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Caloric curve and conditional moments: Effects of secondary fragment decay
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We establish, within the framework of the statistical multifragmentation model, the connection between the
caloric curve and the analysis of conditional moments. In particular, we show that the conditional moments of
fragment charge distributions peak at the region where the curve temperature versus excitation energy shows
a plateau assumed to be a signature of a phase transition. Furthermore, we show that the slopes of the moments
at the peak are not influenced by secondary decay after the first breakup of the nucleus.
@S0556-2813~98!04901-2#

PACS number~s!: 25.70.Pq, 24.10.Pa, 25.70.Mn, 25.75.2q
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I. INTRODUCTION

Nuclear multifragmentation and its possible connection
the occurrence of a liquid-gas phase transition has been
subject of intensive investigations, both theoretical and
perimental, for more than a decade@1–7#. Theoretical studies
indicate that infinite nuclear matter has an equation of s
very similar to that of a van der Waals gas@8–11#. More-
over, recent experimental results show strong evidence
the occurrence of a phase transition in fragmenting nuc
systems. These results can be arbitrarily classified in
main groups:~i! In first place those related to the charact
ization of the phase transition using the analysis of mome
of asymptotic cluster size distributions@12,13#; ~ii ! The sec-
ond regards the measurement of the caloric curve of nuc
fragmenting systems, reminiscent of the behavior of a liqu
gas system@14#.

In the present paper, using the statistical multifragmen
tion model ~SMM! @15–17#, we study the connection be
tween the particular shape of the caloric curve which sho
the variation of the temperature in function of the excitati
energy, and the analysis of conditional moments introdu
by Campi@18# to characterize the critical behavior of a sy
tem. We show in particular that the appearance of peaks~or
maxima! in the plots of the moments occurs in the sam
excitation energy or temperature interval where one obse
a plateau in the caloric curve supposed to be a signature
phase transition. We then analyze the effects of secon
decay on the particular shape of the peaks appearing in
conditional moments after the first breakup of the syste
We show that secondary decay does not affect the beha
of the moments around the peaks.

In our study, we pay special attention to the analysis
the different signals versus charged particle multiplicity~ex-
perimentally used as the measure from the critical po
570556-2813/98/57~2!/831~6!/$15.00
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@12#!. Other authors have studied the effects of p
equilibrium on charged particle multiplicity distribution
@19–22#. In this paper indeed, we would like to discuss t
effects on these distributions induced by secondary de
We show in particular that within this model, charged pa
ticle multiplicity is not linearly related to the temperatur
Moreover, by looking at the signals as a function of charg
particle multiplicity, it is found that while secondary deca
does not change the qualitative shape of the different sign
it induces some changes in the slopes of the different m
ments near the peak.

In Sec. II, we briefly review the SMM model used in th
paper. Section III deals with the study of the correlation b
tween the caloric curve and the conditional moments an
sis at freeze-out time, before secondary decay takes p
We study in Sec. IV the effects of secondary decay on
different signals. The analysis versus charged particle mu
plicity is also done in this section. Finally, conclusions a
drawn in Sec. V.

II. THE SMM MODEL

The statistical multifragmentation model is based on
assumption of statistical equilibrium at a low density freez
out stage of the nuclear system formed during the collisi
At this stage, primary fragments are formed according
their equilibrium partitions. Equilibrium partitions are calcu
lated according to the microcanonical ensemble of
breakup channels composed of nucleons and excited f
ments of different masses. The model conserves total ex
tion energy, momentum, mass, and charge numbers. The
tistical weight of decay channelj is given by Wi

}exp@Sj(Es* ,Vs,As,Zs)#, whereSj is the entropy of the system
in channel j and Es* , Vs , As , and Zs are the excitation
energy, volume, mass, and charge numbers of the fragm
831 © 1998 The American Physical Society
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832 57MASTINU, BELKACEM, GRAMEGNA, AND MILAZZO
ing source. Different breakup configurations are initializ
according to their statistical weights. The fragments are t
propagated in their mutual Coulomb field and allowed
undergo secondary decay. Light fragments with mass n
ber Af<4 are considered as stable particles with only tra
lational degrees of freedom; fragments withAf.4 are
treated as heated nuclear liquid drops. The secondary d
of large fragments (Af.16) is calculated from an
evaporation-fission model, and that of smaller fragme
from a Fermi breakup model@16#. The present version of th
model only incorporates thermal degrees of freedom
does not take into account any additional collective degr
of freedom such as radial expansion or angular momen
~for more details, see Refs.@15–17#!.

In the following we study the fragmentation of a go

79
197Au nucleus at different excitation energies. In Fig. 1, w
have plotted the temperatureT obtained from the model ver
sus excitation energyE* for different freeze-out densitie
r f . This plot is commonly called the caloric curve@14–16#.
All curves show the same shape which starts by increa
with excitation energy, then one observes a ‘‘back-bendin
at almost the same excitation energyE* 5323.5 MeV for
all curves after which the temperature increases very slo
as a function of excitation energy till an excitation energy
about 8 MeV. Then temperature increases rapidly with ex
tation energy. This flattening of the caloric curve, observ
also experimentally in the fragmentation of the quasiproj
tile formed in the collision Au on Au at 600 MeV/nucleon,
thought to be reminiscent of the behavior of a liquid-g
system@14,16#. In the following, the discussion will deal o
the model predictions at a fixed freeze-out density of
emitting source ofr f5r0/3; no different behavior was foun
at smaller freeze-out densities.

III. STUDY OF SIGNALS AT FREEZE-OUT TIME

Figure 2 shows the contour plot of charged particle m
tiplicity Nc versus excitation energyE* ~upper panel of the
figure! and versus temperatureT ~lower panel! taking into
account secondary decay. We note that even if experim
tally it is possible to measureNc only in the final stage of the

FIG. 1. Caloric curve: temperature versus excitation energy
a Au nucleus, for different values of nuclear density at freeze-o
n
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reaction, we checked that the shape of the previous plo
not modified by secondary decay. From the plot, one
serves that while in averageNc increases almost linearly
with excitation energy, it shows large fluctuations around
mean value. If one makes a narrow cut onNc , say 39<Nc
<40, this will correspond mainly to events withE* 59
210 MeV, but events withE* from 7 to 12 MeV fall also
within the cut. The situation is the same versus tempera
where however, one observes very large fluctuations ofNc at
temperatureT'6 MeV ~temperature of the plateau in th
caloric curve!.

Moreover, whileNc shows in average a linear dependen
versusE* ~solid points!, it does not show this dependenc
versus temperatureT. Nc should then be considered propo
tional to E* rather thanT. This indicates that one has to b
careful when extracting critical exponents for a therm
phase transition using charged particle multiplicity as an
dicator of the distance to the critical point. Furthermo
charged particle multiplicityNc cannot be properly used a
an indicator of the characteristics of the analyzed sou
~which selects a given temperatureT or excitation energyE*
or impact parameterb). In fact, Nc is proportional toE* or
T or b ~if any! only in the average and most of the signa
proposed to give evidence for the critical behavior a
mainly based on the assumption that the fluctuations are
largest at the critical point~this in fact could be observed in
the plot of Nc versusT of Fig. 2 at T;6 MeV!. Making
narrow cuts onNc to select small windows in temperature

r
t.

FIG. 2. Total number of charged particles at the end of
de-excitation chain as a function of temperature~lower panel! and
excitation energy~upper panel! of the emitting source. The curve
with solid circles represent the average values of charged par
multiplicity.
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57 833CALORIC CURVE AND CONDITIONAL MOMENTS: . . .
excitation energy means cutting down the fluctuations wh
are the principal argument when studying phase transitio

In the following part of this section the calculations a
carried out without secondary decay. In all the figures a
while the curves with solid dots indicate the signals at free
out, the curves with open circle markers~when plotted! in-
dicate the same signals after secondary decay.

The method of conditional moments has been introdu
by Campi to characterize the critical behavior of a syst
undergoing a multifragmentation@18#. The moments of frag-
ment charge distributions are defined as

Mk
~ j !5(

z
Zkn~ j !~Z!/Ztot , ~1!

wheren( j )(Z) is the multiplicity of clusters of chargeZ in
the eventj , Ztot579, and the sum is over all fragments in th
eventexcept the heaviest one, which corresponds to the bul
in an infinite system. Assuming a general scaling property
cluster size distributions near the critical point@23#, one gets
for the moments near the critical point

Mk}uT2Tcu2~11k2t!/s. ~2!

Since the exponentt satisfies 2,t,3, the second and
higher moments diverge at the critical point, while the low
momentsM0 ~mean number of fragments! and M1 ~mean
size! do not. In particular, the second momentM2 ~variance
of charge distributions!, which in macroscopic thermal sys
tems is proportional to the isothermal compressibility,
verges at the critical point@23–25#. Of course, in finite sys-
tems, the momentsMk remain finite, even fork.1.

Our aim in this section is to show the close connect
between the appearance of peaks or maxima in the plot
conditional moments of cluster size distributions and the fl
tening we have observed in the caloric curve~Fig. 1!. Figure
3 shows the second momentM2 versus temperatureT ~upper
part! and versus excitation energyE* ~lower part!. One ob-
serves in the upper part of the figure a sharp peak wit
sudden rise ofM2 ~with almost an infinite slope! at T'6
MeV, the temperature at which the caloric curve show
plateau. The same is forM2 versus excitation energyE* , but
the peak is broader and spreads over the excitation en
range which corresponds to the plateau.

We observe the same behavior in the plot of the rela
varianceg2 shown in Fig. 4. This quantity, defined as@18#

g25
M2M0

M1
2

, ~3!

has been also proposed by Campi to better characterize
critical region. In particular, it is expected that this quant
shows a maximum around the critical point meaning that
fluctuations of fragment size distributions are the largest n
the critical point. The relative variance~Fig. 4!, as with the
second moment, shows the same sharp peak aroundT'6
MeV, which becomes broader versus excitation energy. H
also we note that the peak shows up in the same excita
energy interval of the plateau in the caloric curve.

We consider another variable which we think is a go
signal worthwhile to analyze to characterize the irregular
h
s.

,
-

d

f

r

-

n
of
t-

a

a

gy

e

the

e
ar

re
on

-

havior at the critical point. This quantity is the ratio of th
first conditional momentM1 to the zeroth momentM0. Ac-
cording to Eq.~2!, both momentsM0 andM1 do not diverge
at the critical point and have a regular behavior. Howev
their ratio is no longer regular and behaves as

FIG. 3. Second moment of charge distributions as a function
temperature and excitation energy without~solid points! and with
~open circles! secondary decay.

FIG. 4. Relative variance of charge distributions versus te
perature and excitation energy without~solid points! and with~open
circles! secondary decay.
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834 57MASTINU, BELKACEM, GRAMEGNA, AND MILAZZO
M1

M0
5uT2Tcu21/s. ~4!

As s.0 @18,23#, the ratio diverges at the critical point. I
Fig. 5, we have plottedM0 ~upper part! andM1 ~lower part!
versus temperatureT. Both quantities show no maximum
and have a regular behavior. Their ratio, however, plotted
the upper part of Fig. 6 versusT, shows a peak at tempera

FIG. 5. First- and zeroth-order moments of charge distributi
as a function of temperature before secondary decay.

FIG. 6. Ratio of first moment to zeroth moment of charge d
tributions versus temperature and excitation energy without~solid
points! and with ~open circles! secondary decay.
in

ture T'6 MeV.
The Campi scatter plot drawn in Fig. 7 exhibits the pec

liar shape expected for the occurrence of a phase transi
Each point of the plot represents one event. This fig
shows that the whole accessibleZmax-M2 space is filled up.
We stress, however, that the central region of this plot~the
zone where the upper branch crosses the lower branch,
posed to correspond to critical events@18,26#! is mainly
made by events having temperatureT between 5.8 and 6.2
MeV. The normalized variance of the size of the maximu
fragment sNV is also drawn in Fig. 8. Because fragme
charge distributions are expected to show the maximum fl

s

-

FIG. 7. Campi scatter plot: The charge of the largest fragmen
plotted versus the second moment.

FIG. 8. Normalized variance of the charge of the largest fr
ment versus temperature and excitation energy without~solid
points! and with ~open circles! secondary decay.
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57 835CALORIC CURVE AND CONDITIONAL MOMENTS: . . .
tuations around the critical point, this variable should show
maximum in the critical region@18,23#. The normalized vari-
ance, which is related to the fluctuation of the order para
eter, is defined as

sNV5
sZmax

2

^Zmax&
, sZmax

2 5^Zmax
2 &2^Zmax&

2. ~5!

As expected,sNV shows a huge maximum versus tempe
ture or excitation energy, at the same values where the
ditional moments peaked.

Before ending this section, we would like to note that
previous signals when plotted versus charged particle m
plicity, show broad peaks which spread over the whole m
tiplicity range corresponding to the plateau in the calo
curve (4<Nc<13, see Fig. 9!.

IV. EFFECTS OF SECONDARY DECAY

In the preceding section, we have seen that the analys
conditional moments after the first breakup of the syst
indicates the occurrence of a critical behavior in t
temperature-excitation energy interval where the calo
curve shows a plateau. As from the experimental point
view, the only accessible quantities are the asymptotic fr
ment charge distributions, we will revisit in this section t
previous signals and study the effects of secondary deca

From Figs. 3, 4, 6, and 8, we see that secondary de
changes the slope of the various quantities only far from

FIG. 9. Various signals as a function of the total number
charged emitted particles without~solid points! and with ~open
circles! secondary decay.
a
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peak ~curves with open circles!, while near the peak, the
slope of the increasing branch does not change significan
Note that in all the plots, due to secondary decay, a sma
peak appears at small values of temperature and excita
energy. This bump is due to the presence of fission fr
ments, produced in secondary decay. In all cases, the be
ior of the signals near the singularity seems not to cha
significantly both versusT or E* .

The situation is different when the different signals a
plotted versus charged particle multiplicity. Figure 9 sho
the different signals plotted versusNc at freeze-out~solid
points! and after secondary decay~open circles!. First, one
sees that the position of the peak is no longer the same
fore and after secondary decay. This is obvious becauseNc
increases after the primary excited fragments de-excite
emitting smaller fragments. One notes also the presence~in
the curves with secondary decay! of the second bump at low
Nc’s characteristic of fission events. One observes also
important change on the slope of the increasing bran
While the qualitative behavior of the plot~the presence of a
peak! remains, the extraction of critical exponents from t
plot of the second moment, for example, by fitting the slop
of the peak cannot be considered completely correct, bec
their values would be different if calculated before and af
secondary decay.

These results indicate that~i! secondary decay which rep
resents a regular behavior of the system does not chang
behavior of the different signals at the peak when plot
versus temperature or excitation energy. This would hap
only if the peak is associated with a nonanalytic behav
~expected at the singularity point of a second order ph
transition! which would not be affected by a regular one;~ii !
the slopes of the increasing branches in the different sig
change significantly before and after secondary decay w
plotted versus multiplicity. This is due to the fact that se
ondary decay changes not only the absolute values of
signals (y axis! but also changes the absolute value
charged particle multiplicity, and hence even if point~i! ap-
plies, the slopes of the peaks before and after secondary
cay will be different due to the change in the multiplicity o
charged particles.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have shown that all studied signals
dicate a clear connection between the conditional mome
analysis and the caloric curve. All moments peak in the sa
temperature-excitation energy region where the flattening
the caloric curve is observed, indicating a strong correlat
between the two methods proposed so far to characterize
occurrence of a possible phase transition in nuclear co
sions. Moreover, while the analysis of conditional mome
has been introduced to characterize the behavior of nuc
systems in the vicinity of a critical point indicating the o
currence of a second-order phase transition@12,18#, the ob-
servation of the flattening in the caloric curve was suppo
to be reminiscent of a first-order phase transition@14,16#.
From our analysis, we believe that the actual shape of
caloric curve corresponds indeed to a second-order ph
transition characterized by a critical temperature, the te
perature at which the flattening is observed. In fact, it a

f
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836 57MASTINU, BELKACEM, GRAMEGNA, AND MILAZZO
pears that the observed sharp peaks of the moments ar
served at the temperature of the plateau in the caloric cu
These peaks when observed versus excitation energy, sp
over the entire excitation energy interval of the plateau~al-
though the ratioM1 /M0 shows a less broader bump peaki
at an excitation energy of about 4–4.5 MeV!. This observa-
tion is supported by the fact that secondary decay does
affect significantly the slopes of the increasing branch in
different signals, which would happen only if the peak
associated with a singularity expected at the critical poin
a phase transition.

It appears also that the analysis of conditional mome
versus charged particle multiplicityNc is only qualitatively
correct, in the sense that the presence of peaks in the va
variables~which indicates that the system has passed thro
the critical point! remains even after the secondary dec
but a quantitative analysis can only be done versus temp
.
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ture or excitation energy. In particular, the extraction of cr
cal exponents versus charged particle multiplicity fro
asymptotic charge distributions would not be completely c
rect because charged particle multiplicity appears not to
linearly dependent on temperature~in average! and the
slopes of the different conditional moments change sign
cantly before and after secondary decay.
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