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Bayesian inference and maximume-likelihood

uniform distribution (in
general, improper)

p(dle,I) /

p(01d,1)= P -p(011) likelihood
(d | I)‘/
evidence — N }f((:;;ii p(e | I) o< I(d’e)

in this case the set of parameters that maximizes the posterior

(MAP) is also the set that maximizes the likelihood (MLE)
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max-likelihood in the context of a Gaussian model

independent data d; = {x,y;} with negligible error on x

2
£(d,0) Hexp —[yk xk’ :I

20,

= eXP 1

z[yk 2xk’ ]

o (TP

> e Z[yk zxk?e)]z

Gk

max-likelihood implies min chi-square and least-squares method
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expansion about minimum of chi square

2.,2
2 (0)=x*(6,)+ ;AOTHAO I x

= 00.00
\ / o Tle=e,

Hessian

p(@1d,I)o £(d,0) o< exp{—xz} o< eXP {—%AOTHAO}

p(01d,1)= (27t)_n/2 (detV)_1 exp {—%ABTV_IAO}

/

covariance matrix
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famous frequentist textbook

"Statistical Methods in Experimental Physics", Eadie, Drijard, James, Roos, and
Sadoulet, American Elsevier, 1971

statistics for physicists

http://www.slac.stanford.edu/BFROOT/www/Statistics/bibliography.html

http://www-cdf.fnal.gov/physics/statistics/

http://www.nu.to.infn.it/Statistics/

summary notes, mostly on frequentist statistics

http://pdg.lbl.eov/2012/reviews/rpp2012-rev-statistics.pdf

notes on MINUIT, a program for function minimization (intensively used for
chi-square minimization)

http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html
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Prior distributions

The choice of prior distribution is an important aspect
of Bayesian inference

« prior distributions are one of the main targets of
frequentists: how much do posteriors differ when we
choose different priors?

« there are two main “objective” methods for the choice
of priors
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Priors related to the symmetry properties of the
likelihood functions

1. the likelihood may have
important symmetries

N\

p(011)- P(D16.1) =p(01D,I)

[P(D16.1)p(011)d0
/TN

2. if the prior shares the
same symmetries ...

3. ... then, the posterior
has the same symmetry
properties as well.
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A. translation invariance

£(d.8)=g(6~-f())

When the likelihood has this symmetry, then the
parameter transformations that keep the difference

60— f(d)

constant, do not change the likelihood.
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Example, structure of the Gaussian likelihood

1 (d—p)

ex
27O’ P 20°

P(dlu,0)=

this likelihood is invariant with respect to translations

W=u+b;, du'=du

P(u)du=P(w)dy = P(u+b)du
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this must hold for infinitesimal translations as well,

therefore
P(u)=P(u+b)=P(u)+P ()b

and we find

P/(u)=0
P(ut) = constant

thus we find a uniform distribution (in general an
improper one)
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B. scale invariance

P(d17)= %eXp(_%) _ é(%)exp(_g

= %exp[(lnd —Int)—exp(Ind—In7) |

the likelihood is invariant with respect to scale changes,
such that

d — od,; T— 0T

’

T'=ar; dt'=adt
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P(t)dt = P(7’)dt’ = P(at)odt

\ expanding about a = 1

we find:

P(t)=oaP(at)=[1+(a-1)|P(t+(a-1)7)
(t)+| P(7)+7P'(7)|(a—1)

P(T)Z—TP'(T)

P(7) =—l; lnP=1nl+cost

P(t) 1 T

C
P(T) = ? —_— usually this is improper

(Jeffreys’ prior)
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A short refresher on entropy in statistical mechanics

« consider a system where states n are occupied by N,
distinguishable particles (n, n=1, ... , M).

« the number of ways to fill these states is given by

N
Q=
N, IN,\...N,,!
« then Boltzmann’s entropy is
N 1 1
SB—kBan—kBlanzNz!mNM!~kB (N nN—N)—;(Nn nN,—N,)

=k, (NlnN— Y Np,(Inp, +1nN)] =k, ). D, In—
n n pn
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|
SB — kBZP,- ln_
i P;

/ \ probability of physical

Boltzmann’s entropy is states
functionally the same as
Shannon’s entropy
1
5 I~ 2]9 i log 2
[ p,-
\ probability of source
symbols
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Edwin T. Jaynes (1922-1998),
introduced the method of
maximum entropy in statistical
mechanics: when we start from the
informational entropy (Shannon’s
entropy) and we use it introduce
Boltzmann’s entropy we reobtain
the whole of statistical mechanics
by maximizing entropy.

In a sense, statistical mechanics
arises from a comprehensive
“principle of maximum entropy”.

http://bayes.wustl.edu/etj/etj.html
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Reprinted from THE Prvsicar Review, Vol. 106, No. 4, 620-630, May 15, 1957
Printed in U. S. A.

Information Theory and Statistical Mechanics

E. T. JaYnNEs
Department of Physics, Stanford University, Stanford, California

(Received September 4, 1956; revised manuscript received March 4, 1957)

Information theory provides a constructive criterion for setting
up probability distributions on the basis of partial knowledge,
and leads to a type of statistical inference which is called the
maximum-entropy estimate. It is the least biased estimate
possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information. If one considers
statistical mechanics as a form of statistical inference rather than
as a physical theory, it is found that the usual computational
rules, starting with the determination of the partition function,
are an immediate consequence of the maximum-entropy principle.
In the resulting “subjective statistical mechanics,” the usual rules
are thus justified independently of any physical argument, and
in particular independently of experimental verification; whether

or not the results agree with experiment, they still represent the
best estimates that could have been made on the basis of the
information available.

It is concluded that statistical mechanics need not be regarded
as a physical theory dependent for its validity on the truth of
additional assumptions not contained in the laws of mechanics
(such as ergodicity, metric transitivity, equal a priori probabilities,
etc.). Furthermore, it is possible to maintain a sharp distinction
between its physical and statistical aspects. The former consists
only of the correct enumeration of the states of a system and
their properties; the latter is a straightforward example of
statistical inference.
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Information theory provides a constructive criterion for setting up probability
distributions on the basis of partial knowledge, and leads to a type of statistical
inference which is called the maximum-entropy estimate. It is the least biased
estimate possible on the given information; i.e., it is maximally noncommittal with
regard to missing information.

If one considers statistical mechanics as a form of statistical inference rather than as
a physical theory, it is found that the usual computational rules, starting with the
determination of the partition function, are an immediate consequence of the
maximum-entropy principle.

In the resulting "subjective statistical mechanics," the usual rules are thus justified
independently of any physical argument, and in particular independently of
experimental verification; whether or not the results agree with experiment, they still
represent the best estimates that could have been made on the basis of the
information available.

It is concluded that statistical mechanics need not be regarded as a physical theory
dependent for its validity on the truth of additional assumptions not contained in the
laws of mechanics (such as ergodicity, metric transitivity, equal a priori probabilities,
etc.). Furthermore, it is possible to maintain a sharp distinction between its physical
and statistical aspects. The former consists only of the correct enumeration of the
states of a system and their properties; the latter is a straightforward example of
statistical inference. 17



We maximize entropy in order to solve problems and
find prior distributions ...

1. The kangaroo problem (Jaynes)

« Basic information: one third of all kangaroos has blue eyes,
and one third is left-handed.

* Question: which fraction of kangaroos has both blue eyes
and is left-handed?

left | ~left left | ~left left | ~left
blue 1/9 2/9 blue 0 1/3 blue 1/3 0
~blue | 2/9 4/9 ~blue | 1/3 1/3 ~blue 0 2/3

no correlation maximum negative correlation  maximum positive correlation
18



probabilites Py, Py Py Pir

entropy (proportional to Shannon’s entropy)

1 1 1 1
S=p,In—+p-In—+p In—+p_In—

P Py Pyr Psr

constraints (3 constraints, 4 unknowns)
Pyt D5t Pt =1
Py T DPy; = 1/3
Pp Tt Py = 1/3
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entropy maximization with constraints

1 1 1 1
Sy = [pbl In—+p, In—+p - In—+p_ ln—]
P Py Pyr Pyr

+;{‘1(pr TPy T Pyr T Por — 1)+ A, (pbl TPy — 1/3)+;l‘3(pbl TPy~ 1/3)

Dy = exp(—1+2~1 +A, +/13)
Py = exp(—1+7t1 +7L3)
p,r =exp(—1+4, +lz)
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Py = Ppr exp(%)
p,; = Py exp(4,) = DPuPy = Pulir
Py = Pyr eXp(lz + ;Ls)

/\

erl"'p;;l‘l'pbl—‘I‘pb—l:l pb72p51:1/3_pbl
Pyt D, =1/3 Py =1/3+py,

9 = 3 ) 5
pbl+P,;,=1/3 (1/3_pbl) = Py /3+ D,
PPt = PoiPsi 1/9_2pbz/3+pgz:pbz/3+p§l

this solution coincides
| 2 4 with the least
= Pu==s Py =Py=7s Py= 5 informative distribution
9 9 9 (no correlation)
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2. Solution of underdetermined systems of equations

In this problem there are fewer equations than unknowns; the
system of equations is underdetermined, and in general there

IS NO unique solution.

The maximum entropy method helps us find a reasonable
solution, the least informative one (least correlations between
variables)

Example:

3x+35y+1.1z=10

9 9 O
D1x+44y—-10z=1 (x.y,2>0)
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3x+5y+1.1z=10
2. 1x+44y—-10z=1

this ratio can be taken to be

a “probability” v

X X y y Z Z
S:—[ In + In + In )
X+ty+z  x+y+z Xx+y+z X+y+zZ Xx+y+zZ X+y+z

= _ I [xmx+ymy+sz—ﬂPfV+@hmx+y+Zﬂ
X+y+z

Q=S+A(3x+5y+1.1z-10)+ u(-2.1x+4.4y—10z-1)

a_Q__lnx—ln(x+y+Z)+xlnx+y1ny+zlnz—(x+y+z)ln(x+y+z)

> +3A-2.1u
dx X+y+z (x+y+2)
:Ky+zﬂnx+ymz+zmz+3l_21u20
(x+y+2z)
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+z)Inx+vlny+zI1
00 _(y+a)nxtyiny+tzinz 5, 5y

0x (x+y+2z)

00 xInx+(x+z)lny+zlnz
dy ()c+y+z)2

00 xInx+ylny+(x+y)lnz
o7 (x+y+z)2
10=3x+5y+1.1z
1=—2.1x+44y—10z

+5A+44u=0

+1.1A-10u=0

x =0.606275; y=1.53742; z= 0.449148;
A =0.0218739; u=-0.017793
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this is an example of an “ill-posed” problem

the solution that we found is a kind of regularization

of the ill-posed problem
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Finding priors with the maximum entropy
method

1
S = Zpk lnp— = —2 p.Inp, Shannon entropy
k k k

entropy maximization when all information is
missing and normalization is the only constraint:

9 —Zpklnpk+ﬂ,(2pk—lj =—(lnpk+1)+l:O
apk_ k k

p.=e"" Zpk = Zel_l =Ne*'=1 = p =1/N
k k
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entropy maximization when the mean is known p

0T
~ _Zpk Inp,+ 4, (Zpk — lj + 4 (Z'xkpk — .uj
k k k

P |
=—(Inp, +1)+ A, + 4,x, =0

Incomplete

/ solution...

e;LO +llxk -1 .

9

Pr =

We must satisfy two constraints now ...

Edoardo Milotti - Introduction to Bayesian Statistics - XXVIII cycle
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p — eﬁﬂ +A«1Xk—1
k

Zpk 26/10+/11xk—1 Ao—lzeﬂ.lxk —1
k
Exkpk Exk ).0+llxk—1 ﬂo—lxxkellxk = U
k

no analytic solution,

EXkeﬂqu — only numerical
k
e’ = ' =
WD
k
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Example : the biased die

(E. T. Jaynes: Where do we stand on Maximum Entropy? In The Maximum Entropy
Formalism; Levine, R. D. and Tribus, M., Eds.; MIT Press, Cambridge, MA, 1978)

mean value of throws for an unbiased die

é(1+2+3+4+5+6)=%:3.5

mean value for a biased die
35(1+¢)

Problem: for a given mean value of the biased die, what is the
probability distribution of each value?

The mean value is insufficient information, and we use the
maximum entropy method to find the most likely distribution
(the least informative one).
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entropy maximization with the biased die:

0 6 6 6 7
CY _zpk Inp, + 4, (zpk _lj-l_ﬂ‘l(zkpk -—(l+¢
k=l k=1 k=1 2

dp;
=—(Inp,+1)+ A, +kA, =0

p, = eﬂo+/11k—1
k

2 D =M 2 Mt =1

k=1,6 k=1,6
Y kp, = ket = 1+g we still have to satisfy the
e e constraints ...

1 2 kp,

k=1,6

A1 _ .
D WAl Wi

k=1,6 k=1,6

1+£)

Edoardo Milotti - Introduction to Bayesian Statistics - XXVIII cycle
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_ o A Ak
Yo" g 2 )
k=1,6
d
:a—%[/ll+ln(l—e6)“) ln(l e%)}
6e°™ e’ 7
_1_1—66/11_'_1—87“_5(“_8)

the Lagrange multipliers are obtained from nonlinear
equations and we must use numerical methods
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numerical solution

media

P1”

pP2-

pP3-

P4"

Ps”

Pé6”

3.0=

0.246782:

0.20724 =

0.174034:

0.146148

0.122731:

0.103065 =

3.1=

0.22929 =

0.199582:

0.173723:

0.151214:

0.131622:

0.114568 =

3.2=

0.212566+

0.191659:

0.172808:

0.155811 1

0.140487 -

0.126669 =

3.3=

0.196574+

0.183509

0.171313:

0.159928 4

0.149299:

0.139377 =

3.4n

0.181282:

0.175168:

0.16926 =

0.163551 4

0.158035+

0.152704 =

3.5=

0.166667 -

0.166667:

0.166667 -

0.166667:

0.166666 *

0.166666 =

3.6=

0.152704:

0.158035:

0.163551+

0.16926 =

0.175168+

0.181282 =

3.7=

0.139377:

0.149299

0.159928:

0.171313 4

0.183509+

0.196574 =

3.8=

0.126669:

0.140487:

0.155811¢

0.172808:

0.191659:

0.212566 =

3.9=

0.114568+

0.131622

0.151214:

0.173723 4

0.199582

0.22929 =

4.0=

0.103065+

0.122731}

0.146148:

0.174034 4

0.20724 =

0.246782 :

with a biased die we obtain skewed distributions.
These are examples of UNINFORMATIVE PRIORS

Edoardo Milotti - Introduction to Bayesian Statistics - XXVIII cycle



Example: mean =4

0 — _

0.20f .
0150 T e
0.10}e

0.05|

ooob— .~~~ . . |

0.25

| 1/6
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Entropy with continuous probability distributions
(relative entropy, Kullback-Leibler divergence)

b
S — —J[p(x)dx]ln[p(x)dx] this diverges!
S, = _Z D, 1n e relative entropy
p - mk
" p(x)
S pim = —fp(x)ln dx this does not diverge!
: m(x)
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Entropy maximization with additional conditions (partial
knowledge of moments of the prior distribution)

function (functional) that must be maximized

N

0| p|= —_b[p(x)ln "Z((i)) dx+§lk ;.b[xkp(x)dx—Mk >
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variation

-

5Q=—}5p< In

\

p(x)

m(x)

In

WLX)

p((x) +1—§lkxk\

vdx =0

J

+1—Zlkxk =0
k

p(x)= m(x)exp(;lkxk _1j

Edoardo Milotti - Introduction to Bayesian Statistics - XXVIII cycle
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p(x)=mlx)exp| T -1

p(x) is determined by the choice of m(x) and by the
constraints

The constraints can be the moments themselves:

b
M, = jka(x)exp(Zlnx” — ljdx
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1. no moment is known, normalization is the only
constraint, and p(x) is defined in the interval (a,b)

b
M, = Jm(x)exp(ﬂ,o —1)dx=1

we take a reference distribution which is uniform on (a,b),
l.e.,

1
m(x)_b—a
1 b
M, = Jexp(/lo —1)dx=exp(A,—1)=1
b-—a”
0
= A=k p(x):m(x)eXp(zlnxn_l): 1
n=0 b—a
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2. only the first moment is known, i.e, the mean, and p(x) is
defined on (a,b)

exp(4, + Ax—1)dx =1

xexp(4, + A, x—1)dx

_exp(A, - 1)_exp(),1b) —exp(La)
b—a A

M, = ) j.xexp(llx)dx = exp(;to _ 1) {%(bexp(llb)—aexp(lla))— %(exp(ﬂqb)— exp(lla))}

b—-a 1 1

In general these equations can only be solved numerically...
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special case:

exp (4, — 1)_exp(ﬂ,1L/2) —exp(—-A,L/2)

L Z
exp(4, —
p(LO ) [ il (%exp(llL/Z) + %exp(—llL/Z)j - %f(exp(ﬂ’ll’/z) - CXP(_%L/Z))} =0

exp(A, — 1).exp(/llL/2) —exp(-A,L/2)
L A

~(exp(AL/2)+ exp(~AL/2)) - 5-(exp(AL/2) - exp(-AL/2)) =0

1
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exp(4, —1) Sm}/ll(il/g/ 2)_,
1

Lcosh(A,L/2)- %sinh(/llL/2) =0

1

= (AL/2)=tanh(AL/2) = A,=0; A, =1

p(x)= m(X)eXp(kZlgxlkx" _ 1] _

4
L

Edoardo Milotti - Introduction to Bayesian Statistics - XXVIII cycle
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nonzero mean

L L '
a—>—-——; b—>—; M, =
2 2

exp (4, — 1)_exp(ﬂ,1L/2) —exp(—-A,L/2)

L A
exp ()jz— 1) [g(exp(zlL/z) +exp(-4,L/2))- %(eXP(AL/Z) - exp(—itlL/Z))} =€
exp(ﬂ,o — 1). , B
(2,1)2) sinh(A,L/2) =1

tanh(A,L/2) A,

L 1 1
2
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tanh(/'LlL/Z):[ : 28]1 tanh(z)z(l+§)1

+
AL/2 L

this is similar to the equations of ferromagnetism

Edoardo Milotti - Introduction to Bayesian Statistics - XXVIII cycle
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another special case a=0; b—

exp(2, + A x—1)dx =1

xexp(A, + Ax—1)dx

M, =1=myexp(A, —1)

]\41 = m, exp()to —1)_/1—12_ = (_2’1) 2‘—12 — —Z: <.X>
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then

myexp(A, —1)=-1, = —

and we obtain the exponential distribution

px)=m{exo| Lax' 1)

= myexp (A, —1)exp(Ax)= 1

()

Edoardo Milotti - Introduction to Bayesian Statistics - XXVIII cycle
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X

()

J
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3. both mean and variance are known, and the interval is
the whole real axis

=
I
S

p(lo +Ax+A,x° — l)dx =1

xexp(l +Ax+ Ax° —l)d

=
||

||
m*—.@ Q'——.W Q*—,w

x> exp( Ay + Ax + 2,x7 —1)dx

2 2
s oot o]

( 2 ’
=exp| 4, —l—jll—llexp /’LZ£x+£]
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2\ +eo 2 2
M, = m,exp ),0—1—/1—1 exp[—z(;ﬁx+£] ]dx:moexp(ﬂ.o—l—l—‘j

~1/24,) A,

00

R
3]
+

M, =m exp| A, —1—=1 | [ xex I x+£2 dx =m,exp| A, — —l—lz
| =My EXp| Ay 2, )] P 2(_1/212) 2 = m,CXp| Ay A

00

2 ) oo 2
M, =myexp| A, — A J‘xzexp{—m[x+%J ]dxzmoexp[lo
2 2

—o0

LN A
A
MIZA—IZ‘LL
2
1 2
M,=| —+2 |=0+u’
? 24, /122] K
u 1
= A ~5g7 =57 moexp[lo—l—

Edoardo Milotti - Introduction to Bayesian Statistics - XXVIII cycle
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p(x)=m, exp()to +Ax+A,x° — 1)

22 1 A
- 2o =121 |exp| - il
moexp( . l)exp 2(_1/212)()&&2]
1 1 2
] 262%6Xp[262(x—,u)}

... In this case where mean and variance are known, the
entropic prior is Gaussian
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An alternative form of entropy that incorporates the
normalization constraint

Q[p;m] = —)J;dx p(x)In :;(();)) + ),U;dxp(x)— 3[dxm(x))

= de(—p(x)ln Px) +Ap(x)— /lm(x)]
t m(x)

00 = JSpdx[—ln px) —1+/’L]:0
X m(x)

p(x)=m(x)exp(A—1)
jdx p(x)= de m(x)exp(A—1)=exp(A- 1)de m(x)=exp(A-1)=1

= A=1

Olp;m]= }j{dX(—p(x)ln nlz ((i)) + p(x)— m(x)]
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Until now we have emphasized the role of the momenta of
the distribution, however other information can be
iIncorporated in the same way in the entropic prior.

A “crystallographic” example (Jaynes, 1968)

Consider a simple version of a crystallographic problem,
where a 1-D crystal has atoms at the positions

x,=jL (L=1,...,n)

J

and such that these positions may be occupied by impurities.
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From X-ray experiments it has been determined that impurity
atoms prefer sites where

cos(kxj)>0
so that

<cos(kxj)>:O.3

which means that we have the constraint

<cos(kxj)> = g{pj cos(kxj) =0.3

where p; is the probability that an impurity atom is at site J.
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Then the constrained entropy that must be maximized is

Q:—ij Inp, + 4, (ij —1]+7Ll£2pj cos(kxj)—OS]
j=1 Jj=1 J=1

from which we find the maximization condition

g—gj:—(lnpj+1)+ito +/'Llcos(kxj):0

l.e.,

p;= exp[l— A, — A, cos(kxj)}

The rest of the solution proceeds either by approximation or
by numerical calculation.
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