Introduction to Bayesian
Statistics - 7

PhD Physics course (XXVIII ciclo)
Universita di Trieste
Edoardo Milotti



Bayesian classification

this likelihood is defined by

data X, classes C training data
"
P(C|X)= P(X‘C)P(C)

P(X) A

the prior is also defined by
training data

we can use the prior learning to assign a class to new data

P X|C
Ckzargcmax I(D(‘X)k)P(Ck)zarggnaxP(X\Ck)P(Ck)



Consider a vector of N attributes given as Boolean variables
X = {x;} and classify the data vectors with a single Boolean

variable.
The learning procedure must yield:

it is easy to obtain it as an empirical distribution from

p(y) an histogram of training class data: y is Boolean, the
histogram has just two bins, and a hundred examples
suffice to determine the empirical distribution to better
than 10%.

there is a bigger problem here: the arguments have 2N*1
different values, and we must estimate 2(2N-1)

P(X‘ )7) parameters ... for instance, with N = 30 there are more
than 2 billion parameters!



How can we reduce the huge complexity of learning?

we assume the conditional independence of the x,’s:
naive Bayesian learning

for instance, with just two attributes

P(x.x|y) = Px[x.y) P(x|y)= P(x]y)P(x|y)

conditional independence assumption

with more than 2 attributes

P(xly) = T1P(x]v)

k=1



Therefore:

P = )= S T
[17(x5)
= = P(yk)

and we assign the class according to the rule (MAP)

N

EP(xn\yk)

y = arg max L ~ P(yk)

EEDLEN) § L(CA

J




More general discrete inputs

If any of the N x variables has J different values, e if there are
K classes, then we must estimate in all NK(J-1) free
parameters with the Naive Bayes Classifier (this includes
normalization) (compare this with the K(JN-1) parameters

needed by a complete classifier)



Continuous inputs and discrete classes — the Gaussian case

2
1 xn o 0un
P('xn yk): 271_0_2 CXp _( 262kk)
nk | n _

here we must estimate 2NK parameters + the shape of the

distribution P(y) (this adds up to another K-1 parameters)



Gaussian special case with class-independent variance and
Boolean classification (two classes only):

P(X|y = ())P(y = O)
X|y = O)P(y = O)+P(X|y = 1)P(y = 1)

P(y=O|X): P(

1 ('xn _ aLLnO )2
P(x|y=0)= -
(5]y=0) 2no? exp_ 20, |
1 _ ('xn o unl )2 _
P :1 = —_







wO:InLP(y: ))+i[u§;;§uil}

P(y = O) n=1
Wn — (iunl _2un0)
Gn
—
1 logistic shape
P(y = O|X) = . /
1+exp(w0 +2wnxnj
n=1

N
%+Z%%j

exp(
P(y=1x)=1-P(y=0|x)= 1

N
1—|—exp(w0 +anxnj

n=1



Finally an input vector belongs to class y = 0 if

P(y=0|x)
P(y=1|x)

> 1

1

N
1+ exp(wo + anxn)

n=1

N
N
exp(wo N Zannj :> exp(wO + ;wnxn] <1
n=1

N
1+ exp(wo + zwnxnj

n=1

N
> W, + Zann <0
n=1

P(y: O|x):

P(y: 1|X):




Naive Bayesian learning is an example of supervised
learning, however there are also unsupervised Bayesian

learning methods, such as the AUTOCLASS program and

similar such projects.



On the nature of learning in Bayesian and MaxEnt

Inference
(from Cheeseman & Stutz, 2004)

here we consider these three problems:

1. find the probabilities 6, of getting face i in a throw of a

possibly biased die, given the frequencies n, of each face
in a total of N throws;

6
2. find the probabilities when only the mean M = ) in,
=1
and the total number of throws N, are given;

3. analyze the kangaroo problem with a more complex
contingency table



1. Find the probabilities 6, of getting face i in a throw of a
possibly biased die, given the frequencies n; of each face in a

total of N throws;

likelihood is given by the multinomial probability

0,N.I)= N f[el."f

L({nl,...,n6}



If, initially, we take a uniform prior, the posterior distribution
from Bayes’ theorem is

floraf301
p(0{n,,....n},N,I)=——

{]l'l[en [29 —1}19
oo S0

J=1

and we obtain a Dirichlet distribution (conjugate posterior of
the multinomial distribution, just as the Beta distribution is the
conjugate posterior of the binomial distribution).



Mathematical note on the normalization of the Dirichlet distribution:

1 _ I'(m)T(n) relationship between Beta and
n— n—1 .
B(m,n)= Jt (1-1)" dr = T (m+n) Gamma function
0
1-6,
0/ 0;°0:5(6, +0, +0,-1)d6,d6,do, = [ 6/d6, | p~[(1-6,)-p]" dp
0<6,<1 0<6,<1 0

1
— J 0" do, (1 -0, )n2+n3+1 jx"z (1 — x)"3 dx
0<6.<1 0
1
= B(n, +1,n, +1)J01”‘ (1—6’1)’“’13+1 d6, = B(n, +1,n,+1)B(n, +1,n, +n, +2)
0
_F(n2+1)F(n3+1).1“(n1+1)F(n2+n3+2)_F(n2+1)F(n3+1)F(nl+1)
- F(n2+n3+2) F(n1+n2+n3+3) - F(n1+n2+n3+3)

M
N y Hr(nl. +1) o
J HHZ."I' dQﬁ(z 0, — 1) = normalization factor
j=1

i=1
I'(N+M)

0<0,<1 i=1



thus, if we assume some prior information, we can start with
a Dirichlet prior

p(9|w,l) 6F(W HOW 15(29 —lj with Wziwj
[1r(e,) -

J=

and obtain the posterior distribution

p(en,w,N,I)=iﬁ9 +W_15[i9]_1}d9 HF:E:YW )]i[e“w 15(2 )




The inferred distribution can be used to compute averages,
and also for prediction.

Indeed, the probability of observing r; occurrences of the i-th
face in the future is

P(r

n,N,R,W,I) = JP(r

1)p(6

j - Her [V +W) ﬁ@i”i+wi16[i9j—1]d9
oIt~ HF(nj+wj) . =

J=1 J=1

n,N,w,I)d(-)z

6
RI  T(N+W) EF(“”J‘*WJ')

ﬁr! f[r(n.+wj) IC(N+R+W)




so that we find, e.g.,

6
(N +W) ,gr(nj+wj+5”)

P(r=1n,N,R=1w,1I)=

d T'(N+W+1
gr(nj+wj) ( T +)

_hTw
N+W




6
2. Find the probabilities when only the total M = Zini, and
the total of throws N, are given i=1

Let <n>NM be the set of vectors that satisfy the conditions,

then the likelihood is

o.N.7)= Y P(ajo.n.)= Y M e

(M), (n),, H nj y i=1

P(M

j=1



now notice that
P(M|0,N,I)P(6|N,w.I)
P(M|N.I)
2 P(n|o,N, 1) (6|N,w,1)

ZJP

n)y, 6

P(6|M,N,w,I)=

P(0|N,w,1)d6

from these formulas we can calculate all marginals and any
expectation, although it is quite difficult to manipulate
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Figure 3: Multinomial distribution with n = 20, k = 3 and p; = po = p3 = 1/3, plotted

as a function of the independent values n1 and ng. Density plot (left panel) and lego plot
(right panel). As an exercise, explain why in this symmetrical case the distribution is not

centered in the ny,n9 domain, and consider ways to represent multinomial distributions

with £ > 3.
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FIGURE 2. The posterior density for the 3-faces die example with a mean spot count of 2.5, N = 60,

and prior weights of (1.1,1). Because of the normalization constraint, the third variable (not shown) is
givenby 03 =1—0; —0,.

The figure, from C&S, shows that the probability mass is concentrated close
to the subspace defined by constraints, and becomes increasingly so as N
increases. Bayesian inference tells us nothing on the distribution inside the
subspace.The only information inside the subspace comes from priors.



3. The kangaroo problem with an extended contingency table

attributes (number of values):

handedness (2)
beer-drinking (2)
state-of-origin (7)
color (3)

4-dimensional contingency table
with 2x2x7x3 = 84 entries

The size of the contingency table increases exponentially
as the number of attributes grows



If we are given the number of occurrencies n;,; ,, for each
position in the contingency table, we fall back to the first
example of dice throw

with the likelihood

N "
o.N.1) =T

i,k 1,jskl

L(n

i,j.k,l



The n;;, ;'s are sufficient statistics and we can estimate all the
corresponding probabilities as in the first example.

However if we are only given a set of marginals, i.e., of
constraints, we are in the same situation as example 2, the
marginals define a subspace of the whole parameter space,
and in this subspace the distribution is eventually determined
by the prior information only.

With enough attributes, the contingency table becomes VERY
large, and it becomes impossible to collect sufficient statistics,
we are mostly limited to marginals.

The situation is very different if we assume independence: then
the marginals are sufficient statistics. E.q., if probabilities
factorize, then kangaroos have only (2+2+7+3)-(1+1+1+1) = 10
independent values (using normalization) instead of 84.



Maximum entropy approach to the kangaroo problem, given
marginals

DM =t Y =N

Joksl i
Z z]kl ZHZJkl
l.vjak7l Jkl

Example with two marginals: we maximize the constrained
entropy

n n
z eljkl logez]kl 2“0 ( Z ei,j,k,l _1]"'2'1(291,]‘,/@1 _Nlj"‘)‘z(zez,j,k,l _ﬁz

ijkl i, jkl .k



In the original kangaroo problem

1 1 1 1
S, =| p, log—+ P; log—_+ Py log—+ Py log—

Pui Py Py Prr

+4(Py + Py + Py + Py — 1)+ A (P + Py — 1/3)+ Ay (py + Py — 1/3)

=—logp, —1+A +A,+4,=0

=—logp, —1+A4,+1,=0

=—logp,,—1+A4 +4,=0

=—logp;; —1+4,=0



Py = Pyr eXP(/l3)
Py = Py exp(A,) = PyPy = Puli
\Por = Ppr eXP()Lz T )“3)

Dyt Ps Dt ps =1 p,;=p; =1/3-p,

pbz+pbz‘:1/3 pb_l_l/3+pbl
= 3 ) ,
pbl+p51:1/3 (1/3_pbz) = Pul3+ Py
PuPvi = PuPpr \1/9_217191/3"']9131 :pbl/3+pl§l
1 2 4  this solution coincides
= P, = D,y = Dy = —, pP= =— withtheindependence

9 ol 9 hypothesis



In the extended kangaroo problem we find

oS
Y :—(logHm’j’k,l+1)+/lo+ﬁ,m =0
m,j.k,l

6, .., =exp(4, +4,—1)
6, .., =exp(4, +4,—1)

thus we obtain again a multiplicative structure.

Whatever the choice of marginals, probabilities factorize,
and the MaxEnt solution corresponds to a set of
iIndependent probabilities.

Thus independence is built-in the MaxEnt method, which is
a sort of “generalized independence method”.



NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

+ABOUT NASA +LATEST NEWS +MULTIMEDIA +MISSIONS +WORK FOR NASA

+ NASA Home Introduction

+ Ames Home In previous years, the Bayes group at Ames Research Center developed the basic theory and associated

+ Intelligent Systems algorithms for various kinds of general data analysis technigues. Our earliest efforts were applied to the
Division problem of automatic classification of data. We implemented this theory in the Autoclass series of programs.

AutoClass takes a database of cases described by a combination of real and discrete valued attributes, and

automatically finds the natural classes in that data. It does not need to be told how many classes are present

AUtOCl ass or what they look like -- it extracts this information from the data itself. The classes are described
probabilistically, so that an object can have partial membership in the different classes, and the class
definitions can overlap. AutoClass generates reports on the classes it has found at the end of its search.

AutoClass has been used and tested on many data sets, both within NASA and by industry, academia and
other agencies. These applications typically find surprising classifications that show patterns in the data
+ AutoClass C unknown to the user. Examples include: discovery of new classes of infra-red stars in the IRAS Low
Resolution Spectral catalogue (see figure below; and see here and here for more information), new classes of
+ References airports in a database of all USA airports, discovery of classes of proteins, introns and other patterns in

DNAJprotein sequence data, and others.



The starting point of AUTOCLASS is a mixture model
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FIGURE 1. Some normal mixture densities for K = 2 (first row), K =5 (second
row), K =25 (third row) and K = 50 (last row).



dP(x) = ;pkdfk (x\ 9)

there is a variable number of classes

the probabilities of belonging to a
given class are drawn from a
multinomial distribution

the component distributions are
taken from a set of predefined
distributions

the parameters define the
shape of the component
distribution



AUTOCLASS chooses a distribution and a parameter set for
each class. Every data set determines a likelihood, and
therefore a posterior distribution.

The class is selected by maximizing the posterior probability
(MAP class estimate).



AUTOCLASS discoveries
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In 1983 and 1984, the Infrared Astronomical Satellite (iRAS)
detected 5,425 stellar objects and measured their infrared
spectra. A program called AUTOCLASS used Bayesian inference
methods to discover the classes present in the data and
determine the most probable class of each object. It discovered
some classes that were significantly different from those
previously known to astronomers. One such discovery is
illustrated above. Previous analysis had identified a set of 297
objects with strong silicate spectra. AUTOCLASS partitioned this set

into two parts (top). The class on the left (171 objects) has a peak
at 9.7 microns and the class on the right (126 objects) a peak at
10.0 microns. When the objects are plotted on a star map by their
celestial coordinates (bottom), the right set shows a marked
tendency to cluster around the galactic plane, confirming that the
classification represents real differences between the classes of
objects. AUTOCLASS did not use the celestial coordinates in its
estimates of classes. Astronomers are studying the phenomenon
further to determine the cause.
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Welcome to AutoClass@IJM
the webserver for AutoClass Bayesian clustering system.

Developped by F. Achcarl2and D. MestivierL in collaboration with J.M. Camadro®
We kindly ask users to cite this paper when publishing results derived of the use of AutoClass@IJM.
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