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Abstract - We present and analyze a Self Organizing Feature Map (SOFM) for the
NP-complete problem of the travelling salesman (TSP): finding the shortest closed
path joining N cities. Since the SOFM has discrete input patterns (the cities of the
TSP) one can examine its dynamics analytically. We show that, with a particular
choice of the distance function for the net, the energy associated to the SOFM has its
absolute minimum at the shortest TSP path. Numerical simulations confirm that this
distance augments performances. It is curious that the distance function having this
property combines the distances of the neuron and of the weight spaces.

1 - Introduction                        

Solving difficult problems is a natural arena for a would-be new calculus paradigm

like that of neural networks. One can delineate a sharper image of their potential with

respect to the blurred image obtained in simpler problems.

Here we tackle the Travelling Salesman Problem (TSP, see [Lawler 1985],

[Johnson 1990]) with a Self Organizing Feature Map (SOFM). This approach,

proposed by [Angéniol 1988] and [Favata 1991], started to produce respectable

performances with the elimination of the non-injective outputs produced by the SOFM

[Budinich 1995]. In this paper we further improve its performances by choosing a

suitable distance function for the SOFM.

An interesting feature is that this net is open to analytical inspection down to a

level that is not usually reachable [Ritter 1992]. This happens because the input

patterns of the SOFM, namely the cities of the TSP, are discrete. As a consequence we

can show that the energy function, associated with SOFM learning, has its absolute

minimum in correspondence to the shortest TSP path.

In what follows we start with a brief presentation of the working principles of this

net and of its basic theoretical analysis (section 2). In section 3 we propose a new

distance function for the network and show its theoretical advantages while section 4

contains numerical results. The appendix contains the detailed description of

parameters needed to reproduce these results.
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2 - Solving the TSP with self-organizing maps                                                                    

The basic idea comes from the observation that in one dimension the exact solution

to the TSP is trivial: always travel to the nearest unvisited city. Consequently, let us

suppose we have a smart map of the TSP cities onto a set of cities distributed on a

circle, we will easily find the shortest tour for these “image cities” that will give also

a path for the original cities. It is reasonable to conjecture that the better the distance

relations are preserved, the better will be the approximate solution found.

Each neuron receives the  (x, y) = 
r
q   coordinates of the cities and has thus two

weights: (wx ,wy ) = r
w . In this view both patterns and neurons can be thought as points

in two dimensional space. In response to input 
r
q , the r -th neuron produces output

or  =  
r
q .

r
wr . Figure 1 gives a schematic view of the net while figure 2 represents

both patterns and neurons as points in the plane.
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Figure  2   Weights modification in a learning
step: neurons (small gray circles) are moved
towards the pattern   

r
qi  (black circle) by an amount

given by (1). The solid line represents the neuron
ring. The shape of the deformation of the ring is
given by the relative magnitude of the   D

r
w  that is

in turn given by the distance function hrs .

Learning follows the standard

Kohonen algorithm [Kohonen
1984]: a city  

r
qi  is selected at

random and proposed to the net; let

s  be the most responding neuron
(i.e. the neuron nearest to    

r
qi )

then all neuron weights are

updated with the rule:

  D r
wr = e hrs

r
qi -

r
wr( )   (1)

where  0 < e < 1  is the learning
constant and  hrs   is the distance

function.

In this way, the original TSP is

reduced to a search of a good

neighborhood-preserving map: here we

build it via unsupervised learning of a

SOFM.

The TSP we consider is constituted of

N cities randomly distributed in the plane

(actually in the (0,1) square). The net is

formed by N neurons logically organized

in a ring. The cities are the input

patterns of the network and the (0,1)

square its input space.

y

x

s

r

Figure 1  Schematic net: not all connections
from input neurons are drawn.
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This function determines the local deformations along the chain and controls the

number of neurons affected by the adaptation step (1); thus it is crucial for the

evolution of the network and for the whole learning process (see figure 2).

Step (1) is repeated several times while  e  and the width of the distance function

are being reduced at the same time. A common choice for hrs  is a Gaussian-like function

like  hrs  =  e
- drs

s
Ê
Ë

ˆ
¯

2

  where  drs   is the distance between neurons r  and s  (the number

of steps between r  and s ) and s  is a parameter which determines the number of

neurons r  such that   D
r
wr π 0 ; during learning e,  s Æ 0   so that   D

r
wr Æ 0   and

hrs Æ d rs  .

After learning, the network maps the two dimensional input space onto the one

dimensional space given by the ring of neurons and neighboring cities are mapped onto

neighboring neurons. For each city its image is given by the nearest neuron. From the

tour on the neuron ring one obtains the path for the original TSP 1.

The standard theoretical approach to these nets considers the expectation value

  E D r
wr |

r
wr[ ]  [Ritter 1992]. In general   E D r

wr |
r
wr[ ]  cannot be treated analytically except

when the input patterns have a discrete probability distribution as it happens for the
TSP. In this case,   E D r

wr |
r
wr[ ] can be expressed as the gradient of an energy function,

i.e.   E D r
wr |

r
wr[ ] = -e— r

wr
V W( ) ,  with

V W( ) = 1
2N

hrs
rs
Â r

qi -
r
wr( )2

qiŒFs

Â ( 2 )

where  W  =  {
r
wr}   and the second sum is over the set of all the cities  

r
qi   having  

r
ws   as

nearest neuron, i.e. the cities contained in  Fs  , the Voronoi cell of neuron  
r
ws  . On

average,  V W( )  decreases during learning since 
 
E DV |W[ ] = -e ||

r
Â — r

wr
V ||2  .

Substantially, in this case, there exists an energy function which describes the

dynamics of the SOFM and which is minimized during learning; formally, the learning

process is the descent along the gradient of    V W( ) .
Unfortunately  V W( )   escapes analytical treatment until the end of the learning

process when some simplifications are applicable. Since at the end of learning
hrs Æ d rs ,  we can suppose  hrs  is significantly different from zero only for  r = s,s ±1;

in this case (2) becomes

  
V W( ) @ 1

2N
hs-1,s

r
qi -

r
ws-1( )2 + hss

r
qi -

r
ws( )2 + hs+1,s

r
qi -

r
ws+1( )2[ ]

qiŒFs

Â
s
Â ( 3 )

                                                
1The main weakness of this algorithm is that, in about half of the cases, the map

produced is not injective. The definition of a continuous coordinate along the neuron
ring solves this problem yielding a competitive algorithm [Budinich 1995].



4

In addition, simulations support that, at the end of learning, most neurons are selected
by just one city to which they get nearer and nearer. This means that  Fs   contains just

one city, let's call it  
  
r
qi s( ) , and that    

r
ws Æ

r
qi(s) , consequently

  
V W( ) @ 1

2N
hs-1,s

r
q

i s( ) -
r
q

i s-1( )( )2

+ hs+1,s

r
q

i s( ) -
r
q

i s+1( )( )2[ ]
s
Â ( 4 )

and assuming  hrs   symmetric i.e.  hs-1,s = hs+1,s = h, we get

  

V W( ) = h

2N
r
q

i s( ) -
r
q

i s-1( )( )2

+ r
q

i s( ) -
r
q

i s+1( )( )2[ ]
s
Â

            = h

N
L

TSP2

where  L
TSP2   is the length of the tour of TSP considering the squares of the distances

between cities. Thus the Kohonen algorithm for TSP minimizes an energy function

which, at the end of the leaning process, is proportional to the sum of the squares of the

distances. Numerical simulations confirm this result.

3 - A new distance function                                         

Our hypothesis is that we can obtain better results for the TSP using a distance
function  hrs   such that, at the end of the process,  V W( )   is proportional to the simple

length of the tour  LTSP,  namely  V W( ) µ r
qi s( ) -

r
qi s-1( )( )

s
Â  = LTSP since, in general,

minimizing L
TSP2  is not equivalent to minimizing LTSP.

hrs = 1+ Drs

s
Ê
Ë

ˆ
¯

-drs
2

( 5 )

We thus consider a function  hrs   depending both

on the distance  drs   and on another distance  Drs

defined in weight space:

                       
  
Drs = |

r
wj

j=r+1

s

Â - r
wj-1|

If we define

D1

D2

D3

1

2

3

4

  
r 
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r 
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r 
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Figure 3   Distances between
neurons s =4 and  r = 1 :
D1,4 = D1 + D2 + D3  and d1,4 =3.
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Figure 4   Set of  hrs   given by (5) for 0 < Drs < 1   and drs  =  0 ,  1 ,  . . .  , 4 .

when  s Æ 0 ,  we get for  hs±1,s

  

hs±1,s = 1+
Ds±1,s

s
Ê
Ë

ˆ
¯

-1

@ s
Ds±1,s

= s
r
ws -

r
ws±1

@ s
r
q

i s( ) -
r
q

i s±1( )

and substituting this expression in (4) we obtain
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V W( ) @ 1
2N

s
r
q

i s( ) -
r
q

i s-1( )

r
q

i s( ) -
r
q

i s-1( )( )2

+ s
r
q

i s( ) -
r
q

i s+1( )

r
q

i s( ) -
r
q

i s+1( )( )2È

Î
Í
Í

˘

˚
˙
˙s

Â

           = s
N

r
q

i s( ) -
r
q

i s+1( )
s
Â

           = s
N

LTSP

With this choice of  hrs   the minimization of the energy  V W( )   is equivalent to the

minimization of the TSP path.
We remark that the introduction of the distance  Drs   between weights is a slightly

unusual hypothesis for this kind of nets that usually keep well separated neuron and
weight spaces in the sense that the distance function  hrs   depends only on the distance

drs .

4 - Numerical results                                

Since the performances of this kind of TSP algorithms are good for problems with

more than 500 cities and more critical in smaller problems [Budinich 1995], we

began testing the performances produced by the new distance function (5) in problems

with 50 cities.

We compared the quality of TSP solutions obtained with this net to those of two

other algorithms both deriving from the idea of a topology preserving map and that
both actually minimizes  L

TSP2 : the elastic net of Durbin and Willshaw [Durbin 1987]

and this same algorithm with a standard distance choice.

As a test set, we considered the very same 5 sets of 50 randomly distributed cities

used for the elastic net.

Table 1 contains a comparison of the best TSP path obtained in several runs of the

different algorithms expressed as percentual increments over the best known solution

for the given problem.
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City set Min. length [Durbin 1987] [Budinich 1995] This algorithm
1 5.8358 2.47   % 1.65   % 0.96   %
2 5.9945 0.59   % 1.66   % 0.31   %
3 5.5749 2.24   % 1.06   % 1.05   %
4 5.6978 2.85   % 1.37   % 0.70   %
5 6.1673 5.23   % 5.25   % 0.43   %

Average 2.68  % 2.20   % 0.69   %
Table 1 Comparison of the best TSP solution obtained in 10 runs of the various algorithms.
Rows refer to the 5 different problems each of 50 cities randomly distributed in the (0,1)
square. Column 2 reports the length of the best known solution for the given problem. Columns
3 to 5 contain the best lengths obtained by the three algorithms under study expressed as
percentual increments from the minimal length; the number of runs of the algorithms is
respectively: unknown, 5 and 10. Last row gives the increment averaged over the 5 city
sets.

Another measure of the quality of the solution is the mean length obtained in the 10

runs. The percentual increment of these mean lengths, averaged over the 5 sets, was

for this algorithm 2.49%, showing that even the averages found with the new distance

function are better than the minima found with the elastic net.

These results clearly show that distance choice (5) gives better solutions in this

SOFM application, thus supporting the guess that an energy  V W( )   directly

proportional to the length of the tour  LTSP,  is better tuned to this problem.

One could wonder if adding weight space information to the distance function could

give interesting results also in other SOFM applications.

Appendix             

Here we describe the network setting that produces the quoted numerical results.

Apart from the distance definition (5) we apply a standard Kohonen algorithm and
exponentially decrease parameters  e  and  s  with learning epoch ne (a learning epoch

correspond to N weights update with rule (1))

e =  e0  a  n e                s = s0  b  n e

and learning stops when  e  reaches 5◊10-3. Numerical simulations clearly indicate that

best results are obtained when the final value of  s   is very small (ª 5 ◊10-3) and

when  e   and  s   decrease together reaching their final value at the same time.

Consequently given values for  a  and  s0  one easily finds  b.

In other words there are just three free parameters to play with to optimize
results, namely  e0  and  s0  and  a. After some investigation we obtained the following

values that produce the quoted results:  e0 = 0.8,  s 0  = 14   and  a  =  0 . 9 9 9 6  .
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