
J. Phys. A: Math. Gen. 26 (1993) 4237-4247. Printed in the UK

Some notes on perceptron learning

Marco Budinich
Dipartimento di Fisica dell'Universit2 di Trieste and INFN, Via Valerio 2, 1-34127
Trieste, Italy

Received 21 September 1992; in final form 23 March 1993

Abstract. We extend the geometkcal approach to the Perceptron and show that. given n
examples, learning is of maximal difficulty when the number of inputs dis such that n = 5d.
We then present a nea' Perceptron algorithm that takes advantage of the peculiarities of
the cost function. In our tests it is more than two times faster that the standard algorithm.
More importantly it does not have k e d parameters, like the usual learning constant q, but
it adapts them to the cost function. We show that there exist an optimal choice forg, the
steepness of the transfer function. We present also a brief systematic study of the
parameters and b of the standard Perceptron algorithm.

1. Introduction

Perceptrons have long been the subject of intense study [l] and yet many of their
features are not understood. Many fields are investigated nowadays, for instance
learning and generalization [2,3], the constrained weights case [4] and that of the
Perceptron with a small percentage of errors [5].

In this paper we study some aspects of the Perceptron using a geometrical
approach that was introduced long ago by Cover [6] , and that is still quite useful
[2,4,5]. In [A we showed that the weight space is the conjugate space of the familiar
input space. We proceed along this line to gain some insights into the properties of the
cost function; this function is defined in weight space and summarizes the Perceptron
performances.

We address two aspects: the theoretical capabilities versus the size of the problem
and a modified Perceptron algorithm suited to meet the properties of the cost
function.

In the first part we use N,,,, the average number of relative minima of the cost
function, as a tool to investigate Perceptron performances. N,, reproduces well some
of the known properties and shows that the learning is of maximal difficulty when,
given n examples, the number of inputs d is such that n=5d. In this case Nmi. is
maximal, indicating that the cost function is, on average, a real maze of relative
minima. Consequently learning, that corresponds to finding its absolute minimum,
becomes very difficult.

In the second part we propose a modified Perceptron algorithm with two features:
it greatly reduces the number of movements in weight space necessary to find the
solution and has a well defined halting condition when the solution doesn't exist (a
badly missingproperty in the standard procedure). We show also that the steepness of

03054470/93/174237+11 $07.50 0 1993 IOP Publishing Ltd 4237

4238 M Budinich

the transfer function is parameter with a crucial role in learning and we show how to
find the value that optimizes learning speed.

To make comparisons with the best possible version of the standard algorithm we
carried out a systematic study of its performances varying the parameters. The results
are in the appendix.

The first part of this paper is introductory: we review the formalism of Perceptron
learning and subsequently we resume the results of [7]. In the second part of section 3
we study the characteristics of the cost function in weight space and in section 4 we
present our new Perceptron algorithm together with its performances.

2. Standard Perceptron learning

We consider a Perceptron network with d inputs i and one output 0. The output is a
function of the inputs, of the weights w and of the threshold 8:

for the transfer function we choosef(x) = 1/(1 +e-’). p is a scale factor that controls
its steepness (it is the value of its derivative at x = O) . When b+ m f (x) becomes the
step function 0.

For each set p of input values ig(k= 1, . . , d) the net produces an output OP. The
examples (or learning set) are a set of n input patterns i { (k= 1,. . , d , p = 1,. . , n)
each with its associated desired digital output C P .

The cost function E is defined as the total number of errors (deviations between
the actual and the correct output):

The examples are learned when the weights are such that the net gives the desired
output EP for all the n input patterns; in this case the value of the cost function is zero.

Learning is achieved by finding those weights that minimize the cost function. The
Perceptron theorem [l] guarantees that, if a solution exists, it can be found by
changing iteratively each weight wk by an amount Awk=-r](aE/awk) where q is a
learning factor. One easily obtains

where
d

x p = wkig - e.
k = I

The constant q fixes the length of the vector AW=(Aw, , . . . , Awk, , Awd) and
consequently the magnitude of the move in weight space. A very similar formula holds
for the variation A0 of the threshold 6’.

Some notes on perceptron learning 4239

Clearly this procedure is formally equivalent to descending along the gradient of
the cost function. Thus the Perceptron theorem can be rephrased saying that, if a
solution exists, the cost function has only one minimum that can be found by gradient
descent.

Already here one can make one often ignored remark. Let us suppose that the
input values for the examples are binary. A common argument is that one can choose
freely the form 0 and 1 or f l for the input values since they are in one-to-one
correspondence and each set of weights for one choice can be changed with simple
algebra in a set of weights for the other one. Formula (3) shows that this is false for
learning since if one makes the 0 and 1 choice, an example with 0 input will never
contribute to Aw and can be difficult or even impossible to learn. Thus the f 1 choice
is mandatory for the input of binary examples.

3. Geometrical interpretation

In this section we try to deepen our understanding of Perceptron learning by means of
a geometrical interpretation. In the first part we resume the results of [7] to which the
reader is addressed for a more detailed exposition.

The input patterns of a Perceptron with d input neurons can be thought as points in
d-dimensional space and in this frame the action of the output neuron corresponds to
separating these points with an oriented hyperplane. The output is 1 if the input
configuration is in the ‘positive’ half-space and 0 otherwise (the positive definition is
obviously arbitrary). The equation of the hyperplane is obtained from the argument of
the functionfin (1).

We extend this interpretation by introducing the familiar algebraic notion of
conjugate space: the conjugate of the input space is the weight space where the cost
function E is defined’. For each pattern in the input space there is a corresponding
hyperplane in the weight space. Given n examples in the input space there will be a
corresponding arrangement of n hyperplanes in the conjugate d-dimensional weight
space. They partition it in R(n, d) regions

In each of these regions the cost function is almost constant (it is strictly constant if
the transfer functionf(x) is a step function otherwise it is constant with smooth edges
at the borders).

From this formula one derives the number of possible partitions of the input
patterns (ZR(m- 1, d)) induced by the Perceptron for patterns in general position in
d-space (no random ‘alignment’ between them). In the common case of digital
patterns this is not generally true and R(n,d) becomes an upper limit. Nevertheless it
has been shown [SI that for large d and n < O((d+ l) y the n digital patterns can be
treated as if they were in a general position.

Figure 1 shows a cost function for a 2-d Perceptron in weight space. In this case the
input space is a plane and the Perceptron function is a line in this space (not drawn).

‘The wnjugate space of a d-dimensional space is also a d-dimensional space and there is a one-too-one
wrrespondence between points and hyperplanes between the two spaces. For example the wnjugate space
of the plane XY is a plane MO such that to each line of equation Y = d + q in XY corresponds a point
(m, q) in MO and for each line in MQ there is a corresponding point in XY.

4240 M Budinich

Figure 1. The cost function of a soluble Perceptron problem with d = 2 and n=4.

The weight space is another plane whose coordinates are the coefficients of the line in
input space. The four lines conjugate to the four input patterns partition the two-
dimensional weight space in R(4,2) = 11 regions. In each of these 11 regions the cost
function is almost constant. The region at the lower right is that in which E=O
corresponding to a choice of the weights that yields the exact solution.

If the given set of examples admits a solution the shape of the cost function is
smooth with only one absolute minimum that can be found starting from any point in
weight space using gradient descent (like in Figure 1). If for the given problem a
solution doesn’t exist the cost function becomes a maze of relative minima that
ultimately trap any gradient descent algorithm.

In the hypothesis of random examples we can calculate the average number of
relative minima. In the conjugate space there are R(n, d) regions in which the cost
function is practically constant. All together these R(n, d) regions have
2nR(n - 1, d- 1) boundaries so, on average, each region has S(n, d) ‘sides’.

2nR(n - 1, d- 1)
S(n, d) =

R(n, d)

On each border the cost function changes its value by 1 (either + or - 1). Now let
us consider a particular region and all the steps of the cost function on its borders. In
the hypothesis of random examples there is no correlation between them. So the
probability that a region, closed by S borders, is a relative minimum is the probability
that on each of its borders the cost function has a + 1 step. This probability is 1/2’(”.4
and the average number of relative minima is:

R(n, 4
N d n , 4 = ~ . (4)

Figure 2 contains plots in logarithmic and linear scale of N,,,(n, d), the average
number of relative minima of the cost function E. The independent variables are the

Some notes on perceptron learning 4241

number of inputs d and that of examples n. We can make several interesting
observations:

n dependence. At fixed d and for large n, Nmi.(n, d) increases polynomially with n.
Since for n> 2d R(n, d) = O(nd) and S(n, d) = O(2d) one easily gets

Nmi,(n, d) = O((:)d) for a > 2d

that accounts for the observed trend.

80

1.
"in

5 .

Log (Nmj ."I

Figure2. N&. d) as a function of n and din linear and logarithmic scale.

4242 M Budinich

Figure3. Different working regions for the Perceptron in the n - d plane

d dependence. At fixed n, N,,&, d) has a pronounced maximum with varying d.
With the same approximations just made we can write

Nmi.(n, 4--- (I) forn>2d 226

and we can study the maximum of this expression. We approximate the binomial
coefficient using Stirling's formula for the factorial. Then we take the logarithm, we
differentiate with respect to d and we get the following equation for the maximum

2d-n +Inf+?=O
2d(n - d)

for O<d<n/2 the first term adds a negligible contribution to that with the logarithm
that goes to zero for d = nl5. This value for the position of the maximum is in excellent
agreement with that observed numerically even for small d. From (4) we get that for
d = 1 PIm,&, 1)

n 6 d case. For n 6d, R(n, d) = 2" and consequently N,.(n, d) = 1. This fits nicely
with the known fact that for n s d the Perceptron always has an exact solution. (Apart
from pathological cases of examples in degenerate position in d-space). Since a
solution exists it follows that the Perceptron theorem holds and we saw that in this
geometrical view the theorem says that the cost function has only one absolute
minimum. The ability of N,,,&z, d) to reproduce this known result strongly supports it
as a good tool to understand Perceptron performances.

We can condense these results in a figure that accounts for all the possible
combinations of n - d values for the Perceptron. We partition the n-d plane by
means of three lines of equation n = d, n = 2d and n = 5d (Figure 3).

Region 1 - n s d. Here a Perceptron solution always exists; N,,(n, d) = 1 and the
average number of sides of a region S(n, d) = n.

Region 2-d<n=S2d. Here the probability of finding a solution decreases from 1
to f at n = 2d as proved by Cover [6]; in this region S(n, d) = O(n).
Region 3-2d<n=S5d. Here the probability of finding a solution drops to zero [6]. At
n = 5d Nmi.(n, d) reaches its maximum value with respect to d; in this region
S(n,d)=2d.

(n + 1)/4 (for large n) .

Some notes on perceptron learning 4243

Region 4 - n> 5d. Ndn(n, d) decreases with d to reach (n + 1)/4 at d = 1; in this region
S(n, d) - 2d.

4. A new Perceptron algorithm

Now we use the geometrical interpretation of section 3 to propose a new learning
algorithm for the Perceptron.

We have already stated that the standard Perceptron algorithm is strictly equiva-
lent to a gradient descent on the cost function surface. Let us follow how the algorithm
works looking at Figure 1. It begins selecting a random starting point in weight space
and then it repeatedly moves along the gradient direction with step q. The Perceptron
theorem guarantees that the solution, if it exists, will be ultimately found. If the
solution does not exist there is no clear stop condition.

The limitations of this algorithm are:
the uncertainty on the value of q (it is customary to keep it small);
the lack of a halting condition. At the start one doesn’t know how many moves in
weight space will be necessary to find a solution or to abandon.

We propose here a variation of this algorithm that, taking advantage of the properties
of the cost function, finds a remedy to these difficulties. There are three ‘ideas’ in it:
the first is to abandon the fixed step size m, the second is to check and count the ‘steps’
of the cost function while moving, and the third is to use a variableg. We expose them
one at a time.

Mooements in weight space: looking at the cost function in Figure 1 we see that
there are long plateaus with relatively sharp steps. It is intuitive that an adjustable step
length can be very useful while moving in this space. An even more radical approach is
to calculate the gradient and then search in that direction until a step is found. This
search takes only a logarithmic number of trials. It turns out that in 96% of the cases it
is sufficient to calculate the gradient only once per region to find the next descending
step.

The sfeps of the cost function lie on the conjugate hyperplanes of the input
examples and on each of them the cost function changes its value by + 1 or - 1. At the
random initial point in weight space the cost function has a value in the closed interval
[0, n] say m (We assume m to be integer that is quite reasonable if the cost function is
calculated far from the steps). Following a path along the negative gradient direction
we will cross some of the steps. There are two possibilities: if our problem admits a
solution we will cross m descending steps to arrive at the solution; if there is no
solution the gradient descent will be trapped in a relative minimum higher than 0 after
having crossed less than m steps. If we check the steps while moving we can detect the
attempt to cross a rising step; this means that we are arrived in a minimum and that we
can halt the algorithm.

The crucial role ofb. the steepness of the transfer functionf(x). From (2) it is easy
to deduce that the steeper isf(x) the sharper are the steps of the cost function E. This
produces two contrasting effects on any learning algorithm that moves on this
function:

low f i produces a smooth cost function with high gradients at any point and
consequent ease of learning. However, it can hide a narrow ‘valley’ in the cost
function landscape;

4244 M Budinich

0 high,!? produces a sharply defined cost function that does not hide any detail but
that is very flat when far from the edges. Consequently gradients are small and
learning is difficult.

Clearly it is very important to choose p properly. A good theoretical rule would be
that of selecting the smallest p that does not hide any detail of the cost function. This
would be calculable knowing, for instance, the smallest diameter of the regions of
weight space. Unfortunately this is not easy.

Now we show that there is a choice of B that maximizes leaming speed. For clarity
we consider the contributions to Awk of only one example: simplifying the notation of
(3) we have (with t] = 1):

For p-tO we have Aw+O since p appears as a factor and all the other factors are
limited. In this case the cost function becomes Bat everywhere with no gradient. For
p-+ Aw is always zero except for x = O because of the derivativef'(x). Substituting
the expression for f (x) in (5)

Bie-@(c+Ee-"-1)
(1 + e+)3 Aw=

Figure 4 contains a plot of Aw as a function of p. To get the position of the maximum
we calculate aAw/ap. For E = 1, i = 1 and x>O, this derivative goes to
zero when

e&+ 1
pX=- 2e&-1'

This equation has an approximate solution for po,=O.89/x. Similar formulas hold for
different values of E and i. We can easily write also the formulas for the general case
that takes into account all the examples but then the final equation that gives the
position of the maximum and the optimal value of B does not have an easy solution.

Figure4. Awasafunct ionofpwi the= l , i= l andx=2.

Some notes on perceptron learning 4245

An approach that gave excellent results in our Perceptron algorithm was to adjust
j3 during the calculations. For a given pattern Bo, maximizes Aw and its value is low
when far from the edges, i.e. at large x , and high when near to them. In our algorithm,
prior to the calculation of the AW, we set /3 to the average of the j3,,, for all the
wrongly classified patterns: this computation is done together with the cost function
and does not introduce any significant overhead. A well-tuned B always gives high
gradients and a faster learning.

(1) select a random point in weight space and calculate the value m of the cost

(2) calculate the gradient of the cost function;
(3) move along the negative gradient direction until a step in the cost function is

(4) calculate the value m' of the cost function after the step together with the new

(5) if m' = 0 the solution is found: stop.

We propose here a simplied version of the complete algorithm:

function;

found and tentatively accept the new weights;

value of 8;

if m'<m accept the new weights and the new j3 and go to 2;
if m' > m there is an energy minimum in the cost function: no exact Perceptron
solution exists: stop.

An actual implementation of the algorithm needs some care in treating the rounding
errors produced in stages 2, 3 and 4 and a more articulated version of the test 5 that
allows a recalculation of the gradient in suspect cases. A working Cprogram together
with algorithm details is available on request.

To test the algorithm we considered a fourdimensional digital Perceptron with 16
examples. With them we built the 65536 possible problems (of which 1882 are soluble)
and we ran both algorithms on all problems. For the standard algorithm we used the
values of the parameters B and q that optimize its global performances (see the
appendiv for details).

With the new algorithm we found that the CPU time reduced by a factor 2.4 and the
cost function evaluated 20% less times with a mean of 42 times per problem (i.e. 2.6
times for each example).

5. Conclusions

These results sustain the sharp transition existing between the Perceptron with and
without a solution. In the first case the cost function is well behaved and gradient
descent works smoothly. In the other case the cost function is a maze of relative
minima that ultimately trap any form of gradient descent.

Another aspect of the Perceptron without an exact solution is that of the capacity.
It has been suggested that the capacity could be much higher if one tolerates a few
errors. However, in contrast to this expectation [SI showed that the capacity is always
linear in the number of inputs d, independently of the error rate.

The conclusion seems to be that the Perceptron without exact solutions has no
advantages: capacity of the same order as the standard Perceptron accompanied.by a
severe learning difficulty.

The new Perceptron algorithm is undoubtedly faster but we think that its more

4246 M Budinich

Flyre 5. Number of solutions and maximum number of loops vs. fi and pq.

important characteristic is its ability to adapt to the peculiarities of the cost function.
We point out that it does not have any fixed parameter like q o r p to be chosen at the
beginning but can select them optimally at any move.

We expect to be able to extend these features to the more general and interesting
case of back-propagation for feed-forward networks. This seems to fit nicely with the
results presented in [3], that three-layer feed-forward nets, applied to linearly
separable problems, are exactly soluble by gradient descent along the cost function.

Some notes on perceptron learning 4247

Acknowledgments

The author warmly acknowledges the illuminating discussions with Edoardo Milotti.
Most of the plots of this paper are done with Mathematica.

Appendix

We present here a study of the performances of the standard Perceptron algorithm.
We considered a three digital input Perceptron with eight examples and with them we
built the 256 possible problems of which 104 are soluble. We ran the algorithm on all
problems for several j3 and t] and Figure 5 contains the plot of two quantities chosen to
indicate its performances. The 6rst one is the number of solutions actually found (the
total number of solutions is 104). The second one is the maximum number of
movements in weight space done to solve a problem (bounded in software at 40). The
variables are 8, the steepness of the transfer function and j3q, the length of the moves
in weight space (see (3)).

The first plot, that of the solutions found, indicates the wide regions of j3 andpq in
which the algorithm finds all the solutions. In the second plot we see that the region of
optimal performance is rather narrow. The best performances are for 8=0.3 and
&= 1.5 i.e. t]=5. In this region the performances do not depend on the step size.

This second plot is quite surprising: it shows that the common choice of a low value
oft] can give good performances (and quite independently of 8) but it shows also that
this is not the only possibility and that the best case is in a completely different
situation.

References

[l] Milsky M L and Papert S 1988 Perceptrons 3rd edition (Cambridge, MA: MIT Press)
[2] Kinzel W and Rujh P 1990 Improving a network generalisation ability by selecting examples.

131 Gori M and Tesi A 1992 On the problem of local minima in backpropagation. IEEE Transactions on

[4] Campbell C and Robinson A 1591 On the storage capacity of neural networks with sign constrained

[5] Venkatesh S S and Psaltis D 1992 On reliable computation with formal neurons. IEEE Trancncliom on

[ti] Cover T M 1965 Geometrical and statistical properties of systems of linear inequalities with applications

[7] Budinich M and Milotti E 1592 Geometrical interpretation of the back-propagation algorithm for the

[SI audinich M 1991 On linear separability of random subsets of hypercube venices, 3. Pkys. A: Mark.

Europhys. Leu. 13(5) 473-477

Puttern Analysis and Muckine Inreltigence 14(1) 76-86

weights. J Phys A: Math Gen 24 L9SL95

Put@m Anolysis and Mackine Intelligence U(1) 87-91

in pattern recognition. IEEE TransacIiom on Elecrronic Computers EC14 326-334

perceptron. Pkysicu 1S5A (1-4) 369-377

Gen. 24 L211-LZ13

