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Bayesian estimates often require the evaluation of
complex integrals. Usually these integrals can only be
evaluated with numerical methods.

> enter the Monte Carlo methods!

1. acceptance-rejection sampling
2. importance sampling
3. statistical bootstrap

4. Bayesian methods in a sampling-resampling
perspective

5. introduction to Markov chains and to the Metropolis
algorithm

6. Markov Chain Monte Carlo (MCMC)



1. The acceptance rejection method
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Figure: Schematic illustration of the acceptance-rejection method. Start from a pdf

f(x) defined in the interval (Xmin, Xmax ), and take an enclosing pdf g(x): notice that in
general these are unnormalized pdf's. Now generate x according to the pdf g(x) —in
the case shown in the figure this means uniform in (Xpmin, Xmax) — (upper right panel),

and y, uniform in (0, g(x)). If y > f(x), reject x (lower left panel), otherwise accept it
(lower right panel). The accepted values x have pdf o< f(x).



Example: random numbers with semi-Gaussian distribution
from exponentially distributed random numbers.
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Definition of contact point (to maximize efficiency)
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Exponentially distributed values
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A/R accepted values (10000 accepted sample pairs)
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Histogram of accepted x values
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Now notice that in this method we generate pairs of real
numbers (i,0) that are uniformly distributed between f(6)
and the x-axis, therefore we can use these pairs to estimate
the total area under the curve

(here the reference area is the area of the enclosing rectangle which
corresponds to a uniform distribution)
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In general, if h(x)= f(x)p(x), where pis a pdf

b

Jn(x)dx = Jf x)dx=E,[ f(x ]z%gf(;n

here the x are iid with pdf p(x)

and we find that the variance of this estimate of the integral
IS
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We encounter a problem with this method when we
must sample functions that have many narrow peaks.



2. Importance sampling

this pdf is troublesome ... therefore we use this ...

j-h(X)dx = j.f(x)p(x)dx _ 'b[ f(x)p(x)

a

—E, f(x)p(x) ziif(xn)p(xn)

These methods are not very efficient and there is a better
alternative, the Markov Chain Monte Carlo method



3. Bootstrap (B. Efron, 1977)

The bootstrap method is a
resampling technique that
helps calculate many
statistical estimators




consider the distribution of a set of measurements
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the distribution of data is an approximation of the “true”
underlying distribution (in this case a mixture model)
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distribution of mean value obtained from 5000 sets of
data (sample size = 50)
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You can do this if you have large datasets ... but what if you
have only a handful of measurements?



example: single dataset (same size as before, 50
measurements)

. UE .
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the distribution is a rough representation of the underlying
distribution ... and yet it can be used as before ...



Bootstrap recipe:

iIf you want to find the distribution of the mean (or any other
statistical estimator) use the dataset itself to generate new

datasets

> resample from dataset (with replacement)




distribution of mean value
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mean from repeated sampling (size = 250000): -0.200222 + 0.0813632

mean from resampling dataset (size = 50): -0.142699 £ 0.0838678
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counts of CD4 limphocytes
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FiG. 3. Histogram of 2,000 bootstrap correlation coefficients; bivariate normal sampling model.

B (Baseiine)
bootstrap estimate of correlation

F1G. 1. The cd4 data; cd4 counts in hundreds for 20 subjects, coefficient distribution
at baseline and after one year of treatment with an experimental
anti-viral drug; numerical values appear in Table 1.

Example from Di Ciccio & Efron, Statistics of Science 11 (1996) 189 and
Efron, Statistics of Science 13 (1998) 95



4. Bayesian methods in a sampling-resampling perspective
(Smith & Gelfand, 1992)

Bayesian Statistics Without Tears:
A Sampling—-Resampling Perspective
A.F. M. SMITH and A. E. GELFAND*

Even to the initiated, statistical calculations based on
Bayes’s Theorem can be daunting because of the nu-
merical integrations required in all but the simplest ap-
plications. Moreover, from a teaching perspective, in-
troductions to Bayesian statistics—if they are given at
all—are circumscribed by these apparent calculational
difficulties. Here we offer a straightforward sampling—
resampling perspective on Bayesian inference, which
has both pedagogic appeal and suggests easily imple-
mented calculation strategies.



In Bayesian methods we have to evaluate many integrals,
like, e.q.,

I(6; x)p(9)
] 1(6; x)p(0) do 4— normalization (evidence)

p(6lx) =

p(dlx) = fp(d’, Y|x) dif. €—— marginalization

(statistical estimators)

Elm()x] = | m(@)p(olx) do < **9°



except in 51mple cases, expllclt
evaluation of such integrals will rarely be possible, and
realistic choices of likelihood and prior will necessitate
the use of sophisticated numerical integration or ana-
lytic approximation techniques (see, for example, Smith
et al. 1985, 1987; Tierney and Kadane, 1986). This can
pose problems for the applied practitioner seeking rou-
tine, easily implemented procedures. For the student,
who may already be puzzled and discomforted by the
intrusion of too much calculus into what ought surely
to be a simple, intuitive, statistical learning process, this
can be totally off-putting.



Bayesian learning as a resampling procedure

p(6l)=—E5) )

B Jl(@;x)p(@)d@ \

1. prior distribution defined
by initial samples

2. Bayes factor distorts
the distribution of initial
samples

3. posterior distribution

corresponds to a resampling of

initial samples



So, how do we resample?

* acceptance-rejection
* bootstrap
« weighted-bootstrap



modified acceptance-rejection to resample prior samples with
probability

f(6)e<1(6:x)p(0)

and with é the MAP estimator, so that

6 = argmax f(0) = argmax[(0;x)p(6); M :l(é;x)p(é)

0 0

and then we resample from a population {91'} accepting Hl. with
probability




Standard bootstrap

consider samples 6, extracted from a distribution with
PDF g(6) then

a

Pr(9<a)= | g(6)a0= [1_,g(6)a0=E,(1_,)

(the samples approximate the “true” underlying distribution)



Weighted bootstrap

if the samples 6. are distributed according to g(6) BUT
we have a target distribution

f (9) this normalization

h(@) = = /factor is unknown
[ £(6)ae

f(@i)/g(éi)

then for each sample compute the weights w, = Zf(éb- )/8(61)

weights are self-normalized, f J
no need of the unknown
integral

resampling with probability w; yields the distribution h



here we do not need knowledge of
/ the target distribution

samples extracted from g

eventually we get h without the need
to compute normalization integrals



Example (McCullagh & Nelder): take two sets of binomially
distributed independent random variables X;, and X, (i=1,2,3)

X, = Binomial(nil,é?l)
X, = Binornial(ni2 ,92)

The observed random variables are

Y, =X, +X,

l

Yi — Ji

3 : ;
likelihood = | | Z{ nfl J{ iz | ]@11 (1-6,)"" 03~ (1-6,)" ™"

maX(O,yl. — niz) <J < min(nil,yi)



Sample data

N;q

N>

Yi




Example of implementation in Mathematica

nl = {5, 6, 4};
n2 = {5, 4, 6};
yi ={7, 5, 6};

Clear[likelihood];
likelihood[thl_, th2Z ] :=
Product [Sum [Binomial [nl[[i]], 7] #Binomial[n2[[i]], ¥Yi[[i]l] -jl+thli"q = (1= thl)* (nl[[i]] -7) =
th2” (yi[[i]] -3) » (1 - th2) * (n2[[i]] -yi[[i]]) +3), {J, Max [0, yi[[i]] -n2[[i]], Min[nl[[i]], Yyi[[4i]]]]}],
{i, 1, 3}]1;

ns = 10000;
th = Table[ {RandomReal [], RandomReal[]}, {ns}];

1.0j
08!’
0.6j o~y

04" .

02."’*.&’& :# ! .‘ 2% .'-"'; prior distribution (uniform in
.. ' : Wrigwes, 2D parameter space)

0.0




Posterior as a resampled prior using acceptance-rejection

lt = Table[likelihood[th[[k, 1]], th[[k, 2]11], {k, 1, ns}];
norm = Max [1t] ;|
w = 1t / norm;

thr = {}; ntot = 0;

For[kn =1, kn < ns,
If[w[[kn]] > RandomReal[], ntot ++; AppendTo[thr, th[[kn]]]];
kn ++]
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Posterior as a resampled prior using weighted bootstrap

1t = Table[likelihood[th[[k, 1]], th[[k, 2]]1), {k, 1, ns8}];
sum = Apply[Plus, 1t];
w = lt / sum;

thr = Table[ {0, 0}, {ns}];
ntot = 0;
While[ntot < ns,
kn = RandomInteger[{l, ns}];
If [RandomReal[] <w[[kn]], ntot++; thr[[ntot]] =th[[kn]]];
]
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The resampled points are representative of the posterior
distribution and can be used to evaluate any sample estimate
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5. Very short introduction to Markov chains

Consider a system such that:

» the system can occupy a finite or countably infinite set of states S,;
» the system changes state randomly at discrete times t=1, 2, .. .;
« if the system is in state S, then the probability that the system goes
into state S; is
P(s

I+

S, =8, :Sl,...)

Y~t—n

1 =93

l.e., this probability depends only on the previous state, and is
independent of all previous states (this is the Markov property);
* the transition probabilities p; do not depend on time n.
« Such a system is a special type of discrete time stochastic
process, which is called Markov chain.



In general we should have

P(Sm

S, =8,,...,9 =Sl,...)

Y~t—n

:Sj

however the Markov property tells us that only the previous
state is important in determining the next state

P(s

I+

S, =585.,...,9 =s,,...)=P(St+1 =,

S™~t—n

S, =s,)=P(k— j)

=9



Now let 7, (t) be the probability that the system is in state J
at time t:

r(1+1)=3 P(k— j)m, (1)

#@ m(r+1)= nf(t)T

0.9 0.2

0 01 09 )

> T=] 04 0 06

L 02 02 06

transition matrix; it belongs

Example of a 3-state to the class of “stochastic
system 0.6 matrices” (rows add to 1)




The following equation also holds
n(t+1)=n(t)T=n(t-1)T"

and more generally

Moreover we find
(i +k+m) =i +k)T" = (i) T'T" = (1) T

and therefore discrete version of the Chapman-Kolmogorov eq.

T+ = T j> T, Z




It can be shown that Markov chains have a stationary
distribution

* *

n=nT

such that the detailed balance also holds
nP(i—>k)=nPlk—i) ie. nT,=nrT,
Indeed we see that
(41)= XL ()= X, () =7, () 2T, =7, (1)
k k
and therefore the distribution is stationary.

Detailed balance holds if and only if the distribution is
Stationary.



Now we consider a complex optimization problem, the
Traveling Salesman Problem (TSP), where we want to find
the shortest closed path that connects N cities.

12 “cities” randomly distributed in the
(0,1) square: the path corresponds to
a random permutation of the
sequence of cities.

(path length L=1.93834)




Paths are enumerated by permutations of “city names”, e.g., {9,
2,7,8,1,12, 4,5, 3, 10, 11, 6} (start at 9, step to 2, and so on
until you reach 6 and then return to 9).

The problem belongs to the class of NP-complete problems
(Non-Polynomial complexity, a class of particulary hard
problems)

The total number of configurations is

1

—(n—l)!

2

In such cases there is only one known solution: the full
enumeration of all paths



Approximate solution of the TSP with the Simulated
Annealing algorithm

path length ‘ energy of the system

exploration of the configuration space with the Metropolis

algorlthm (Metropolis, Rosenbluth Rosenbluth ,Teller and Teller, 1953)

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicaoLAs METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpwARD TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.




Figure 8.14: Portrait of American computer scientists Nicholas Metropolis
(1915 - 1999) (seated) and James Henry Richardson (1918 - 1996) at Los

Alamos National Laboratory, Los Alamos, New Mexico, November 1953
(from http://www.life.com).



1. We generate a new configuration C” from the present configuration C
2. We compute the energy of the new configuration, E’
3. We compute the energy difference AE=E’— E

4. The new configuration is accepted with probability p

(

p=1 AE <0

AE
=exp|—| AE=20
p=exp 27

\

Additional details

» the algorithm needs a slow cooling (it is common to choose an exponential
cooling schedule)

« if cooling is not gradual, the system can get stuck into a local minimum

 simple exchanges of pairs of cities are the individual moves in the SA solution of
the TSP

» the individual steps from one configuration to the next can be described by a
Markov chain
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Decrease of total path length in a realization of the SA solution of the
50-cities problem
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Here we note that the transition probability can be written as

follows
re-s ool -E5E]

Moreover, the algorithm preserves detailed balance

P(C)T(C—C')=P(C)T(C’—C)

where P(C) is the stationary probability of configuration C.
Indeed, if E' > E

P(C)exp(—(E,_E)sz(C’)

kT

P(C’) = exp _(E,_ E) Boltzmann's
distribution




Moreover

This algorithm is the starting point for an important further

step, the Metropolis-Hastings algorithm.



6. MCMC — definition of the Metropolis-Hastings (M-H)
algorithm (1970)

« we define the transition probability
q(x,y) = P(X — y)
and the target density 7(x) I

( - we take state X=X \v

* we choose randomly another state y and we accept it
(y = x,,,) with probability

o(x,y)=min< 1, A
X



If the transition probability is symmetrical, then the
acceptance probability takes on the simpler form
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and it depends on the target density only.
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The M-H algorithm defines a Markov chain and it is easy to show that
detailed balance holds. The transition probability is




Detailed balance holds in both cases and
therefore 7(x)is stationary



The following figure shows a simulation with the MCMC
algorithm and the distribution

p(x)=03exp(-0.2x*)+0.7exp(-0.2(x - 10)’)

(a two-component mixture model)
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6. Target distribution and histogram of the MCMC samples at different iteration points.
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