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Bayesian estimates often require the evaluation of 
complex integrals. Usually these integrals can only be 
evaluated with numerical methods. 
 
           enter the Monte Carlo methods! 
 
1.  acceptance-rejection sampling 
2.  importance sampling 
3.  statistical bootstrap 
4.  Bayesian methods in a sampling-resampling 
perspective 
5.  introduction to Markov chains and to the Metropolis 
algorithm 
6.  Markov Chain Monte Carlo (MCMC) 



1. The acceptance rejection method 



Example: random numbers with semi-Gaussian distribution 
from exponentially distributed random numbers. 

f x( ) = 2
π
exp − x

2

2
⎛
⎝⎜

⎞
⎠⎟

x ≥ 0

g x( ) = exp −x( )



f x( ) = 2
π
exp − x

2

2
⎛
⎝⎜

⎞
⎠⎟

x ≥ 0

g x( ) = exp −x( )

⇒
f x( ) = cg x( )
′f x( ) = c ′g x( )

⎧
⎨
⎪

⎩⎪
⇒

2
π
exp − x

2

2
⎛
⎝⎜

⎞
⎠⎟
= cexp −x( )

x 2
π
exp − x

2

2
⎛
⎝⎜

⎞
⎠⎟
= cexp −x( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⇒ x = 1; c = 2
π
exp − x

2

2
+ x

⎛
⎝⎜

⎞
⎠⎟
≈1.31549

Definition of contact point (to maximize efficiency) 
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Histogram of accepted x values 
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Comparison with the original distributions 
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Now notice that in this method we generate pairs of real 
numbers           that are uniformly distributed between 
and the x-axis, therefore we can use these pairs to estimate 
the total area under the curve 
 
(here the reference area is the area of the enclosing rectangle which 
corresponds to a uniform distribution)   
 

u,θ( ) f θ( )

area =
# of accepted pairs

# of pairs
reference area



In general, if           , where p is a pdf  h x( ) = f x( ) p x( )
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We encounter a problem with this method when we 
must sample functions that have many narrow peaks. 

here the x are iid with pdf p(x) 



2. Importance sampling 
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this pdf is troublesome ...   therefore we use this ... 



3. Bootstrap (B. Efron, 1977) 

The bootstrap method is a 
resampling technique that 
helps calculate many 
statistical estimators 
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consider the distribution of a set of measurements 



the distribution of data is an approximation of the “true” 
underlying distribution (in this case a mixture model) 
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distribution of mean value obtained from 5000 sets of 
data (sample size = 50) 

You can do this if you have large datasets ... but what if you 
have only a handful of measurements? 
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example: single dataset (same size as before, 50 
measurements) 

the distribution is a rough representation of the underlying 
distribution ... and yet it can be used as before ... 



Bootstrap recipe:  
 
if you want to find the distribution of the mean (or any other 
statistical estimator) use the dataset itself to generate new 
datasets 
 

 resample from dataset (with replacement) 
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distribution of mean value 

repeated sampling from 
original distribution 

resampling from single 
dataset 

true mean: -0.2 
mean from repeated sampling (size = 250000): -0.200222 ± 0.0813632 
mean from resampling dataset (size = 50): -0.142699 ± 0.0838678 



bootstrap estimate of correlation 
coefficient distribution 

Example from Di Ciccio & Efron, Statistics of Science 11 (1996) 189 and 
Efron, Statistics of Science 13 (1998) 95 

counts of CD4 limphocytes 



4. Bayesian methods in a sampling-resampling perspective 
(Smith & Gelfand, 1992) 



In Bayesian methods we have to evaluate many integrals, 
like, e.g., 

normalization (evidence) 

marginalization 

averages (statistical estimators) 





Bayesian learning as a resampling procedure 

p θ x( ) = l θ; x( )
l θ; x( ) p θ( )dθ∫

p θ( )

1. prior distribution defined 
by initial samples 

2. Bayes factor distorts 
the distribution of initial 
samples  

3. posterior distribution 
corresponds to a resampling of 
initial samples 



So, how do we resample?  
 
•  acceptance-rejection 
•  bootstrap 
•  weighted-bootstrap 



modified acceptance-rejection to resample prior samples with 
probability 
 
 
 
 
and with     the MAP estimator, so that  
 
 
 
 
and then we resample from a population       , accepting      with 
probability 
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Standard bootstrap 
 
consider samples      extracted from a distribution with 
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(the samples approximate the “true” underlying distribution) 



Weighted bootstrap 
 
if the samples     are distributed according to         BUT 
we have a target distribution   
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f θ( )dθ
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then for each sample compute the weights  wi =
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f θ j( ) g θ j( )

j
∑

resampling with probability wi yields the distribution h 

this normalization 
factor is unknown 

weights are self-normalized, 
no need of the unknown 
integral 



Indeed 
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here we do not need knowledge of 
the target distribution 

eventually we get h without the need 
to compute normalization integrals 

samples extracted from g  



Example (McCullagh & Nelder): take two sets of binomially 
distributed independent random variables Xi1 and Xi2 (i=1,2,3) 
 
 
 
 
The observed random variables are  

Yi = Xi1 + Xi2

Xi1 = Binomial ni1,θ1( )
Xi2 = Binomial ni2 ,θ2( )

likelihood =
ni1
ji
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Sample data 

1 2 3 
ni1 5 6 4 
ni2 5 4 6 
yi 7 5 6 



Example of implementation in Mathematica 
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2D parameter space) 
 



Posterior as a resampled prior using acceptance-rejection 



Posterior as a resampled prior using weighted bootstrap 



The resampled points are representative of the posterior 
distribution and can be used to evaluate any sample estimate 
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5. Very short introduction to Markov chains 
 
Consider a system such that: 
 
•  the system can occupy a finite or countably infinite set of states Sn;  
•  the system changes state randomly at discrete times t = 1, 2, . . . ;  
•  if the system is in state Si, then the probability that the system goes 

into state Sj is  
 
 
 
i.e., this probability depends only on the previous state, and is 
independent of all previous states (this is the Markov property);  

•  the transition probabilities pij do not depend on time n.  
•  Such a system is a special type of discrete time stochastic 

process, which is called Markov chain. 

P St+1 = s j St = sk ,…,St−n = sl ,…( )



In general we should have  
 
 
 
 
however the Markov property tells us that only the previous 
state is important in determining the next state 

P St+1 = s j St = sk ,…,St−n = sl ,…( )

P St+1 = s j St = sk ,…,St−n = sl ,…( ) = P St+1 = s j St = sk( ) = P k→ j( )
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Now let    be the probability that the system is in state j 
at time t: 
 

π j t( )

transition matrix; it belongs 
to the class of “stochastic 
matrices” (rows add to 1) 

Example of a 3-state 
system 



The following equation also holds 
 
 
 
and more generally 
 
 
 
Moreover we find 
 
 
 
and therefore 

π t +1( ) = π t( )T = π t −1( )T2

π t + k( ) = π t( )Tk

π t + k + m( ) = π t + k( )Tm = π t( )TkTm = π t( )Tk+m

Tk+m = TkTm Tij
k+m( ) = Tin

k( )

n
∑ Tnj

m( )

discrete version of the Chapman-Kolmogorov eq. 



It can be shown that Markov chains have a stationary 
distribution  
 
 
 
such that the detailed balance also holds 
 
 
 
Indeed we see that 
 
 
 
and therefore the distribution is stationary.  
 
Detailed balance holds if and only if the distribution is 
stationary. 

π* = π*T

π iP i→ k( ) = π kP k→ i( ) i.e. π iTik = π kTki

π i t +1( ) = Tkiπ k t( )
k
∑ = Tikπ i t( )

k
∑ = π i t( ) Tik

k
∑ = π i t( )



Now we consider a complex optimization problem, the 
Traveling Salesman Problem (TSP), where we want to find 
the shortest closed path that connects N cities. 
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12 12 “cities” randomly distributed in the  
(0,1) square: the path corresponds to 
a random permutation of the 
sequence of cities. 

(path length L=1.93834) 



Paths are enumerated by permutations of “city names”, e.g., {9, 
2, 7, 8, 1, 12, 4, 5, 3, 10, 11, 6} (start at 9, step to 2, and so on 
until you reach 6 and then return to 9). 

The problem belongs to the class of NP-complete problems 
(Non-Polynomial complexity, a class of particulary hard 
problems) 

The total number of configurations is 

1
2
n −1( )!

In such cases there is only one known solution: the full 
enumeration of all paths 



Approximate solution of the TSP with the Simulated 
Annealing algorithm 

 path length            energy of the system 
 

exploration of the configuration space with the Metropolis 
algorithm (Metropolis, Rosenbluth Rosenbluth ,Teller and Teller, 1953) 





Additional details 

•  the algorithm needs a slow cooling (it is common to choose an exponential 
cooling schedule) 

•  if cooling is not gradual, the system can get stuck into a local minimum 

•  simple exchanges of pairs of cities are the individual moves in the SA solution of 
the TSP 

•  the individual steps from one configuration to the next can be described by a 
Markov chain 

1. We generate a new configuration ′C  from the present configuration C
2. We compute the energy of the new configuration, ′E
3. We compute the energy difference ΔE = ′E − E
4. The new configuration is accepted with probability p 

p = 1 ΔE < 0

p = exp − ΔE
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Decrease of total path length in a realization of the SA solution of the 
50-cities problem 



Here we note that the transition probability can be written as 
follows 
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Moreover, the algorithm preserves detailed balance  

P C( )T C→ ′C( ) = P ′C( )T ′C → C( )

where P(C) is the stationary probability of configuration C. 
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Moreover 

T C→ ′C( ) = min 1, P ′C( )
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This algorithm is the starting point for an important further 

step, the Metropolis-Hastings algorithm. 



6. MCMC – definition of the Metropolis-Hastings (M-H) 
algorithm (1970) 
•  we define the transition probability  
 
 
 
and the target density   

•  we take state 

•  we choose randomly another state     and we accept it 
  with probability 
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If the transition probability is symmetrical, then the 
acceptance probability takes on the simpler form 
 
 
 
 
 
 
and it depends on the target density only.  
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The M-H  algorithm defines a Markov chain and it is easy to show that 
detailed balance holds. The transition probability is  
 
 
 
 
 
•  case  

P x→ y( ) = q x,y( )α x,y( ) = q x,y( )min 1,π y( )q y,x( )
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P x→ y( ) = q x,y( )

P y→ x( ) = q y,x( )π x( )q x,y( )
π y( )q y,x( )

π x( )P x→ y( ) = π x( )q x,y( )

π y( )P y→ x( ) = π y( )q y,x( )π x( )q x,y( )
π y( )q y,x( ) = π x( )q x,y( )



Detailed balance holds in both cases and 
therefore      is stationary π x( )

π y( )q y,x( )
π x( )q x,y( ) < 1

α x,y( ) = π y( )q y,x( )
π x( )q x,y( ) ; α y,x( ) = 1

P x→ y( ) = q x,y( )π y( )q y,x( )
π x( )q x,y( )

P y→ x( ) = q y,x( )

π x( )P x→ y( ) = π x( )q x,y( )π y( )q y,x( )
π x( )q x,y( ) = π y( )q y,x( )

π y( )P y→ x( ) = π y( )q y,x( )

•  case 



The following figure shows a simulation with the MCMC 
algorithm and the distribution 

 

 

(a two-component mixture model) 

p x( ) = 0.3exp −0.2x2( ) + 0.7exp −0.2 x −10( )2( )
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