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The operational definition of probability of an event A

p(a)=MA)
N
The relative frequency
n(A
f(a) ="
n
The law of large numbers
n(A)

lim f,(A)=1lim

n—oo n—oo n

= P(A)
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The algebra of probabilities

Let A and B be statements that can be either true or false,
and such that we can assign probabilities. Then the
following rules apply:

0<P(A)<1
P(Q)=1
P(AUB)=P(A)+P(B)- P(AN B)

P(AnB)=P(A|B)P(B)=P(B|A)P(A)
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Probability space and measure theory

Q) S




Bayes' Theorem

P(An B)=P(A|B)P(B)=P(B|A)P(A)

Independent events:

P(A e B) = P(A)-P(B) ﬂ

Dependent events:
P(Ae B)=P(A|B)-P(B) = P(B|A)-P(A)

Bayes’ theorem




rev. Thomas Bayes (1702-1761)

Thomas Bayes was the son of a London Presbyterian
minister, Joshua Bayes born perhaps in Hertfordshire. In
1719 he enrolled at the University of Edinburgh to study logic
and theology.

He is known to have published two works in his lifetime:
Divine Benevolence, or an Attempt to Prove That the
Principal End of the Divine Providence and Government is
the Happiness of His Creatures (1731), and An Introduction
to the Doctrine of Fluxions, and a Defence of the
Mathematicians Against the Objections of the Author of the
Analyst (published anonymously in 1736), in which he
defended the logical foundation of Isaac Newton's calculus
against the criticism of George Berkeley, author of The
Analyst.

It is speculated that Bayes was elected as a Fellow of the
Royal Society in 1742 on the strength of the Introduction to
the Doctrine of Fluxions, as he is not known to have
published any other mathematical works during his lifetime.
Some feel that he became interested in probability while
reviewing a work written in 1755 by Thomas Simpson, but
others think he learned mathematics and probability from a
book by de Moivre.

Bayes died in Tunbridge Wells, Kent. He is buried in Bunhill
Fields Cemetery in London where many Nonconformists are
buried.
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(from Wikipedia)



The ideas of Bayes were clarified, extended and put to
good use by Pierre Simon, Marquis de Laplace

“In order to give some interesting applications of it | have profited by
the immense work which M. Bouvard has just finished on the
movements of Jupiter and Saturn ... His calculations give him the
mass of Saturn equal to 3512th part of that of the sun. Applying to
them my formulae of probability, | find that it is a bet of 11,000 against
one that the error of this result is not 1/100th of its value ...”

A

prob(M | {data},l)

0 | |
m, m2

Mass of Saturn M



Bayesians stress the subjective aspects. Examples can be
found in (D’ Agostini 2003). D’ Agostini cites Schrodinger,
who took a stand very much like to De Finetti:

Definition of probability:
: . a quantitative measure of the strength of our conjecture or
anticipation, founded on the said knowledge, that the event comes true.

Subjective nature of probability:
Since the knowledge may be different with different persons or with the
same person at different times, they may anticipate the same event with
more or less confidence, and thus different numerical probabilities may
be attached to the same event.

Conditional probability:

Thus whenever we speak loosely of ‘the probability of an event’, it is
always to be understood: probability with regard to a certain given state of
knowledge.



logical foundations of probability theory

AMERICAN
JOURNAL of PHYSICS

A Journal Devoted to the Instructional and Cultural Aspects of Physical Science

Vorume 14, Numser | January-FepruARry, 1946

Probability, Frequency and Reasonable Expectation

R T, Cox
The Johns Hopkins Unsverssty, Baltsmore 18, Maryland
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Cox’ s paper has three main parts:

 general considerations on probability
« axiomatic derivation of the rules of probability from standard
logic rules

P(Cab a) i F(p( ‘ b) p(b|a)) functional
p(5 a) = S(p(b|a)) equations for F, S
T~

standard rules for

F[F(x,y),z] = F[x,F(y,Z)]
oty A SSmes sy SLS

 frequentist probabilities as a reasonable special case 11




P(BI1A)-P(A)

P(AIB)= 7B}

P(A, |1 B)= P(Blﬁégf(A") k=1,..,N

If the events A, are mutually
exclusive, and they fill the universe

P(B)= Y P(B1A,)P(4)

k=1




P(BI1A)-P(A)
P(B)

s

P(B)= Y P(B1A,)P(4)

P(AIB)=

P(BIA,)P(

-

P(A,1B)=

iP(BIAk)-P

k=1

A

A)
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A simple example

N
-

A

~

Here we choose a ball as follows:
1. We choose the urn first

2. We draw a ball from that urn

@ 30

O 20
® 20

What is the probability of drawing one red ball?
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P(A) = P(B) = 1/2 (probability of choosing either A or B)

P(G|A) = 1/4 (probability of drawing a yellow ball from A)
P(R|A) = 3/4 (probability of drawing a red ball from A)
P(G|B) = 1/2 (probability of drawing a yellow ball from B)
P(R|B) = 1/2 (probability of drawing a red ball from A)

and therefore

P(R) =P(R|A)P(A)+P(R|B)-P(B)
= (3/4)-(1/2) + (1/2)-(1/2) = 5/8 = 0.625
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Inverse problem: if we drew a red ball, what is the
probability that we drew it from urn A?

(NB: here we assume that the “physical model” is known, i.e.,
we assume we know how many red and yellow balls are in
each urn)

“a priori” probability: P(A) = 72

Now we apply Bayes’ theorem

PRIA) oy _ (3/4)-(1/2) _3_, ¢

P(R) (5/8) 5 /

“a posteriori” probability

P(AIR)=

This is a simple example of Bayesian inference 10



We draw another red ball, still from the same urn, (however
we do not know whether this is A or B). Since now

P(R) = P(R|A)-P(A) + P(R|B)-P(B) = 0.65

we find

P(RIA,I)P(AIR,I)
P(R.,I)

P(AI{R,R},I)= ~0.692308

Notice that data can be inserted one by one!
17



100 successive draws ...

40 60 80 100

L 2b L

18
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... a different starting point: here the initial prior probability is
0.05 instead of 0.5.

100
08!

06!

p(A)

04!

02!

0o 20 40 6 8 100
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Frequentist and Bayesian
statistics

Where’s the difference?

Why are there sharply different opinions?
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The opinion of a Bayesian physicists (M. Goldstein tries to express contrasting
views, in Advanced Statistical Techniques in Particle Physics, Grey College, Durham,

18 - 22 March 2002)
PRO’s (Bayesian view)

BAYES IS CORRECT

[C1] Other approaches are wrong, as argued through the well-rehearsed counter-examples about
the failure of meaning of the core concepts of more traditional inference, such as significance and cover-
age properties. Thus, a valid confidence interval may be empty. a statistically sigmificant result obtained
with high power may be almost certainly false. and so forth.

[C2] The Bayes approach 1s right, as argued on the grounds that the method evaluates the rele-
vant kinds of uncertainty judgements, namely the uncertainties over the quantities that we want to learn
about, given the quantities that we observe, based on careful foundational arguments using ideas such as
coherence and exchangeability to show why this 1s the unavoidable way to analyse our uncertamnties %

BAYES IS USEFUL

[Ul] The methodology gives good solutions for standard problems, as argued through individual
cases. The solutions appear paradox-free, and correspond well with intuition.

[U2] The methodology offers the only way to tackle many non-standard problems, as there 1s a
unified approach for all problems 1n uncertainty. It offers a method which can always be followed, unlike
most other approaches which rely on ad hoe tricks for each individual case.
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CON's (Frequentist view)

BAYES IS INAPPROPRIATE

[I1] Bayesian methodology answers problems wrongly. Usually. this 1s attributed to unnecessary
and unhelpful appeal to arbitrary prior assumptions, which should not belong 1n scientific analyses.

[I2] Bayesian methodology answers the wrong problems. This argument replaces the blanket
criticism of the Bayes approach by recognition that the Bayes solution may indeed tell us something
meamngful about what an individual might conclude from the data, but still argues that such individual
subjective reasoming 1s mappropriate as a way of reaching sound and objective scientific conclusions,
which are related to consensus within the scientific community.

BAYES IS HARD

[H1] Every problem 1s hard for Bayesian analysis. This 1s a reflection of the difficulty. even in the
simplest problem. of finding an objectively justifiable prior distribution for the quantities of interest. In
general how do we find prior distributions and what should we do 1f experts disagree?

[H2] Hard problems are hard for Bayesian analysis. Even 1f we could solve the prior specification
1ssue for simple problems, the difficulty mvolved 1n constructing a full Bayes specification for more
complicated problems renders the approach infeasible.
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The above arguments have been simplified down to their essential form to suggest that there are
(at least!) two levels at which we may debate the correct use of statistical methodology:

(1) the current practice debate: [C1],[Ul], versus [I1],[H1]
(1)the underlying issues debate: [C2],[U2],versus [12],[H2]

Of course, the two debates are mntimately linked, and starting in one debate we may easily find
ourselves dipping into the other. However, unless we are clear as to which debate we are 1n, 1t 1s easy to
become confused, especially as the structure of the two debates appears so sinular.

* it has been argued that quantum probabilities are to be interpreted in a
Bayesian way, thereby leading to a different meaning of the interpretation of
outer reality

(see Caves et al., PRA 65 (2002) 022305)
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A simple application to medical tests (example of HIV test)
P(positive linfect) =1 P(positive | not infect)=1.5%

what is the probability P(infect|positive) ?
A common answer is 98.5% ... and it is wrong!

Let's use Bayes’ theorem ...  P(A1B)= NP(B'A )P(Ak)

Y P(BIA,)
k=1

P(positivelinfect )P (infect)
P(positive linfect )-P ( infect) + P(positive | not infect )P (non infect)

P(infect | positive) =

P(positive linfect)

= — . = . ———P(infect)
P(positive linfect )P (mfect) + P(positive | not infect)-P (non mfect) 24



The estimate depends on the size of the infect population
l.e., on the probabilities

P(infect) P(not infect)
P(infect | positive)

B P(positive | infect)
P(positive | infect )P ( infect) + P(positive | not infect )P (non infect)

'P(infect)

The posterior estimate strongly depends on the prior
probability
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Example:  AIDS frequency in ltaly 0.4 %
AIDS frequency in South Africa 18.1%

1
P(i t tive) = 0004 =21.1% Ital
(infect | positive) = 00150996 "
1
P(infect | positive) = 0.181=93.6%  South Africa

1-0.181+0.015-0.819

the large number of false positives and the small probability of
finding a sick person mean that the probability of being
infected if positive is not actually very high.
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If we find a positive result in a repeated measurement:

P(infect { positive, positive}) =947%  1aly

P (infect { positive, pOSitive}) =999%  South Africa

The first test changes the reference population, and the
second test, if positive, gives a significant result.
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Prosecutor’ s fallacy & Defendant’ s fallacy

Two common mistakes, associated to the wrong
reference population

P(DNA compatible |l innocent) this is

P(innocent | DNA compatible)

P(DNA compatible | innocent,I)
P(DNA compatible,I)

P(innocent | DNA compatible,l ) = P(innocent 1 I)
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Classificazione del DNA-1: alleli

allele: una di due o piu forme alternative di un gene
affetto da mutazioni, e che si trovano nello stesso
posto in un cromosoma

L esempio: malattie
Nna ec e" .
Carrier genetlc_;he come
I'anemia falciforme

Unaffected
"Carrier"
Father

ec\@o

@@ @@ @@ @@
@

Unaffected Unaffected "Carrier" Affected 29
1in 4 chance 2in 4 chance 1in 4 chance



@) Normal red blood cells

Normal
red blood
cell (RBC) A 4

RBCs flow freely
within blood vessel

© Abnormal, sickled, red blood cells
(sickle cells)

Sickle cells

blocking

blood flow £

Sticky sickle cells
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sickle-cell disease frequency

Sickle Cell Disease in the United States

8 9 8

—

Prevalence in ethnic groups per 100,000 persons
S ]

0 172 528 761

289.00

36.20

Native
White Hispanic Asion Americon Blnd(31



Classificazione del DNA-2: frequenza degli alleli

. DNA Profile Allele frequency from database Genotype frequency for locus
copia A N
cus Alleles || times allele observed || size of database || Frequency formula number
10 109 p=1| 0.25
CSF1PO 432 2pq 0.16
copia B i[ 11 134 q= 1| 0.31
8
TPOX 229 432 p=|| 0.53 p2 0.28
8
6 102 p=1 024
THOL1 428 2pq 0.07
7 64 g= 1| 0.15
16
VWA 91 428 p=1|| 0.21 p2 0.05
16
“\
profile frequency= & 0.00014 h

tratto da http://www.dna-view.com/profile.htm

/

= 1/7000, frequenza del

Database di alleli umani (ALele FREquency Database: profilo nella popolazione
http://alfred.med.yale.edu/alfred/index.asp

di riferimento




P(given allele sequence|innocent, I) P(innocent|I)
oce

P(innocent|given allele sequence, I') = P(given allele sequence, )

where

P(given allele sequence,I) = P(given allele sequence|innocent, I') P(innocent|I)

+ P(given allele sequence|guilty, I') P(guilty|I)
Since the test has a very low error probability, i.e.,
P(given allele sequence|guilty, I) =~ 1
we find

P(given allele sequence, I') = 0.00014 x P(innocent|/) + 1 x P(guilty|/)
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Once again, just like in the previous example, we see that it is all-important to determine
the prior probabilities P(innocent|I) and P(guilty|l). For instance, if we pick a suspect
at random in a large population, e.g., in a city with 1 million inhabitants, then

P(innocent|I) =1 — 107% = 0.999999;  P(guilty|I) = 10~° = 0.000001

P(given allele sequence, I) = 0.00014 x (1 —107%) + 1 x 107° =~ 0.000141
and finally

0.00014

——— (1 —-107%) =~ 0.992908
0.000141

P(innocent|given allele sequence, I') =
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This last result shows that the DNA test is quite inconclusive in this case, because it
decreases the probability that the suspect is innocent from 0.999999 to 0.992908, only.
How can it be? The reason is that in this case the number of random matches is not
small, indeed in this city there are on average 1000000/7000 = 143 people that randomly
match the given allele sequence.

The argument can be turned upside down by a cunning lawyer, who might claim that
since there are so many random matches, the DNA test is not relevant. However it is not
so, and this claim is the “defendant’s fallacy”. Indeed, the problem that we met above
was that the starting population was far too large. Other evidence might considerably
reduce the number of possible suspects, for instance a surveillance camera might help
identify all the people who entered a building and who had a chance to commit the
crime, and thus reduce the starting population to, say, 100 people. When we repeat the
relevant calculations, we find

P(innocent|/) =1 —1/100 = 0.99; P(guilty|/) =1/100 = 0.01

P(given allele sequence, I') = 0.00014 x 0.99 + 1 x 0.01 = 0.01014
and finally

0.00014
(1—-1072) = 0.0137

P(innocent|given allele sequence, I') = 0.000141 35
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