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The operational definition of probability of an event A 
 
 
 
 
The relative frequency 
 
 
 
 
The law of large numbers 

P A( ) = N A( )
N

fn A( ) = n A( )
n

lim
n→∞

fn A( ) = lim
n→∞

n A( )
n

= P A( )
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The algebra of probabilities 
Let A and B be statements that can be either true or false, 
and such that we can assign probabilities. Then the 
following rules apply: 

0 ≤ P A( ) ≤ 1
P Ω( ) = 1
P A∪ B( ) = P A( ) + P B( ) − P A∩ B( )
P A∩ B( ) = P A B( )P B( ) = P B A( )P A( )
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0 ≤ P A( ) ≤ 1
P Ω( ) = 1; P A( ) + P A( ) = 1
P A∪ B( ) = P A( ) + P B( ) − P A∩ B( )
P A∩ B( ) = P A B( )P B( ) = P B A( )P A( )

A

A

Ω

A

B

A∩ B

Probability space and measure theory 
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Bayes’ Theorem 

Independent events: 

P(A e B) = P(A)·P(B) 

 

Dependent events: 

P(A e B) = P(A|B)·P(B) = P(B|A)·P(A) 

 

     Bayes’ theorem 

P A∩ B( ) = P A B( )P B( ) = P B A( )P A( )

P A B( ) = P B A( )P A( )
P B( )

A

B

A∩ B
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rev. Thomas Bayes (1702-1761) 
 
Thomas Bayes was the son of a London Presbyterian 
minister, Joshua Bayes born perhaps in Hertfordshire. In 
1719 he enrolled at the University of Edinburgh to study logic 
and theology. 
He is known to have published two works in his lifetime: 
Divine Benevolence, or an Attempt to Prove That the 
Principal End of the Divine Providence and Government is 
the Happiness of His Creatures (1731), and An Introduction 
to the Doctrine of Fluxions, and a Defence of the 
Mathematicians Against the Objections of the Author of the 
Analyst (published anonymously in 1736), in which he 
defended the logical foundation of Isaac Newton's calculus 
against the criticism of George Berkeley, author of The 
Analyst. 
It is speculated that Bayes was elected as a Fellow of the 
Royal Society in 1742 on the strength of the Introduction to 
the Doctrine of Fluxions, as he is not known to have 
published any other mathematical works during his lifetime. 
Some feel that he became interested in probability while 
reviewing a work written in 1755 by Thomas Simpson, but 
others think he learned mathematics and probability from a 
book by de Moivre. 
Bayes died in Tunbridge Wells, Kent. He is buried in Bunhill 
Fields Cemetery in London where many Nonconformists are 
buried.  
 
(from Wikipedia) 
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The ideas of Bayes were clarified, extended and put to 
good use by Pierre Simon, Marquis de Laplace 
 
“In order to give some interesting applications of it I have profited by 
the immense work which M. Bouvard has just finished on the 
movements of Jupiter and Saturn ... His calculations give him the 
mass of Saturn equal to 3512th part of that of the sun. Applying to 
them my formulae of probability, I find that it is a bet of 11,000 against 
one that the error of this result is not 1/100th of its value ...” 
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Bayesians stress the subjective aspects. Examples can be 
found in (D’Agostini 2003). D’Agostini cites Schrödinger, 
who took a stand very much like to De Finetti:  
 
Definition of probability:  
. . . a quantitative measure of the strength of our conjecture or 
anticipation, founded on the said knowledge, that the event comes true.  
 
Subjective nature of probability:  
Since the knowledge may be different with different persons or with the 
same person at different times, they may anticipate the same event with 
more or less confidence, and  thus different numerical probabilities may 
be attached to the same event.  
 
Conditional probability:  
Thus whenever we speak loosely of ‘the probability of an event’, it is  
always to be understood: probability with regard to a certain given state of 
knowledge. 
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logical foundations of probability theory 
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Cox’s paper has three main parts:  
 
•  general considerations on probability 
•  axiomatic derivation of the rules of probability from standard 
logic rules 

•  
 
 
 
 
•  frequentist probabilities as a reasonable special case 

p c,b a( ) = F p c a,b( ), p b a( )( )
p b a( ) = S p b a( )( )

functional 
equations for F, S 

standard rules for 
probability of combined 
events 

F F x, y( ), z⎡⎣ ⎤⎦ = F x,F y, z( )⎡⎣ ⎤⎦

xS S y( ) x⎡⎣ ⎤⎦ = yS S x( ) y⎡⎣ ⎤⎦
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P A | B( ) = P B | A( )·P A( )
P(B)

P Ak | B( ) = P B | Ak( )·P Ak( )
P(B)

k = 1, ... , N 

P(B) = P B | Ak( )·P Ak( )
k=1

N

∑

if the events Ak are mutually 
exclusive, and they fill the universe A1 A2 A3

A4
A5 A6

A7 A8
A9

B

P B | A3( )·P A3( )
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P A | B( ) = P B | A( )·P A( )
P(B)

P(B) = P B | Ak( )·P Ak( )
k=1

N

∑

P Ak | B( ) = P B | Ak( )·P Ak( )
P B | Ak( )·P Ak( )

k=1

N

∑
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A simple example 

A B 10 

30 

20 

20 

Here we choose a ball as follows: 

1.  We choose the urn first 

2.  We draw a ball from that urn 

What is the probability of drawing one red ball?  
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P(A) = P(B) = 1/2 (probability of choosing either A or B) 

 

P(G|A) =  1/4 (probability of drawing a yellow ball from A) 

P(R|A) =  3/4 (probability of drawing a red ball from A) 

P(G|B) =  1/2 (probability of drawing a yellow ball from B) 

P(R|B) =  1/2 (probability of drawing a red ball from A) 

 

and therefore 

 

P(R)  = P(R|A)·P(A) + P(R|B)·P(B)  

 = (3/4)·(1/2) + (1/2)·(1/2) = 5/8 = 0.625 
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Inverse problem: if we drew a red ball, what is the 
probability that we drew it from urn A?  

(NB: here we assume that the “physical model” is known, i.e., 
we assume we know how many red and yellow balls are in 
each urn) 

“a priori” probability: P(A) = ½  

 

Now we apply Bayes’ theorem 

 

 

 

 

This is a simple example of Bayesian inference 

P A | R( ) = P R | A( )
P(R)

·P A( ) = 3 4( ) · 1 2( )
5 8( ) =

3
5
= 0.6

“a posteriori” probability 
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We draw another red ball, still from the same urn, (however 
we do not know whether this is A or B). Since now 

P(R) = P(R|A)·P(A) + P(R|B)·P(B) = 0.65  

 

we find  

P A | R,R{ }, I( ) = P R | A, I( )·P A | R, I( )
P(R, I )

≈ 0.692308

Notice that data can be inserted one by one! 
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100 successive draws ...  
 
R,  R,  R,  Y,  Y,  R,  R,  Y,  Y,  R,  R,  R,  R,  R, R,  R,  R,  R,  R,  R,  R,  R,  R,  R,  Y, 
R,  R,  R,  R,  R,  Y,  R,  R,  R,  R,  Y,  R,  R,  R,  R, Y,  R,  R,  R,  Y,  R,  R,  R,  R,  R, 
R,  Y,  R,  R,  Y,  R,  R,  R,  R,  R,  R,  Y,  R,  R,  R,  R, Y,  R,  R,  Y,  R,  Y,  R,  R,  Y,  
Y,  R,  R,  Y,  R,  R,  R,  Y,  R,  R,  Y,  R,  R,  R,  R,  R,  R,  R,  R,  R,  R,  Y,  Y, R,  R 
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... a different starting point: here the initial prior probability is 
0.05 instead of 0.5. 



Frequentist and Bayesian 
statistics 

Where’s the difference?  

Why are there sharply different opinions?  
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The opinion of a Bayesian physicists (M. Goldstein tries to express contrasting 
views, in Advanced Statistical Techniques in Particle Physics, Grey College, Durham, 
18 - 22 March 2002) 

* 

PRO’s (Bayesian view) 
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CON’s (Frequentist view) 
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* it has been argued that quantum probabilities are to be interpreted in a 
Bayesian way, thereby leading to a different meaning of the interpretation of 
outer reality  
 
(see Caves et al., PRA 65 (2002) 022305) 
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A simple application to medical tests (example of HIV test) 

P(positive | infect) = 1 P(positive | not infect) = 1.5%

what is the probability P(infect|positive) ? 

A common answer is 98.5% ... and it is wrong! 

 

Let’s use Bayes’ theorem ...  

P(infect | positive) = P(positive | infect)·P infect( )
P(positive | infect)·P infect( ) + P(positive | not infect)·P non infect( )

= P(positive | infect)
P(positive | infect)·P infect( ) + P(positive | not infect)·P non infect( )·P infect( )

P Ak | B( ) = P B | Ak( )·P Ak( )
P B | Ak( )·P Ak( )

k=1

N

∑
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The estimate depends on the size of the infect population 
i.e., on the probabilities 
 

P(infect)  P(not infect) 

P(infect | positive)

= P(positive | infect)
P(positive | infect)·P infect( ) + P(positive | not infect)·P non infect( )·P infect( )

The posterior estimate strongly depends on the prior 
probability 
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Example:  AIDS frequency in Italy 0.4 % 

  AIDS frequency in South Africa 18.1% 

P(infect | positive) = 1
1 ·0.004 + 0.015 ·0.996

·0.004 ≈ 21.1%

P(infect | positive) = 1
1 ·0.181+ 0.015 ·0.819

·0.181≈ 93.6%

the large number of false positives and the small probability of 
finding a sick person mean that the probability of being 
infected if positive is not actually very high.  

Italy 
 
 
South Africa 
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If we find a positive result in a repeated measurement:  
 
 

P infect positive, positive{ }( ) = 94.7%
P infect positive, positive{ }( ) = 99.9%

The first test changes the reference population, and the 
second test, if positive, gives a significant result. 

Italy 
 
South Africa 
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Prosecutor’s fallacy & Defendant’s fallacy 

Two common mistakes, associated to the wrong 
reference population 

P(innocent |DNAcompatible)

P(DNAcompatible | innocent)

P(innocent |DNAcompatible, I ) = P(DNAcompatible | innocent, I )
P(DNAcompatible, I )

P(innocent | I )

this is 
what we 
want! 
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Classificazione del DNA-1: alleli 

allele: una di due o più forme alternative di un gene 
affetto da mutazioni, e che si trovano nello stesso 
posto in un cromosoma 

esempio: malattie 
genetiche come 
l’anemia falciforme 
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sickle-cell disease frequency 
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Database di alleli umani (ALele FREquency Database: 
http://alfred.med.yale.edu/alfred/index.asp 

tratto da http://www.dna-view.com/profile.htm 

Classificazione del DNA-2: frequenza degli alleli 

copia A 

copia B 

≈ 1/7000, frequenza del 
profilo nella popolazione 
di riferimento 32 
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