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A b s t r a c t  - Unsupervised learning applied to an unstructured neural
network can give approximate solutions to the travelling salesman problem.
For 50 cities in the plane this algorithm performs like the elastic net of
Durbin and Willshaw [Durbin 1987] and it improves when increasing the
number of cities to get better than simulated annealing for problems with
more than 500 cities. In all the tests this algorithm requires a fraction of the
time taken by simulated annealing.

1 - Introduction                        

The Travelling Salesman Problem (TSP) is the archetype of NP-complete

problems and has attracted considerable research effort (see e. g. [Lawler 1985]). In

one of its simplest form there are n cities in the plane and the problem is to find the

shortest closed tour that visit each city once. While all exact solutions take a time that

grows exponentially with n there are many heuristic algorithms for practical

instances [Johnson 1990].

In this paper I propose a neural network algorithm that produces approximate

solutions for the TSP. Unlike more traditional neural network approaches [Hopfield

1985] here the solution is given by the self-organising properties of unsupervised

learning.

The basic idea comes from the observation that in one dimension the exact solution

to the TSP is trivial: always step to the nearest unvisited city. Consequently, given a

TSP with cities in the plane, if one can map them “smartly” to a set of cities

distributed on a circle, he will easily find the shortest tour for these “image cities”

and a visit order for them: this visit order will give also a tour for the original cities.

Obviously if the map preserves perfectly all the distance relations of the cities this
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will be the shortest TSP tour i. e. the exact solution. Unfortunately a perfectly

neighborhood preserving map does not exist in general but it is reasonable to

conjecture that the better the distance relations are preserved the better will be the

approximate solution found. In this way the original TSP is transposed to the search of

a good neighborhood preserving map.

There are several ways to search for such a map: Durbin and Willshaw [Durbin

1987] did it relaxing a fictitious physical system, an “elastic net”. Another method is

to use a self-organising neural net to find neighborhood preserving maps. These nets,

proposed to model the self-organising feature maps in the brain [Von der Malsburg

1973, Kohonen 1984], can find good neighborhood preserving maps through

unsupervised learning. In this way the TSP is ultimately solved by unsupervised

learning.

In conclusion there are two steps to get a solution for the TSP: the first is to teach

the problem to a self-organising neural net that, while learning, builds up the

neighborhood preserving map. In the second step, from the solution for the image

cities, one obtains a tour for the original TSP.

In what follows I will present in detail this algorithm and compare it with the well

established simulated annealing technique [Kirkpatrick 1983], and, given the

similarity of the approaches, with the elastic net [Durbin 1987].

2 - Solving the TSP with self-organizing maps                                                                    

The TSP considered here is given by n

cities randomly distributed in the (0,1)

square. The network has two input

n e u r o n s  t h a t  p a s s  t h e

( x ,  y )  =  ζ  coordinates of the cities to

n output neurons. The output neurons

form a ring; the distance D(i, j)

between neurons i and j is one plus the

minimum number of neurons between i

and j. Each output neuron has just two
weights:  (wx ,  w y )  =   w  and, in

response to the input  (x, y) from city

 ζ , gives an output  o =  ζ  .  w .

Figure 1 gives a schematic view of the

net.

F i g u r e  1   Schematic net: not all
connections from input neurons are drawn.
In this example D(i, j) = 2.

y

x

i

j

D
(i

, j
) 

= 
2



3

For the neural network the square represents the input space and the cities are the

patterns to be learned. After learning, the network maps the two dimensional input

space onto the one dimensional space given by the ring of neurons.

The standard learning algorithm for this networks is [Kohonen 1984]:

1 set the weights to initial random values in [0,1];

2 select a city at random, say ζ  , and feed its coordinates to the input neurons;

3 find the output neuron with maximal output, say m1;

4 train m and its neighbors up to a distance d with Hebb rule; the training affects

2 d + 1  neurons:

                                      w i’ =  w i + α  (ζ    -  w i )         ∀  i :  D(i, m) ≤ d

5 update the parameters d and α  according to a pre-defined schedule and, if the

learning loops are not yet finished, go to 2.

A preliminary study of the learning parameters gave this recipe to obtain the best

performances:

• the number of output neurons is fixed and equal to the number of cities n;

• 50 learning loops for each city of the problem;

• the learning constant α  starts from 0.8 and its value is decreased linearly at each

learning loop reaching zero at the last iteration;

• the most active neuron m is trained with learning constant α , its neighbors are

trained with a value of α  that decreases linearly with D(i, m) and vanishes for

neurons at distance greater than d from m;

• the distance of update d is     6.2 + 0.037 n     at the start and is decreased

linearly to 1 in the first  65%  of the iterations. For the successive  35%  of the

learning loops d remains constant at 1.

After learning, the net maps neighboring cities to neighboring neurons: for each

city its image is given by the neuron with maximal activity. One easily finds the

shortest tour for the images of the cities that, in turn, gives a tour for the TSP.

This straightforward version of the learning algorithm has a major flaw. The map

it produces is not injective: many cities can be mapped to the same neuron (this

happens for a fraction between 45% and 50% of the total number of cities n for

10 ≤ n ≤ 1000). When two or more cities are mapped to the same neuron one

cannot say which of them has to come first in the tour and this problem substantially

reduces the performances of this algorithm [Angéniol 1988, Favata 1991].
                                                

1This definition is ambiguous unless city and weight vectors are somehow
normalised. Since both cities and weights define points in the plane, the problem can be
circumvented by defining the most active neuron for city ζ  as the neuron which
weights define the nearest point to ζ . Simple algebra shows that the two definitions
are equivalent.
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3 - A new TSP algorithm                                    

A better choice turns out to be an averaging process on the neurons to obtain a real

coordinate: for example a weighted coordinate calculated with the maximal active

neuron and its nearest neighbors using their activities as weights. In this way each city

is mapped to a point with a real coordinate along the ring, the map becomes injective

and the ambiguities in the tour disappear.

This new mapping produces substantially shorter tours assuring that there is

valuable information also in the neurons near to the most active one. The average not

only uses this additional information but is also a better and more plausible estimator

of the city image than the modal value since it is a linear function of the neuron

activities and it makes easier to imagine a further layer of neurons doing this job.

In what follows I try to assess the effectiveness of this algorithm comparing it with

two other stochastic ones: simulated annealing [Kirkpatrick 1983] and the elastic net

algorithm [Durbin 1987].

4 - Performances                          

It is known that comparing the performance of stochastic TSP algorithms is not

indisputable especially when the length of the shortest tour is not available [Johnson

1990]. I took a rather conservative approach comparing the average length obtained in

10 runs of each algorithm on the same problem keeping separately track of the CPU

F i g u r e  2   3 activity profiles for a net with 30
neurons obtained presenting three different cities
(of the 30 of the original TSP). Cities A and B both
give maximal activity in neuron number 10.

A decisive insight comes from

the “activity profile” of the net: a

plot of the neuron outputs in

response to a given city. Figure 2

contains the activity profiles for 3

cities on a net with 30 neurons.

Cities A and B both produce the

maximal activity on the 10t h

neuron.

When mapping cit ies to

neurons we associate to each city a

coordinate along the ring. The

standard choice of the maximal

acting neuron produces an integer

coordinate that is the modal value

of the activity profile.
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time used. This solution is less subject to fluctuations than, for example, a comparison

based on the minimal length obtained by an algorithm in a fixed amount of CPU time.

The implementation of simulated annealing used in these tests is that published in

[Müller 1990] which is tailored to the TSP since it uses exchange terms inspired by

Lin and Kernigham heuristics [Lin 1973]. With the chosen annealing factor of 0.95

the algorithm gave better performances than those quoted by Durbin and Willshaw

[Durbin 1987] on the same problems. Figure 3 is a test of its stability and the lower,

dashed, curve shows that its performances remain reasonably constant, with respect to

the theoretical lower bound of  0.749 n , when the number of cities n varies between

10 and 1000.

Johnson [Johnson 1990] performed extended comparisons on the performances of

various TSP heuristics including simulated annealing (even if not in the

implementation used in this work). He showed that, when the performances are

measured with the average of different runs, simulated annealing is favored and, even

if in longer times, beats the most reputed heuristics like that of Lin and Kernigham

[Lin 1973] and, a fortiori, 2-opt and 3-opt.

Figure 4 contains the ratio of the average tour lengths of this algorithm over those

obtained from simulated annealing. The neural net produces shorter tours than those of

simulated annealing for problems with more than  n = 500  cities.

It is interesting to speculate on the properties of this algorithm as depending on n,

the number of cities of the problem. The amount of memory grows like O(n) while the

time employed grows at most like  O(n2) since both the learning loops and the search

of the most active neuron depend linearly on n. However this is probably just an upper

bound since figure 3 shows that this prescription for the number of iteration gives

Figure  3   Ratio of the average tour
length obtained in 10 runs over the
t h e o r e t i c a l  l o w e r  b o u n d  o f

0 . 7 4 9  n (thick curve) . The upper, dotted,
curve shows the results obtained from (my
implementation of) Favata and Walker
algorithm [Favata 1991], while the lower,
dashed, curve shows results from simulated
annealing.

Figure  4   Ratio of the average tour
length obtained in 10 runs from this
algorithm over those given by simulated
annealing; the number of cities varies
between 10 and 1000.
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performances that increase with n. Consequently it is possible that, to maintain

constant performances, one can use a number of learning loops that increases less than

linearly with n.

Comparing the CPU time of the runs used for figure 3 it appears that, for 100

cities, this algorithm is 10 time faster than simulated annealing and it is 3 times

faster for 1000 cities producing, in this case, better average performances. This

decrease of the ratio is probably due to the non uniform performances when varying

the number of cities. It is remarkable that this net can perform better than simulated

annealing in its best achievement (average length) compensating at the same time its

main weakness: slowness.

A different test of the performances was made on the 5 city sets used by Durbin and

Willshaw [Durbin 1987]. To test the algorithm in conditions as similar as possible to

those of the elastic net the parameters of the net were tuned for 50 cities, and the

average performances were taken over 5 runs.  Table 1 contains a comparison of the

performances and shows that they are substantially equal but the CPU times are rather

different. Since exact time data were unavailable for comparisons I considered the time

used by each algorithm relatively to the time taken by simulated annealing. Whereas

Durbin and Willshaw report a time 30% longer than that employed by simulated

annealing this net is 10 times faster than simulated annealing.

City set             [Durbin 1987]                          This algorithm                        Difference (%)                  
     1          5.98        5.975     - 0.08 %
     2          6.03        6.110     + 1.33 %
     3          5.74  [5.70]        5.737     - 0.05 %  [+0.65]
     4          5.90  [5.86]        5.830     - 1.19 %  [-0.51]
     5          6.49        6.583     + 1.43 %
Table 1  Comparison of average tour length in 5 runs for the same problems.
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5 - Conclusions                       

Even if this is the first time a neural network algorithm proves to be competitive

with simulated annealing, deeper analysis is needed to establish if it has any relevance

as a serious TSP heuristic. Just to mention another limitation it is well known that the

TSP’s with random cities in the plane are relatively easy.

Nevertheless the results show that this net works satisfactorily on a provably

difficult problem and especially in large sizes: a not so frequent quality in neural

networks. Even more important is that the results derive from a well established

learning procedure applied to a previously unstructured net. This poses this approach

in a favorable position when compared to those that solve the TSP relaxing a finely

pre-tuned neural network [Hopfield 1985].

It is also intriguing that the theory behind this algorithm, intimately connected to

the self organising processes [Erwin 1992], is today not really understood (even if the

ordering theorem of Kohonen [Kohonen 1984] can be extended to the d to 1 dimensional

case [Budinich 1995]).
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