

with the understanding that the field coefficients ξa are taken as “indeter-
minates” i.e. that they are free to take any value; varying the coefficients Φ
spans the entire S so when writing Φ we will substantially refer to S. Φ will
be said to be in general position when all field coefficients ξa are nonzero
[16].

This variability of the coefficients is a critical point: as a rule of thumb
one can say that varying the values of the field coefficients does not alter
the properties of a spinor as long as they remain different from zero. We
explain this with two examples: let ω := vΦ 6= 0 where v ∈ V0; obviously
vω = v2Φ = 0 and this happens for any choice of the coefficients ξa in Φ
showing that, at least as far as these properties of the spinor are concerned,
the particular values of the coefficients are irrelevant. To show that 0 is
a critical value we consider another example in Cℓ2,2(g): let us take ω =
ξ1p1q1q2 + ξ3p1q1p2q2; it is simple to see that v = αp1 for any α ∈ F are
the only vectors such that vω = 0 and this is true for any value of the
coefficients ξ1, ξ3. But if ξ1 = 0 then another null vector annihilates ω since
p1ω = p2ω = 0, similarly if ξ3 = 0 then p1ω = q2ω = 0. These examples
show that we are moving along a treacherous path and that one must proceed
with some care. For a spinor in general position with m 6= 2, vΦ = 0 only
iff v = 0 [16, 5] so we can assume

M(Φ) = {0} and dimFM(Φ) = 0

and this enriches the correspondences between V0 and S: any null vector v
identifies the annihilating spinors (see an explicit construction in the proof
of proposition 1). Conversely, almost any spinor annihilates one or more
null vectors, an exception is Φ but it is not the only one.

Proposition 5. Any nonzero v ∈ V0 partitions the spinor space S into two
subsets: Sv = {ω ∈ S : vω = 0} and S̄v = {ω ∈ S : vω 6= 0} so that for any
v, Sv ∩ S̄v = ∅ and Sv ∪ S̄v = S. Moreover let Sv̄ = {ω ∈ S : v̄ω = 0}, the
following hold:

• Sv and Sv̄ are subspaces of S and Sv ∩ Sv̄ = {0},

• Sv̄ ⊂ S̄v,

• dimF Sv = dimF Sv̄ = 2m−1,

• S = Sv ⊕ Sv̄ .

9



Proof. We start showing that Sv and S̄v are both non empty: given any
nonzero v ∈ V0 and ω ∈ S, vω is either zero or not. If vω = 0 then
ω ∈ Sv and, by corollary 4, ω′ := Cω⋆ ∈ S̄v; if vω 6= 0 then ω ∈ S̄v and
ω′ := vω ∈ Sv. It is also obvious that the Sv and S̄v partition S since any
ω ∈ S it is either in Sv or in S̄v.

For any ω ∈ Sv̄ we get by proposition 2 vω 6= 0 and thus Sv̄ ⊂ S̄v
moreover the inclusion is strict since there exists spinors such that both
vω 6= 0 and v̄ω 6= 0 as shown in the example after proposition 2. It is also
simple to see that both Sv and Sv̄ are vector subspaces of S and that, by
proposition 2, Sv ∩ Sv̄ = {0}.

To prove the statement about dimension we start proving that for any
ω in one subspace there exists a “twin” spinor ω′, linearly independent
from ω, belonging to the other subspace. Let’s suppose first ω ∈ Sv then,
by proposition 2, ω′ := v̄ω 6= 0 and since v̄ω′ = v̄2ω = 0 then ω′ ∈ Sv̄.
Moreover ω′ is linearly independent from ω since the hypothesis ω = αω′

is in contradiction with vω = 0, vω′ 6= 0. If the initial spinor ω is in Sv̄
then ω′ := vω 6= 0 and vω′ = v2ω = 0 and thus ω′ ∈ Sv and is linearly
independent from ω. Every spinor lying in one subspace has thus a linearly
independent twin in the other subspace that implies dimF Sv = dimF Sv̄.

We prove now that Sv ⊕ Sv̄ = S and thus dimF Sv = dimF Sv̄ = 2m−1.
To do this we perform a proper rotation in vector space V such that the null
vectors v and v̄ are transformed, respectively, to q1 and p1 of the new Witt
basis of V . Building the associated EFB of S we get that in the expansion
(15) any spinor ω can have only components with h1 = ±1 that correspond
to spinors of Sv or of Sv̄ and thus Sv ⊕ Sv̄ = S. ✷

We remark that while Sv is a vector subspace of S, S̄v is not a subspace:
consider again an example in Cℓ2,2(g): v = p1 + q2 and Ψ0 = q1q2, Ψ3 =
p1q1p2q2. Clearly v

2 = 0 and vΨ0 = vΨ3 = p1q1q2 but v(Ψ0 −Ψ3) = 0.

We now introduce the notation vΦ where v is a nonzero vector of V0
and Φ is the generic spinor (15). Consider for example v = qi, when we
calculate vΦ all the terms of the expansion (15) in which hi = 1 (i.e. those
Ψa = · · · qi · · · ) are immediately set to 0 independently of the values of the
coefficients ξa. So with qiΦ we indicate the generic spinor with hi = 1, i.e.
a spinor with only half of the elements of the Fock basis. So in general with
vΦ we mean the generic spinor whose components have “survived” to the
multiplication by v. In the following proposition we show that this property
of halving the spinor space spanned by Φ does not depend on the particular
choice v = qi but is general.

Proposition 6. Given k ≤ m nonzero v1, v2, . . . , vk ∈ V0 forming a TNP
of dimension k, any spinor that annihilates v1, v2, . . . , vk can be written
v1v2 · · · vkΦ, i.e. one can write Sv1,v2,...,vk = v1v2 · · · vkΦ and dimF Sv1,v2,...,vk =
2m−k.
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Proof. The proof is by induction on k so we first prove the case with k = 1:
we start showing that for any ω ∈ Sv there exists ω

′′

∈ Sv̄ such that ω = vω
′′

.
In previous proof we saw that ω′ := v̄ω 6= 0 is such that vω′ 6= 0 and

vω′ = vv̄ω = {v, v̄}ω = αω

where α = {v, v̄} ∈ F−{0} by hypothesis. So defining ω
′′

= α−1ω′ = α−1v̄ω

we get vω
′′

= ω and clearly ω
′′

∈ Sv̄ ⊂ S. If we set the coefficients ξa of (15)
to get Φ = ω

′′

we will obtain vΦ = ω. Since this procedure works for any
ω ∈ Sv we have thus proved that vΦ can reach any ω ∈ Sv and thus that
Sv ⊆ vΦ. On the other hand for any ω ∈ vΦ one has vω = v2Φ = 0 and
thus Sv = vΦ.

This means that the most general spinor that annihilates v ∈ V0 can
always be written, for an appropriate choice of the coefficients ξa, as vΦ.
With proposition 5 follows immediately: dimF vΦ = dimF Sv = 2m−1 that
generalizes the result, mentioned before, that qiΦ, spans a 2m−1-dimensional
space.

For the induction step we suppose that any spinor annihilating v1, v2, . . . , vk−1

may be written, with an appropriate choice of the coefficients ξa in (15), as
v1v2 · · · vk−1Φ and thus Sv1,v2,...,vk−1

= v1v2 · · · vk−1Φ and dimF Sv1,v2,...,vk−1
=

2m−k+1.
Let us suppose that we add a new k-th vector and that our k vectors

v1, v2, . . . , vk form a basis of the TNP obeying the standard relations (4):

{vi, vj} = {v̄i, v̄j} = 0 {vi, v̄j} = δij 1 ≤ i, j ≤ k

that can always be obtained by a proper rotation in Span (v1, v2, . . . , vk)
since the vectors are linearly independent by hypothesis (we will show in
the next proposition that this hypothesis is not a limitation).

Let’s now take any ω ∈ Sv1,v2,...,vk , clearly vkω = 0 but, by proposition 2,
ω′ := v̄kω 6= 0, from which v̄kω

′ = 0 from which vkω
′ 6= 0. But, since

{vi, v̄k} = 0 for i = 1, . . . , k − 1 it follows that viω
′ = viv̄kω = −v̄kviω = 0

for i = 1, . . . , k − 1 and thus ω′ ∈ Sv1,v2,...,vk−1
and thus, by induction

hypothesis, for appropriate coefficients ξa, we have ω′ = v1v2 · · · vk−1Φ.
We know vkω

′ 6= 0 and that {vk, v̄k} = 1 thus

vkω
′ = vkv̄kω = {vk, v̄k}ω = ω

and since ω′ is already written in the form v1v2 · · · vk−1Φ we derive that
also any ω ∈ Sv1,v2,...,vk may be written as ω = vkω

′ = vkv1v2 · · · vk−1Φ =
(−1)k−1v1v2 · · · vk−1vkΦ since {vi, vk} = 0 for any 1 ≤ i ≤ k − 1. Thus
Sv1,v2,...,vk ⊆ v1v2 · · · vkΦ and since any ω ∈ v1v2 · · · vkΦ is necessarily also
in Sv1,v2,...,vk it follows Sv1,v2,...,vk = v1v2 · · · vkΦ.

To prove the statement about dimension one can use the previous argu-
ment of the twin spinors to show that in Sv1,v2,...,vk−1

there are two subspaces
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of spinors of equal dimension: one annihilates vk and the other annihilates v̄k
and since their sum has dimension 2m−k+1 it follows that the first subspace,
i.e. Sv1,v2,...,vk , has dimension 2m−k. ✷

An immediate consequence of this result is that any simple spinor ω ∈ S

may be written as ω = v1v2 · · · vmΦ where Span (v1, v2, . . . , vm) = M(ω),
Sv1,v2,...,vm = v1v2 · · · vmΦ and dimF Sv1,v2,...,vm = 1, i.e. all simple spinors
form one-dimensional subspaces of S. it is simple to see that the converse
is not true in general; moreover in [4] it is shown that in any basis a simple
spinor can have at most m nonzero coordinates in (15).

We show now that the choice of the null vectors v1, v2, . . . , vk used to
define ω := v1v2 · · · vkΦ is completely free provided they define the very
same M(ω).

Proposition 7. The generic spinor ω := v1v2 · · · vkΦ withM(ω) = Span (v1, v2, . . . , vk),
changes only by a multiplicative constant if the defining vectors are changed
to v′1, v

′
2, . . . , v

′

k spanning the same M(ω). The multiplicative constant is the
determinant of the matrix A transforming vi to v

′
i.

Proof. Given a proper linear transformation A changing vi to v
′
i it is easy

to see that

ω′ := v′1v
′

2 · · · v
′

kΦ =

(

k
∑

i=1

a1ivi

)(

k
∑

i=1

a2ivi

)

· · ·

(

k
∑

i=1

akivi

)

Φ

and expanding the product of sums it is clear that all the terms involving
powers greater than 1 of any vi are zero since all the vectors vi are null.
It follows that of the initial kk terms in ω′ only the k! terms of the form
vπ1vπ2 · · · vπk

, where (π1, π2, . . . , πk) is a permutation of (1, 2, . . . , k) survive.
Given that vivj = −vjvi for any i 6= j it follows that all the terms can be
brought to the form ±v1v2 · · · vk. We conclude showing that actually

ω′ = v′1v
′

2 · · · v
′

kΦ = detAv1v2 · · · vkΦ = detAω .

We proceed by induction: for k = 2 we have

ω′ = v′1v
′

2Φ = (a11v1+a12v2)(a21v1+a22v2)Φ = (a11a22−a12a21)v1v2Φ = detAω

the induction step follows easily from simple determinant properties. ✷

With these last two propositions we can generalize the concept of generic
spinor (15) from Φ, the generic spinor withM(Φ) = {0}, to ω := v1v2 · · · vkΦ
that is the generic spinor having M(ω) = Span (v1, v2, . . . , vk); moreover the
choice of the null vectors v1, v2, . . . , vk used to define ω := v1v2 · · · vkΦ is
completely free.
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4.2 The inner product 〈B·, ·〉 of spinor spaces

We now use these results to give different proofs of some known results and
to prove some new ones but we start with a concise summary.

The transposed generators (endomorphisms) γti admit a representation
of Cℓm,m(g) in S∗, the dual of S. Since Cℓm,m(g) is simple, there is an
isomorphism B : S → S∗ interwining the representations (see [7] and [10])

γtiB = Bγi and Bt = (−1)
m(m−1)

2 B . (16)

The isomorphism B defines also an inner product (〈·, ·〉 represents the bilin-
ear product)

S × S → F B(ω,ϕ) := 〈Bω,ϕ〉 ∈ F

which is invariant with respect to the action of the group Pin (g) made of
unit vectors i.e. vectors v such that v2 = 1, namely:

B(vω, vϕ) = 〈Bvω, vϕ〉 = 〈vtBω, vϕ〉 = 〈Bω, v2ϕ〉 = B(ω,ϕ) .

We now generalize proposition III.2.4 of [11] relaxing partially the de-
manding condition of spinors being simple, while, at the same time, giving
a simpler proof:

Proposition 8. For any nonzero spinors ω,ϕ ∈ S with dimFM(ω) > 0 and
dimFM(ϕ) > 0 then M(ω) ∩M(ϕ) 6= {0} implies B(ω,ϕ) = 0.

Viceversa given nonzero spinors ω,ϕ ∈ S with dimFM(ω) = m and
dimFM(ϕ) > m− 3 then B(ω,ϕ) = 0 implies M(ω) ∩M(ϕ) 6= {0}.

Proof. Let’s suppose first that v ∈ M(ω) ∩M(ϕ), then vω = vϕ = 0. Let’s
“normalize” v such that {v, v̄} = 1, then,

〈Bω,ϕ〉 = 〈Bω, {v, v̄}ϕ〉 = 〈Bω, vv̄ϕ〉 = 〈vtBω, v̄ϕ〉 = 〈Bvω, v̄ϕ〉 = 0 .

To prove the second part let’s supposeB(ω,ϕ) = 0 andM(ω) = Span (v1, v2, . . . , vm),
M(ϕ) = Span (u1, u2, . . . , ul) with l > m − 3. We start observing that as-
suming in full generality that ω = Ψe and for any ϕ ∈ S expanded with (14)
we have

0 = B(ω,ϕ) =
∑

a

ξaB(Ψe,Ψa) = ξ−eB(Ψe,Ψ−e) (17)

where the last equality derives from the forward part of this proposition,
so that we can conclude that necessarily ξ−e = 0. This is enough to prove
the thesis when the 2 spinors are simple and l = m since taking e.g. ϕ =
Ψa (that is always possible, see proposition 2 of [7]) any Ψa 6= Ψ−e has
M(Ψe)∩M(Ψa) 6= {0}. Let’s suppose now l = m−1 and with proposition 6
we may write

ϕ = u1u2 · · · um−1Φ = u1u2 · · · um−1(ξ1um + ξ2ūmum)
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where the last equality can be easily explained assuming that Span (u1, u2, . . . , um)
form a MTNP and that the very same vectors form a Fock basis of S. Since

0 = B(ω,ϕ) = B (v1v2 · · · vmΦ, u1u2 · · · um−1(ξ1um + ξ2ūmum))

if Span (v1, v2, . . . , vm)∩Span (u1, u2, . . . , um−1) 6= {0} the proposition is sat-
isfied. It remains the case Span (v1, v2, . . . , vm) ∩ Span (u1, u2, . . . , um−1) =
{0} that implies Span (u1, u2, . . . , um−1) ⊂ Span (v̄1, v̄2, . . . , v̄m).

Supposing e.g. that also um ∈ Span (v̄1, v̄2, . . . , v̄m), by (17) it follows
that in this case B(ω,ϕ) = 0 requires ξ1 = 0 that, in turn, since ϕ 6= 0,
implies ξ2 6= 0. So in this case the hypothesis B(ω,ϕ) = 0 implies that ϕ =
ξ2u1u2 · · · um−1ūmum and thus ūm ∈M(ω) ∩M(ϕ) proving the proposition
for l = m− 1.

The proof of the case l = m− 2 is very similar, we start by writing

ϕ = u1u2 · · · um−2Φ =

= u1u2 · · · um−2(ξ1um−1um + ξ2um−1ūmum + ξ3ūm−1um−1um + ξ4ūm−1um−1ūmum)

and as before B(ω,ϕ) = 0 implies e.g. ξ1 = 0 and it’s an easy exercise to
show that for any choice of ξ2, ξ3, ξ4 then v′ = ξ3ūm−1 − ξ2ūm is null and
belongs to M(ω) ∩M(ϕ). ✷

We remark that the proposition is strict in the sense that is easy to find
counterexamples with dimFM(ω) = m, dimFM(ϕ) = m−3 or dimFM(ω) =
dimFM(ϕ) = m− 1, and B(ω,ϕ) = 0 with M(ω) ∩M(ϕ) = {0}.

5 Simple spinors

We start remembering that the endomorphisms of S, EndFS, provide the
representations of Cℓm,m(g) and with the canonical isomorphism EndFS ∼=
S ⊗ S∗ any µ ∈ Cℓm,m(g) can be written as µ ∼= ω ⊗ ϕ∗ for ω,ϕ ∈ S and its
action on any spinor φ ∈ S is given by

µ(φ) = ω ⊗ ϕ∗(φ) := 〈ϕ∗, φ〉ω = 〈Bϕ, φ〉ω

and since any µ ∈ Cℓm,m(g) can also be expressed in a standard multivector
expansion

µ ∼= ω ⊗ ϕ∗ =
2m
∑

k=0

∑

k

ξkγi1γi2 · · · γik (18)

where the sum over multiindex k = (i1, i2, . . . , ik) indicates the sum over k

non decreasing indices 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ 2m and contains

(

2m
k

)

terms. One easily shows [7] that the field coefficient is given by

ξk =
1

2m
〈Bϕ, γik · · · γi2γi1ω〉
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where γi = (−1)i+1γi so that 1
2

{

γi, γj
}

= δij. Any µ ∈ Cℓm,m(g) can also
be expanded in the EFB, but we leave this for future research.

The multivector expansion (18) remains obviously valid whichever the
basis of V , e.g. replacing the γi with the Witt basis (3). To ease this pas-
sage we begin writing γi1γi2 · · · γik in the Witt basis. Clearly it is enough
to replace each γ using (3) but it is worth noting that each γ appears in
γi1γi2 · · · γik either “single”, e.g. like γ1 in γ1γ4 · · · , or “married” i.e. in cou-
ples like γ2i−1γ2i. With (3) it is easily seen that each “single” γi can be
written as pi± qi the sign depending on i parity, whereas for each “married”
couple we saw already that γ2i−1γ2i = [qi, pi] so that, at the end

γi1γi2 · · · γik = (pi1 ± qi1) · · · (pil ± qil) [qj1, pj1 ] · · · [qjr , pjr ] (19)

where we shifted all the commutators to the right since they commute with
all other elements and where l is the number of the singles and r that of the
couples and l+2r = k4. Clearly in this form γi1γi2 · · · γik expands in a sum
of exactly 2l+r terms, all of the same grade k.

We start proving a technical proposition that allows to calculate the field
coefficients ξk of (18) transformed in the Witt basis with (19).

Proposition 9. Let xi represent qi or pi and yj represent qjpj or pjqj: the
field coefficient of the term xi1 · · · xilyj1 · · · yjr of (18) expressed in the Witt
basis is given by:

±2l+r−m〈Bϕ, x̄il · · · x̄i1yjr · · · yj1ω〉

where x̄i = CxiC
−1 (13) i.e. qi = CpiC

−1 and viceversa.

Proof. With (19) plugged in the multivector expansion (18) one obtains

ω ⊗ ϕ∗ =

2m
∑

k=0

∑

k

ξk(pi1 ± qi1) · · · (pih ± qih) [qj1 , pj1 ] · · · [qjs , pjs ]

and left multiplying both sides by x̄il · · · x̄i1yjr · · · yj1 and taking the trace
we have, for the left part of the equality,

Tr (x̄il · · · x̄i1yjr · · · yj1ω ⊗ ϕ∗) = 〈Bϕ, x̄il · · · x̄i1yjr · · · yj1ω〉 .

Before calculating the result for the right part we remark that the term
x̄il · · · x̄i1yjr · · · yj1 by which we left multiplied can come only from one of

4We remark that each of the 2l terms of the expansion of the single γ’s can come from
2l different γ multivectors since single γi have either an even or an odd index e.g. p1p2 can
come from γ1γ3, γ1γ4, γ2γ3 or γ2γ4. On the other hand, the commutators [qj , pj ] originate
from just one γ multivector, i.e. each multivector determines uniquely all the married
couples. It is simple to see that k (mod 2) ≤ l ≤ min(k, 2m − k) and max(0, k − m) ≤
r ≤ ⌊ k

2
⌋.
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the 2l+r terms of the expansion (19) in which the γ multivector had grade
l + 2r. Multiplying the right side of (18) by any γ multivector of grade t
and taking the trace, by the properties of the trace of γ multivectors, one
selects, in the sum over k only the term with k = t since all other terms
have zero trace. By (19) this holds also in our case and we can deduce that
for our expansion of ω⊗ϕ∗ the first sum over k disappears since terms with
nonzero trace have necessarily l + 2r = h+ 2s = k and we obtain

∑

k

ξkTr (x̄il · · · x̄i1yjr · · · yj1(pi1 ± qi1) · · · (pih ± qih) [qj1 , pj1 ] · · · [qjs , pjs ])

and in calculating the product we remark that x̄i(pi ± qi) = ±x̄ixi and
yj [qj, pj] = ±yj. Moreover any trace containing in the product any isolated
pi, qi or [qj, pj ] is null. Thus the trace is not null if and only if l = h

and r = s and each x̄i has its corresponding (pi ± qi) and each yj has its
corresponding [qj, pj ]. In summary we obtain

Tr (x̄il · · · x̄i1yjr · · · yj1(pi1 ± qi1) · · · (pil ± qil) [qj1 , pj1 ] · · · [qjr , pjr ]) =

= ±Tr (x̄ilxil · · · x̄i1xi1yjr · · · yj1) = ±2m−l−r

and thus the thesis. ✷

With this result it is easy to give a simple proof to the following theorem
due to Cartan [9] and Chevalley [11] but we omit it in view of the fact that
next theorem has a similar proof and that derives this one as a corollary.

Theorem 1. A nonzero spinor ω ∈ S is simple withM(ω) = Span (q1, q2, . . . , qm)
if and only if it is a Weyl eigenvector (7) and the multivector expansion
(18) of ω ⊗ ω∗ contains only the term q1q2 · · · qm i.e.

ω ⊗ ω∗ = ξq1q2 · · · qm .

Up to now this has been the main theorem used to define a generic sim-
ple spinor and its application brings to the so called constraint relations
explained in section 6. We now generalize this theorem relaxing the con-
dition on ω ⊗ ω∗ to a much milder one for ω ⊗ ϕ∗ for any ϕ ∈ S that
constitutes the main result of this work.

Theorem 2. A nonzero spinor ω ∈ S is simple withM(ω) = Span (q1, q2, . . . , qm)
if and only if for any ϕ ∈ S

ω ⊗ ϕ∗ =
2m
∑

k=km

∑

k

ξkzi1zi2 · · · zik zi = qi, qipi

where km := dimFM(ω) ∩ M(ϕ). Moreover it is sufficient to prove the
relation for just one of the values km ≤ k ≤ m to deduce that ω is simple.
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Proof. First of all we remark that there is no loss of generality in assum-
ing M(ω) = Span (q1, q2, . . . , qm) since, by proposition 7, we know that
q1q2 · · · qm ∝ v1v2 · · · vm if vi span the same TNP and so it is easy to adapt
the theorem to any maximal TNP in any basis.

We start proving a weaker version with km ≡ 0 for any ϕ ∈ S. Let’s
suppose first that ω is simple with M(ω) = Span (q1, q2, . . . , qm), for the
field coefficients 〈B·, ·〉 of the multivector expansion (18) of ω⊗ϕ∗ we have,
with γi = (−1)i+1γi and with (19),

〈Bϕ, γik · · · γi2γi1ω〉 = ±〈Bϕ, (pil ± qil) · · · (pi1 ± qi1) [qjr , pjr ] · · · [qj1 , pj1 ]ω〉

and given the hypothesis on ω one easily sees that [qj, pj]ω = qjpjω and
(pi ± qi)ω = piω and so in the expansion of γik · · · γi2γi1 in the Witt basis
only one term out of the 2l+r survives, namely:

〈Bϕ, γik · · · γi2γi1ω〉 = ±〈Bϕ, pil · · · pi1 qjrpjr · · · qj1pj1ω〉

and with proposition 9 we get the forward part of the theorem.
To prove the converse we remark that by proposition 9 terms of the

form zi1zi2 · · · zik have field coefficients 〈Bϕ, pil · · · pi1 qjrpjr · · · qj1pj1ω〉 6= 0
while, by hypothesis, any term containing pi in the multivector expansion
is zero, that implies that, for any ϕ ∈ S, 〈Bϕ, qiω〉 = 0. Since the inner
product is not degenerate, 〈Bϕ, qiω〉 = 0 for any ϕ ∈ S implies qiω = 0 i.e.
qi ∈ M(ω) since ω 6= 0 by hypothesis. This procedure can be repeated for
any qi giving M(ω) = Span (q1, q2, . . . , qm) i.e. the thesis.

We sharpen this result showing that the expansion of ω⊗ϕ∗ contains only
terms with k ≥ km: let dimFM(ω)∩M(ϕ) = km, i.e. Span

(

qi1 , qi2 , . . . , qikm

)

⊆
M(ϕ), by proposition 8 〈Bϕ, pil · · · pi2pi1ω〉 = 0 for all l < km since at least
km pi must be present to “shadow” the km qi that belong to M(ω) ∩M(ϕ)
and thus, necessarily, that in the expansion, k ≥ km.

We remark that the procedure can be restricted to any particular value
of k > 0 and the proof remains valid. For example for k = 1 we can prove
the theorem in V , deduce that ω is simple and derive the result for all other
values of k. ✷

It is clear that choosing ϕ = ω then km = m and we obtain as a corollary
the theorem 1 of Cartan and Chevalley; moreover the case k = 1 of this
theorem gives proposition 7 of [7]. Another difference between the two
theorems is that here the hypothesis of the spinor ω being a Weyl eigenvector
is not needed.

With this theorem one can prove that ω is simple withM(ω) = Span (q1, q2, . . . , qm)
requiring that only m constraints 〈Bϕ, qiω〉 = 0 i = 1, 2, . . . ,m are satis-
fied for any ϕ ∈ S.

All results of this work are obtained in the hypothesis of even dimensional
spaces V = F2m and (m,m) signature for real spaces. This is customary in
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these studies because these cases are simpler to tackle given that the maxi-
mal TNP have dimension m. It looks quite plausible that, as for theorem 1,
these results hold in a more general settings for any field of characteristics
6= 2, this being a direction for further investigations.

6 Applications to Physics

In a seminal paper Berkovits [1] proposed a super-Poincaré covariant quanti-
zation of the superstring by means of simple (pure) spinors that uses Cartan
Chevalley theorem 1 as its starting point to define simple spinor ω.

The idea is that to satisfy theorem 1 and be simple a spinor ω must be
a Weyl eigenvector (7) and all the terms of the multi vector expansion (18)
must be zero except one with k = m. By known results one can prove [7]
that ξk = 2−mB(ω, γik · · · γi2γi1ω) = 0 for m− k ≡ 1, 2, 3 (mod 4) so that
to apply the theorem one needs to impose B(ω, γik · · · γi2γi1ω) = 0 for just
m− k ≡ 0 (mod 4) and for k < m (for Hodge duality, see [7]). This implies

a number of constraints of the order of

(

2m
m− 4

)

growing exponentially

with m. For example for m = 8 one has to satisfy 1821 constraints: one

B(ω, ω) = 0 and

(

16
4

)

= 1820 constraints B(ω, γi4γi3γi2γi1ω) = 0.

In case of 2m = 10-dimensional space of [1] one needs to satisfy just
(

10
1

)

= 10 constraints that in our formalism reads:

B(ω, γiω) = 0 i = 1, . . . , 10 .

Five years later, in a subsequent paper [2], this simple spinor approach
was extended to 11 and 12-dimensional space with m = 6 and the authors

mention that they cannot attach physical interpretation to the

(

12
2

)

= 66

simple spinor constraints generated in this case:

B(ω, γi2γi1ω) = 0 i1, i2 = 1, . . . , 12 .

A possible road to explore could apply theorem 2 and given the TNPM(ω) =
Span (x1, x2, . . . , x12) one could replace these 66 constraints with just 12

B(ω, xiϕ) = 0 i = 1, . . . , 12

moreover for any ϕ ∈ S and without the request of spinors being Weyl.

In a completely different field the results of this work apply to the recent
proposal by Pavsic [15] that multiple spinor spaces Sh◦g can support mirror
particles, see e.g. [14]. As pointed out in section 4, Cℓm,m(g), as a vector
space, is the direct sum of spinor subspaces of different h ◦ g−signatures.
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Each of these 2m spinor spaces carry faithful and irreducible representations
of Cℓm,m(g) and since the algebra is central simple they are isomorphic. One
can take full advantage of the EFB formalism introduced in section 2.2 to
easily derive that if h ◦ g′ differs from h ◦ g in sites: i1, i2, . . . , ik then

Sh◦g′ = Sh◦g(pi1 + qi1)(pi2 + qi2) · · · (pik + qik)

and the new spinor has same chirality (7) but possibly different global parity
(9) θ′ = (−1)kθ and these matters deserve deeper investigations to fully
evaluate this proposal.

7 Conclusions

We investigated the rich relations between null vectors and spinors exploiting
some properties of the Extended Fock Basis.

With propositions 6 and 7 one can write explicitly the most general
spinor corresponding to any vector subspace made entirely of null vectors.

We saw also that to define a generic simple spinor using the theorem
of Cartan and Chevalley a number of constraint relations exponential in m
have to be satisfied. On the other hand, specifying the Totally Null Planes,
e.g. Span (q1, q2, . . . , qm), then the definition of the corresponding simple
spinor ω is straightforward with quoted propositions or with theorem 2 that
requires the satisfaction of only m constraints.

This paper contains a first set of results obtained exploiting the EFB,
some more are emerging and are due to come out in the near future. They
will all make part of a program whose goal is to reinterpret the elements
of geometry as made entirely of simple spinors [9, 6] for which EFB seems
particularly apt since with this basis it is possible to express very neatly all
elements of Cℓm,m(g), scalars, vectors and multivectors, in terms of simple
spinors.

Dedication

This paper is dedicated to the memory of my father Paolo Budinich who
passed away in November 2013 not before transferring me his enthusiasm
for simple spinors.
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