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Two important computational techniques with a

Bayesian basis

1. The EM algorithm
2. Image processing techniques (MLM, MEM, etc.)



1. The EM algorithm (Dempster, Laird & Rubin, 1977)

Recall the max. likelihood principle:

uniform distribution
(usually an improper prior)
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in this (approximate) setting, the MAP estimate coincides with
the ML estimate.



when data are independent and identically distributed (i.i.d.)
we find the following likelihood function

L (d’e) = Hp(di

0

and we estimate the parameters by maximizing the likelihood
function

6 = arg max £ (d,0)
0
or, equivalently, its logarithm
6 = argmax | log £ (d,0) |
0

(in real life, this procedure is often complex and almost
invariably it requires a numerical solution)



The EM algorithm is used to maximize likelihood with incomplete information,
and it has two main steps that are iterated until convergence:

E. expectation of the log-likelihood, averaged with respect to missing

data: parameters (with respect
to which we want to
maximize the expression
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M. maximization of the averaged log-likelihood with respect to
parameters:
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Example: an experiment with an exponential model
(Flury and Zoppe)

Light bulbs fail following an exponential distribution with mean
failure time 6

To estimate the mean two experiments are performed

1. n light bulbs are tested, all failure times u; are recorded
2. m light bulbs are tested, only the total number r of bulbs failed

at time t are recorded
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expected failure time for a bulb

that is still burning at time t t+0

expected failure time for a bulb 0 — texp(—t/@)
that is not burning at time t 1— exp(—t/@)




Note on mean failure time for a bulb that is not burning at time ¢
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average log-likelihood
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this ends the expectation step



the max of the mean likelihood
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can be found by maximizing the approximate expression
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iterate this until convergence ...
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Example with mean failure time = 2 (a.u.), and randomly
generated data (n = 100; m = 100). In this example r = 36.
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Important application of the EM method: parameters of “mixture
models”.

p(x,

9)=Zocl.pi(xn

Example: a Gaussian
mixture model (M=2)




direct maximization of log likelihood

) = Elogp(xn
= Zlog Zaipi(xn

6)

log £(x,0) long(

this is difficult ... however we can do it differently with a
reinterpretation of the mixture model parameters ...

O, = probability of drawing the k-th component of the mixture model

[> new (hidden) variable: y = k = index of component

thus we must redefine data and parameters



new likelihood which includes the hidden variables
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( 8. are the parameters restricted to the i-th component)
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The structure is simpler now, however there are hidden
variables.



Now we proceed by averaging the likelihood
(Expectation step)
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sum instead of integral, because the
y variates are discrete



prior probabilities in the expression of the averaged log-
likelihood

0(6.6")= X [logp(x.y[6)] p(y]x.6"")




Therefore, using log £'(x,y,0)= Zlog[o‘ynpyn (xn‘eyn)}
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to decouple the variables, we add one sum and one Kronecker’s delta...

after the decoupling, we can use the normalization of
conditional probabilities

M .
2 P(yj ‘xj’e(l_l)) -
=1

(i-1) )



M N M M M M N

:ZZ]Qg[agpg(kag)} Z Z Z 2 Hp(yj‘x] 0( 1)) >p(f‘xk 9( 1))
(=1 k=1 Ky1=1 YVeer =y =1 yy =1 ;;}{
M N r N M \

:ZZlog[agpg(xk@)} HEp(yJ‘xJ 6' _1)) >p(€‘xk 0' _1))
(=1 k=1 =1 y,=1

J
J y
_ iilog[%m(xk |9€)]p(€ xk,G(H)) \ these sums all add to 1

(normalization of conditional
probabilities)



0(6.6")

=1 k=1

iilog[ p.(x00,)Jp(7x..6"")

iz loga, | (‘ ,9(”_1))+i2[logp€(xk|9£)]p(€‘xk,9(i_l))

(=1 k=1 f (=1 k=1 \

this depends only on the X parameters this term depends on the parameters
of the component distributions

Thus there are two terms that can be maximized separately.
Moreover, the first term must be maximized with the normalization
constraint, i.e.
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This is as far as we can go without introducing an explicit form
for the component distributions: now we explicitly consider the
1D Gaussian mixture model:
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Finally we find the following set of recursive formulas, that
combine the E and M steps:

1 (x—um)2
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We remark that the probabilities
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p(y,

are an estimate of the frequencies of the y, using the
observed data x,, and this is equivalent to a classification
(selection of one of the component distributions).



Example: classification of response of DNA microarrays.

Cancer Cells

Normal Cells

v

"Red Fluorescent" Targets

RNA Isolation

Reverse
Transcriptase
Labeling

Combine Targets

v

"Green Fluorescent" Targets

Hybridize to
Microarray

\J

Microarray image from:
http://www.wormbook.org/chapters/

www germlinegenomics/germlinegenomics.html

Further informations on DNA microarrays:
http://www.ncbi.nlm.nih.gov/About/primer/
microarrays.html




80

. L
g L
e
§ L
§ I
Row Sums . . . .
o= nﬂn.n
o] 0 = .
- = s -
_»
v — | EEDIEE
o -~ ——
-1 T EEaen
70 - __)
L — ' gooeg
—_—

From Blekas et al., “Mixture Model Analysis of DNA Microarray
Images”, IEEE Trans. on Medical Imaging 24 (2005) 901



2. Image processing techniques (MLM, MEM)

(VLT KUEYEN + FORS2)

The Crab Nebula in Taurus

ESO PR Photo 40f/99 { 17 November 1999 ) © European Southern Observatory +
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We estimate the true pixel distribution taking the pixel vector
that maximizes the posterior distribution (MAP estimate:
Maximum A Posteriori estimate).

This depends on the prior distribution

P(f) flat prior :> I(\I/\I/Iali(lizr;wm Likelihood Estimate

P(f|g) =< P(g|f) P(f) = P(g]f)

P(f ) entropic prior :’> I(\I/\I/laéll\%um Entropy Method



Notice that

log P(f|g) = log P(g|f)— | —log P(f)]

therefore we obtain the estimate f“ by maximizing the
likelihood with the penalty function

[—log P(f)]

Experiments have been tried with many different
penalties, many of them barely justified on probabilistic
grounds (or not at all!)



Let f be the vector of “true values” (uncorrupted intensities of an image, a

spectrum, etc. ...), and translate these values into counts

n, = Laf,_l

(i=1, ..., M). The least informative prior is that for a structureless image is

uniform, and the probability of one count at the i-th position is just 1/M.

Likewise, the probability of a given vector of values where the total number

of counts is N, is given by the multinomial probability
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Using Stirling’s approximation
n'=n"e” Inn!=nlnn—n
M
we find, with the definiion p,=f/ D1,
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Using the entropic prior and Bayes’ theorem we find

P(f)<exp| aS(f) ]

P(f|g) < P(g|f)P(f) < P(g|f)exp| aeS(f) ]

log P(flg) = log P(g[f) + xS (f)

therefore we find the combination of pixels (i.e., the f vector)
that maximizes the posterior distribution by maximizing a linear
combination of likelihood and Shannon’s entropy.



Image likelihood: 1. the observation model

PSF
(Point Spread
Function
true image
of a galaxy

afe Noise :> - |

“dirty image”
(example from Eric Thiebaut)
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In general the effect of the PSF is modeled by a linear
operator

f — Hf

/N

action of optical system  true” pixel
on true image vector
Is modeled by matrix H



Image likelihood: 2. the noise model (degradation model)

(g-Hf)"

62

Gaussian noise model P(g\ f) oc €Xp| —

HE), ol ~(HF), ]

Poisson noise model P(g‘f) ~ H( g,

(Poisson noise mostly from detection process, Gaussian
noise mostly from electronics or from approximation of
Poisson noise)



sometimes we can use the Gaussian approximation of
Poisson noise

8n
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Gaussian noise only:

maximize linear combination of entropy and chi-square

(g—HFf)’
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Combined noise model

detector noise: Poisson noise
electronic noise: Gaussian noise

P(g|f):l:[;\/2;76xp — - x ”exp[—(Hf)n}

maximize

logP(f|g) =aS(f)+ glog {; \/2;7 eXp{— (gn _2k) }(}g)z eXP[_(Hf)n ]}

0

> numerical maximization procedure



Applications of Max.Ent. to image processing
(J. Skilling , Nature 309 (1984) 748)

»

L

Il movimento dell’” auto introduce correlazioni lineari tra pixel. La modellizzazione
delle correzioni lineari non consente |’ inversione e la determinazione dei valori
corretti, perché ci sono piu variabili che correlazioni. || metodo della Max.Ent.
consente di risolvere questo problema sottodeterminato.



Reconstruction of missing data
(from http://www.maxent.co.uk )
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99%



NGC 40

low resolution (MEM enhanced)

low resolution

R high resolution

(from http://www.mirametrics.com)
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Examples In the late 1870s, another radio astronomer, Steve Gull, introduced him to

the power of the Maximum Entropy Method. John wrote what was to
become the first MemSys kernel system, and helped lay the Bayesian
foundations for MEM. In 1881 he and Steve founded MEDC to exploit
opportunities to apply MEM in other fields.
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GMOS image of the central region of Abell 586 with logarithmically spaced X-ray isophotes
(solid lines) and weak-lensing reconstructed mass density (dashed lines) superposed.
The X-ray point source nearthe southwest corner isthe Seyfert 1 galaxy C171_3650.

(from Cypriano et al., ApJ, 630 (2005) 38-49)



Many related methods: e.g. the Richardson-Lucy (RL)
algorithm

noise model: Poisson noise
prior: flat prior

p(tlg) = [Tk

1= -exo - (Hr), JP(1)

logP(f|g)= D | —(Hf), +g,log(HF) |+ const.

/

e asaion | = argmax X[ ~(HE), + g, log (),




8. Raw image of planet Saturn obtained with the WF/PC cam-
era of the HST.

9. Reconstruction of the image of Saturn using the R-L algo-
rithm.



NGC 604 in Spiral Galaxy M33
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Hubble
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