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P C X( ) = P X C( )
P X( ) P C( )

Bayesian classification 
 

data X, classes C this likelihood is defined by 
training data 

Ck = argmax
Ck

P X Ck( )
P X( ) P Ck( ) = argmax

Ck
P X Ck( )P Ck( )

we can use the prior learning to assign a class to new data 

the prior is also defined by 
training data 



Consider a vector of N attributes given as Boolean variables  
x = {xi} and classify the data vectors with a single Boolean 
variable.  
 
The learning procedure must yield:  
 

  it is easy to obtain it as an empirical distribution from 
  an histogram of training class data: y is Boolean, the   
  histogram has just two bins, and a hundred examples  
  suffice to determine the empirical distribution to better  
  than 10%.  

 
  there is a bigger problem here: the arguments have 2N+1  
  different values, and we must estimate 2(2N-1)  
  parameters ... for instance, with N = 30 there are more  
  than 2 billion parameters! 

P y( )

P x y( )



How can we reduce the huge complexity of learning?  
 
 

 we assume the conditional independence of the xn’s: 
 naive Bayesian learning 

  
for instance, with just two attributes 
 
 
 
 
 
 
with more than 2 attributes 
 

P x1, x2 y( ) = P x1 x2 , y( )P x2 y( ) = P x1 y( )P x2 y( )
conditional independence assumption 

P x y( ) ≈ P xk y( )
k=1

N

∏



P yk x( ) = P x yk( )
P x( ) P yk( ) = P x yk( )

P x yj( )P yj( )
j
∑

P yk( )

≈
P xn yk( )

n=1

N

∏

P yj( ) P xn yj( )
n=1

N

∏
j
∑

P yk( )

Therefore: 

and we assign the class according to the rule (MAP) 

y = argmax
yk

P xn yk( )
n=1

N

∏

P yj( ) P xn yj( )
n=1

N

∏
j
∑

P yk( )



More general discrete inputs 

 

If any of the N x variables has J different values, e if there are 

K classes, then we must estimate in all NK(J-1) free 

parameters with the Naive Bayes Classifier (this includes 

normalization) (compare this with the K(JN-1) parameters 

needed by a complete classifier) 



Continuous inputs and discrete classes – the Gaussian case 

 

 

 

here we must estimate 2NK parameters + the shape of the 

distribution P(y) (this adds up to another K-1 parameters) 

P xn yk( ) = 1
2πσ nk

2
exp −

xn − µnk( )2
2σ nk

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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Gaussian special case with class-independent variance and 
Boolean classification (two classes only): 
 
 
 
 
 

P y = 0 x( ) = P x y = 0( )P y = 0( )
P x y = 0( )P y = 0( ) + P x y = 1( )P y = 1( )

P xn y = 0( ) = 1
2πσ n

2
exp −

xn − µn0( )2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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P xn y = 1( ) = 1
2πσ n

2
exp −

xn − µn1( )2
2σ n
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⎣
⎢
⎢

⎤

⎦
⎥
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P y = 0 x( ) = P x y = 0( )P y = 0( )
P x y = 0( )P y = 0( ) + P x y = 1( )P y = 1( )

=
1

1+
P x y = 1( )P y = 1( )
P x y = 0( )P y = 0( )

=
1

1+ P y = 1( )
P y = 0( ) exp −

xn − µn1( )2
2σ n

2 +
xn − µn0( )2
2σ n

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n=1

N

∏

=
1

1+ exp ln P y = 1( )
P y = 0( )

⎛
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⎞
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+

µn1 − µn0( )xn
σ n
2 + µn0

2 − µn1
2

2σ n
2
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⎣
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⎤

⎦
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w0 = ln
P y = 1( )
P y = 0( )

⎛
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⎞
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+

µn0
2 − µn1
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2σ n
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n=1

N

∑

wn =
µn1 − µn0( )

σ n
2

P y = 0 x( ) = 1

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
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P y = 1 x( ) = 1− P y = 0 x( ) =
exp w0 + wnxn

n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
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logistic shape 



Finally an input vector belongs to class y = 0 if  

P y = 0 x( )
P y = 1 x( ) > 1

exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟
< 1

P y = 0 x( ) = 1

1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
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P y = 1 x( ) =
exp w0 + wnxn

n=1

N

∑⎛
⎝⎜

⎞
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1+ exp w0 + wnxn
n=1

N

∑⎛
⎝⎜

⎞
⎠⎟

w0 + wnxn
n=1

N

∑ < 0



Naive Bayesian learning is an example of supervised 

learning, however there are also unsupervised Bayesian 

learning methods, such as the AUTOCLASS program and 

similar such projects.  



On the nature of learning in Bayesian and MaxEnt 
Inference  
(from Cheeseman & Stutz, 2004) 
 
 
here we consider these three problems:  
 
1.  find the probabilities     of getting face i in a throw of a 

possibly biased die, given the frequencies ni of each face 
in a total of N throws;  
 

2.  find the probabilities when only the mean                    ,  
 
and the total number of throws N, are given; 
 

3.  analyze the kangaroo problem with a more complex 
contingency table 

θi

M = ini
i=1

6

∑



1. Find the probabilities     of getting face i in a throw of a 
possibly biased die, given the frequencies ni of each face in a 
total of N throws;  
 
 
 
 
 
 
likelihood is given by the multinomial probability 
 
 
 
 

θi

0 ≤θi ≤1; θi
i=1

6

∑ = 1; 0 ≤ ni ≤ N; ni
i=1

6

∑ = N

L n1,…,n6{ } θ,N, I( ) = N!

nj !
j=1

6

∏
θi
ni

i=1

6

∏



if, initially, we take a uniform prior, the posterior distribution 
from Bayes’ theorem is 
 
 
 
 
 
 
 
 
 
 
 
 
and we obtain a Dirichlet distribution (conjugate posterior of 
the multinomial distribution, just as the Beta distribution is the 
conjugate posterior of the binomial distribution). 

p θ n1,…,n6{ },N, I( ) =
θi
ni

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟

θi
niδ θ j

j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
dθi

i=1

6

∏
0

1

∫

=
Γ N + 6( )
Γ nj +1( )

j=1

6

∏
θi
ni

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟



B m,n( ) = tm−1 1− t( )n−1 dt
0

1

∫ =
Γ m( )Γ n( )
Γ m + n( )

θ1
n1θ2

n2θ3
n3δ θ1 +θ2 +θ3 −1( )dθ1 dθ2 dθ3

0≤θi≤1
∫ = θ1

n1 dθ1 pn2
0

1−θ1

∫ 1−θ1( )− p⎡⎣ ⎤⎦
n3 dp

0≤θi≤1
∫

= θ1
n1 dθ1 1−θ1( )n2+n3+1 xn2

0

1

∫ 1− x( )n3 dx
0≤θi≤1
∫

= B n2 +1,n3 +1( ) θ1
n1 1−θ1( )n2+n3+1 dθ1

0

1

∫ = B n2 +1,n3 +1( )B n1 +1,n2 + n3 + 2( )

=
Γ n2 +1( )Γ n3 +1( )
Γ n2 + n3 + 2( ) ·

Γ n1 +1( )Γ n2 + n3 + 2( )
Γ n1 + n2 + n3 + 3( ) =

Γ n2 +1( )Γ n3 +1( )Γ n1 +1( )
Γ n1 + n2 + n3 + 3( )

θi
ni

i=1

M

∏ dθiδ θ j
j=1

M

∑ −1
⎛

⎝⎜
⎞

⎠⎟0≤θi≤1
∫ =

Γ ni +1( )
i=1

M

∏
Γ N +M( )

Mathema'cal	
  note	
  on	
  the	
  normaliza'on	
  of	
  the	
  Dirichlet	
  distribu'on:	
  

relationship between Beta and 
Gamma function 

normalization factor 



thus, if we assume some prior information, we can start with 
a Dirichlet prior 
 
 
 
 
 
and obtain the posterior distribution 

p θ w, I( ) = Γ W( )
Γ wj( )

j=1

6

∏
θi
wj−1

i=1

6

∏ δ θ j
j=1

6
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⎛

⎝⎜
⎞

⎠⎟
with W = wj

j=1

6

∑

p θ n,w,N, I( ) =
θi
ni+wi−1

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞
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θi
ni+wi−1δ θ j

j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
dθi

i=1

6

∏
0

1

∫
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Γ N +W( )
Γ nj +wj( )

j=1
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6
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j=1

6

∑ −1
⎛

⎝⎜
⎞
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= N!

nj !
j=1

6

∏
· Γ W( )

Γ wj( )
j=1
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∏
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The inferred distribution can be used to compute averages, 
and also for prediction.  
 
Indeed, the probability of observing ri occurrences of the i-th 
face in the future is  

P r n,N,R,w, I( ) = P r θ,N,R, I( ) p θ n,N,w, I( )dθ
θ
∫ =

= R!

rj !
j=1

6

∏
θi
ri

i=1

6

∏ Γ N +W( )
Γ nj +wj( )

j=1

6

∏
θi
ni+wi−1

i=1

6

∏ δ θ j
j=1

6

∑ −1
⎛

⎝⎜
⎞

⎠⎟
dθ

θ
∫

= R!

rj !
j=1

6

∏
· Γ N +W( )

Γ nj +wj( )
j=1

6

∏
·

Γ nj + rj +wj( )
j=1

6

∏
Γ N + R +W( )



so that we find, e.g.,  

P r1 =1 n,N,R =1,w, I( ) = Γ N +W( )
Γ nj +wj( )

j=1

6

∏
·

Γ nj +wj +δ1 j( )
j=1

6

∏
Γ N +W +1( )

= n1 +w1
N +W



2. Find the probabilities when only the total                    , and 
the total of throws N, are given 
 
 
Let             be the set of vectors that satisfy the conditions,  
 
 
 
 
then the likelihood is 
 
 

M = ini
i=1

6

∑

n NM

N = ni
i=1

6

∑ ; M = ini
i=1

6

∑

P M θ,N, I( ) = P n θ,N, I( )
n NM

∑ = N!

nj !
j=1

6

∏
θi
ni

i=1

6

∏
n NM

∑



now notice that 

P θ M,N,w, I( ) = P M θ,N, I( )P θ N,w, I( )
P M N, I( )

=
P n θ,N, I( )

n NM

∑ P θ N,w, I( )
P n θ,N, I( )P θ N,w, I( )dθ

θ
∫

n NM

∑

P n θ,N, I( )
n NM

∑ P θ N,w, I( ) = N!

nj !
j=1

6

∏
Γ W( )
Γ wj( )

j=1

6

∏
θi
ni+wi−1

i=1

6

∏
n NM

∑

P n θ,N, I( )P θ N,w, I( )dθ
θ
∫

n NM

∑ = N!

nj !
j=1

6

∏
Γ W( )
Γ wj( )

j=1

6

∏

Γ ni +wi( )
i=1

6

∏
Γ N +W( )n NM

∑

from these formulas we can calculate all marginals and any 
expectation, although it is quite difficult to manipulate 





The figure, from C&S, shows that the probability mass is concentrated close 
to the subspace defined by constraints, and becomes increasingly so as N 
increases. Bayesian inference tells us nothing on the distribution inside the 
subspace.The only information inside the subspace comes from priors. 



3. The kangaroo problem with an extended contingency table 
 

attributes (number of values): 
 
•  handedness (2) 
•  beer-drinking (2) 
•  state-of-origin (7) 
•  color (3) 

 

4-dimensional contingency table 
with 2x2x7x3 = 84 entries 

The size of the contingency table increases exponentially 
as the number of attributes grows 



If we are given the number of occurrencies ni,j,k,l for each 
position in the contingency table, we fall back to the first 
example of dice throw 

0 ≤θi, j,k,l ≤1; θi, j,k,l
l=1

3

∑
k=1

7

∑
j=1

2

∑
i=1

2

∑ =1

0 ≤ ni, j,k,l ≤ N; ni, j,k,l
l=1

3

∑
k=1

7

∑
j=1

2

∑
i=1

2

∑ = N

L n θ,N, I( ) = N!
ni, j,k,l

i, j,k,l
∏

θi, j,k,l
ni, j ,k ,l

i, j,k,l
∏

with the likelihood 



The ni,j,k,l‘s are sufficient statistics and we can estimate all the 
corresponding probabilities as in the first example. 
 
However if we are only given a set of marginals, i.e., of 
constraints, we are in the same situation as example 2, the 
marginals define a subspace of the whole parameter space, 
and in this subspace the distribution is eventually determined 
by the prior information only. 
 
With enough attributes, the contingency table becomes VERY 
large, and it becomes impossible to collect sufficient statistics, 
we are mostly limited to marginals. 
 
The situation is very different if we assume independence: then 
the marginals are sufficient statistics. E.g., if probabilities 
factorize, then kangaroos have only (2+2+7+3)-(1+1+1+1) = 10 
independent values (using normalization) instead of 84. 



Maximum entropy approach to the kangaroo problem, given 
marginals 

ni, j,k,l
j,k,l
∑ = ni; ni = N

i
∑

θi, j,k,l
i, j,k,l
∑ =1; θi, j,k,l

j,k,l
∑ = ni

N

Example with two marginals: we maximize the constrained 
entropy 

S = − θi, j,k,l logθi, j,k,l
i, j,k,l
∑ + λ0 θi, j,k,l

i, j,k,l
∑ −1

⎛

⎝⎜
⎞

⎠⎟
+ λ1 θ1, j,k,l

j,k,l
∑ − n1

N
⎛

⎝⎜
⎞

⎠⎟
+ λ2 θ2, j,k,l

i,k,l
∑ − n2

N
⎛
⎝⎜

⎞
⎠⎟



in the original kangaroo problem 

SV = pbl log
1
pbl

+ pbl log
1
pbl

+ pbl log
1
pbl

+ pbl log
1
pbl

⎛

⎝⎜
⎞

⎠⎟

+λ1 pbl + pbl + pbl + pbl −1( ) + λ2 pbl + pbl −1 3( ) + λ3 pbl + pbl −1 3( )

∂SV
∂pbl

= − log pbl −1+ λ1 + λ2 + λ3 = 0

∂SV
∂pbl

= − log pbl −1+ λ1 + λ3 = 0

∂SV
∂pbl

= − log pbl −1+ λ1 + λ2 = 0

∂SV
∂pbl

= − log pbl −1+ λ1 = 0



pbl = pbl exp λ3( )
pbl = pbl exp λ2( )
pbl = pbl exp λ2 + λ3( )

⎧

⎨
⎪

⎩
⎪

⇒ pbl pbl = pbl pbl

pbl + pbl + pbl + pbl = 1
pbl + pbl = 1 3
pbl + pbl = 1 3
pbl pbl = pbl pbl

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⇒

pbl = pbl = 1 3− pbl
pbl = 1 3+ pbl

1 3− pbl( )2 = pbl 3+ pbl
2

1 9 − 2pbl 3+ pbl
2 = pbl 3+ pbl

2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⇒ pbl =
1
9
; pbl = pbl =

2
9
; pbl =

4
9

this solution coincides 
with the independence 
hypothesis 



∂S
∂θm, j,k,l

= − logθm, j,k,l +1( )+ λ0 + λm = 0

θ1, j,k,l = exp λ0 + λ1 −1( )
θ2, j,k,l = exp λ0 + λ2 −1( )

thus we obtain again a multiplicative structure.  
 
Whatever the choice of marginals, probabilities factorize, 
and the MaxEnt solution corresponds to a set of 
independent probabilities.  
 
Thus independence is built-in the MaxEnt method, which is 
a sort of “generalized independence method”. 

In the extended kangaroo problem we find 





The starting point of AUTOCLASS is a mixture model 

dP x( ) = pkdPk x θ( )
k
∑ ; pk

k
∑ = 1



dP x( ) = pkdPk x θ( )
k
∑

there is a variable number of classes 

the probabilities of belonging to a 
given class are drawn from a 
multinomial distribution 

the component distributions are 
taken from a set of predefined 
distributions 

the parameters define the 
shape of the component 
distribution 



AUTOCLASS chooses a distribution and a parameter set for 
each class. Every data set determines a likelihood, and 
therefore a posterior distribution. 
 
The class is selected by maximizing the posterior probability 
(MAP class estimate). 
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