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Point your browser to  
 
http://wwwusers.ts.infn.it/~milotti/Didattica/Bayes/2014-MiBi/Bayes.html 
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The nature of probabilities 

In a dice throwing game one 
defines probabilities of different 
events by counting the outcomes 
 
Examples: 
•  with one die, the probability of 

getting a 4 is 1/6  
•  with two dice, the probability of 

getting two 4’s is 1/36 
•  with two dice, the probability of 

getting one 4 AND one 5 is 1/18 
•  with two dice, the probability of 

getting one 4 OR one 5 is ?? 
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Die  1	 Die  2	 #  of  
outcomes	

4	 Not  4  or  5	 4	
5	 Not  4  or  5	 4	

Not  4  or  5	 4	 4	
Not  4  or  5	 5	 4	

4	 4	 1	
4	 5	 1	
5	 4	 1	
5	 5	 1	

Total:  20	 p =
20

36
=

5

9
<

2

3

NB, if 4 and 5 were independent, we 
would have  
 
P(4 OR 5) = P(4) + P(5) = 1/3 + 1/3 = 2/3 
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Die  1	 Die  2	 #  of  
outcomes	

4	 Not  4  or  5	 4	
5	 Not  4  or  5	 4	

Not  4  or  5	 4	 4	
Not  4  or  5	 5	 4	

4	 4	 1	
4	 5	 1	
5	 4	 1	
5	 5	 1	

Total:  20	

Outcomes = 
elementary events 

Composite events 
contain many 
elementary events 

We usually assume that 
elementary events are 
all equally likely.  
 
This is not true for 
biased dice. 
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Now, consider “coins” with different aspect ratio r 
 
(aspect ratio = thickness/diameter) 
 
 
 
 
 
 
 
 
 
How do these coins land on heads, tails, sides? When is the 
probability of landing on the side equal to the probability of 
landing on heads or tails?  

        r = 0.05                       r=0.25                      r = 0.5   
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a. Von Neumann’s answer: consider solid angles subtended by 
heads, tails, sides 

d 

h 
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⌦heads = ⌦tails = ⌦sides = 4⇡/3

) 2⇡(1� cos ✓0) = 4⇡/3

) hp
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r2 + 1
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) r = 1/2
p
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b. alternative answer: consider angles subtended by heads, 
tails, sides (rotation about axis through center of coin, and 
parallel to faces) 
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✓heads = ✓tails = ✓sides = ⇡/3

) cos ✓0 = 1/2
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In 1986 J. B. Keller analyzed the infinitely thin coin and found 
that coin toss is not random for finite rotation speed and 
vertical speed (rotation axis as in previous case b) 
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Coin tossing machine (Diaconis, Holmes and Montgomery 2007) 
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Coin tossing machine (Diaconis, Holmes and Montgomery 2007) 
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Coin tossing machine (P. Diaconis, S. Holmes and R. Montgomery 2007) 
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Coin tossing machine (Diaconis, Holmes and Montgomery 2007) 
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... Coin-tossing is a basic example of a random phenomenon. 
However, naturally tossed coins obey the laws of mechanics 
(we neglect air resistance) and their flight is determined by 
their initial conditions. Figure 1 a-d shows a coin-tossing 
machine. The coin is placed on a spring, the spring released 
by a ratchet, the coin flips up doing a natural spin and lands in 
the cup. With careful adjustment, the coin started heads up 
always lands heads up – one hundred percent of the time. We 
conclude that coin-tossing is ‘physics’ not ‘random’. ... 
 
 
(Diaconis, Holmes and Montgomery, “Dynamical bias in the 
coin toss”, SIAM Rev. 49 (2007) 211) 
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Therefore, the assumed randomness of coin toss – and in 
general, of complex mechanical processes – is related to 
the difficulty in determining the outcome, both because of 
the complex and often unknown dynamics, and because of 
the uncertain initial conditions.  
 
Thus – at least in this case – probabilities are a measure of 
our own ignorance rather than an intrinsic property of the 
physical system.  
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Bertrand’s paradox and the ambiguities of 
probability models 
 
 
Bertrand’s paradox goes as follows:  
 
“consider an equilateral triangle inscribed inside a circle, and 
suppose that a chord is chosen at random. What is the 
probability that the chord is longer than a side of the 
triangle?” 
 
(Bertrand, 1889) 



Edoardo Milotti - Bayesian Methods - MiBi June 2014 18 

Solution: we take two random points on the circle (radius R), then we 
rotate the circle so that one of the two points coincides with one of the 
vertices of the inscribed triangle. Thus a random chord is equivalent to 
taking the first point that defines the chord as one vertex of the triangle 
while the other is taken “at random” on the circle. Here “at random” means 
that it is uniformly distributed on the circumference. Then only those chords 
that cross the opposite side of the triangle are actually longer than each 
side. Since the subtended arc is 1/3 of the circumference, the probability of 
drawing a random chord that is longer than one side of the triangle is 1/3. 
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Solution 2: we take first a random radius, and next we choose a random 
point on this random radius. Then, we take the chord through this point and 
perpendicular to the radius. When we rotate the triangle so that the radius 
is perpendicular to one of the sides, we see that half of the points give 
chords longer than one side of the triangle, therefore the probability is 1/2. 
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Solution 3: we take the chord midpoints located inside the circle inscribed 
in the triangle, and we obtain chords that are longer than one side of the 
triangle. Since the ratio of the areas of the two circles is 1/4, we find that 
now the probability of drawing a long chord is just 1/4. 
 
 
At least 3 different “solutions”: which one is correct, and why?  
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Now we widen the scope of the problem and we consider the  
distribution of chords in the plane 



Edoardo Milotti - Bayesian Methods - MiBi June 2014 22 

Distribution 1: distribution of chords (left panel) and of midpoints (right 
panel) in the first solution of Bertrand’s paradox (the left panel shows 400 
chords, the right panel shows 100000 midpoints). 
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Distribution 2: Distribution of chords (left panel) and of midpoints (right 
panel) in the second solution of Bertrand’s paradox (the left panel shows 
400 chords, the right panel shows 100000 midpoints). 
 
In this case it is very easy to find the radial density function of chord 
centers, since here we take first a random radius, and next we choose a 
random point (the center) on this random radius.  
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f(r, ✓) = f(r) = C/r

) (normalization) 1 =

Z

C
f(r)2⇡rdr = 2⇡CR

) f(r) =
1

2⇡rR

Therefore 
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Distribution 3: Distribution of chords (left panel) and of midpoints (right 
panel) in the third solution of Bertrand’s paradox (the left panel shows 400 
chords, the right panel shows 100000 midpoints). Notice that while the 
distribution of midpoints is uniform, the distribution of the resulting chords is 
distinctly non-uniform. 
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Hidden assumptions 
(Jaynes):  
 
•  rotational invariance 
•  scale invariance  
•  translational invariance 
 
 
Now let  
 
 
 
be the probability density 
of chord centers 

f(r, ✓)
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Rotational invariance 
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Scale invariance 
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Translational invariance 

b

r
r0

✓ ✓0

Geometrical construction for the discussion of translational invariance. 
The original circle (black) is crossed by a straight line (red) which defines 
the chord. The translated circle is shown in blue. 
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Lesson drawn from Bertrand’s paradox:  
 
probability models depend on physical assumptions, they are 
not God-given. We define the elementary events on the 
basis of real-world constraints, derived from our own 
experience. 
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Probabilities as a measure of “reasonable 
expectation”, and their relationship with statistical 
inference. (Cox, 1946) 
 
 
•  We construct – explicitly or implicitly – probabilistic 

theoretical models to understand measurements (the most 
common such model is the Gaussian model) 

•  We utilize the empirical probability distributions to infer the 
parameter values of physical models 
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Example: a population of dice 
 
 •  We have a bag full of dice: we extract one of 

them, we throw it and we record the result.  

•  We replace the die in the bag, we mix it and 
we extract another die.  

•  We repeat the procedure again and again, 
and we count the number of times each face 
shows up.  

•  We find that in N throws each face shows up 
about N/6 times.  
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Can we conclude that the population of dice is “honest”? 
 
No, we could have obtained the same result, e.g., with a population of 
dice where each die has the same value on every face, and such that 
there are N/6 dice of each kind (a different probability model) 
 
Here it certainly makes sense to consider the distribution of outcomes as 
a potential physical property of the population of dice, and the averages 
as properties of the population rather than of the individual dice.    
 
However, could the same hold true when we measure a physical 
parameter, say the alpha constant of QED? Usually the probability models 
used in physics are uniquely determined by their transformation 
properties, just like in Jaynes’ solution of Bertrand’s paradox.  
Does it make sense to consider a “distribution” of the values of alpha? 
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What if we “measure” a mathematical constant instead 
of a physical parameter?  
 
Example:  
 
area of Bernoulli’s 
lemniscate obtained 
with a Monte Carlo 
simulation.  
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Parametric equation of Bernoulli’s lemniscate 
 
 
 
 
 
 
 
 
 
 
 
 
 
What is its area?  

r = a
p
cos 2✓

-1.0 -0.5 0.5 1.0

-0.3
-0.2
-0.1

0.1
0.2
0.3 a = 1 
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Empirical Monte Carlo distribution of the area estimate 
 

0.96 0.98 1.00 1.02 1.04
0

20

40

60

80

100

120

area estimate 

a = 1 
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0.96 0.98 1.00 1.02 1.04
0
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100
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a probability distribution of  
a mathematical constant??? 

area estimate 

a = 1 

Empirical Monte Carlo distribution of the area estimate 
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Frequentist view: this is the distribution of an estimate, it does not 
make sense to talk of the distribution of a constant. However, while in 
this case the value to be estimated is unmistakably “true”, the physical 
model of the random process is not unlike the model in Bertrand’s 
paradox, and there is some “observer-related” indefiniteness. 
 
Bayesian view: probability in inference should not be mistaken for 
probability in probability models, as it describes the state of uncertainty 
of the observer. 
 
 
We can start from the Bayesian “reasonable expectation” 
and use it unambiguously as probability: indeed Cox 
showed that any reasonable measure of “reasonable 
expectation” must behave just like common probability.  
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Boolean algebra (symbolic logic) 
 
a, b, c ... propositions (true or false) 
 
 
Basic operations    Truth tables 
 
OR:  a v b 
 
AND:  a·b 
 
NOT:  ~a 
 

a b a v b 
T T T 
T F T 
F T T 
F F F 

a b a · b 
T T T 
T F F 
F T F 
F F F 

a ~a 
T F 
F T 
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Combinations of propositions 
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The combination rules are not all independent, e.g., 
consider  
 
 
~(a·b) = ~a v ~b        and        ~(a v b) = ~a·~b 
 
 
When we assume the first, and utilizing ~~a = a, we can 
deduce the second: 
 
~(a v b) = ~(~~a v ~~b) = ~~(~a·~b) = ~a·~b 
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Now let 
 
 
 
denote any measure of reasonable credibility (credibility for 
short) of proposition b when a is known to be true, and let F 
be a function that combines credibilities 
 
 
 
 
 
While p is still quite arbitrary, F is constrained by the 
algebra of propositions.  

p(b|a)

p(c · b|a) = F [p(c|b · a), p(b|a)]
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Now we derive a functional equation for F from 
 
 
 
 
 
 
 
and also  

p(d · c · b|a) = p ((d · c) · b|a)
= F [p(d · c|b · a), p(b|a)]
= F [F [p(d|c · b · a), p(c|b · a)], p(b|a)]

p(d · c · b|a) = p (d · (c · b)|a)
= F [p(d|c · b · a), p(c · b|a)]
= F [p(d|c · b · a), F [p(c|b · a), p(b|a)]]
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Therefore, setting  
 
 
 
 
 
 
we find the functional equation  
 
 
 

x = p(d|c · b · a)
y = p(c|b · a)
z = p(b|a)

F [x, F [y, z]] = F [F [x, y], z]
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It is easy to see by substitution that the equation  
 
 
 
 
 
has the solution 
 
 
 
 
where C is an arbitrary constant and f is an arbitrary single-
variable function. It can be shown that this is also the general 
solution if F has continuous second derivatives. 
 

(homework!) 

F [x, F [y, z]] = F [F [x, y], z]

C f(F [p, q]) = f(p)f(q)
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Given the arbitrariness of f, we take the identity function, so that  
 
 
 
 
Then, when we let c = b, and we assume that credibility ranges 
from 0 (no credibility) to 1 (certainty), and therefore 
 
 
 
we find  
 
 
 
 
and therefore    C = 1. 

C p(c · b|a) = C F [p(c|b · a), p(b|a)]
= p(c|b · a)p(b|a)

C p(b · b|a) = C p(b|a) = p(b|b · a)p(b|a) = p(b|a)

p(a|a) = p(certainty) = 1
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Thus we have found that credibility satisfies the condition 
 
 
 
 
 
however this is not yet enough, because if we took a power 
law instead of the identity, we could still satisfy all the 
conditions and find, e.g., a condition like  
 
 
 
 
 
Can we do better?  

p(c · b|a) = p(c|b · a)p(b|a)

p(c · b|a)m = p(c|b · a)m p(b|a)m
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We have used the properties of logical AND, but not yet those 
of logical NOT and OR ...   
 
Taking a negated proposition we expect to find the relationship 
 
 
 
 
and therefore we find a functional equation  
 
 
 
 
which, however, is not restrictive enough ...  

p(˜b|a) = S[p(b|a)]

p(b|a) = p(˜˜b|a) = S[S[p(b|a)]]
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Now we note that 
 
 
 
 
 
 
and also that   

S[p(c _ b|a)] = p(˜(c _ b|a)) = p(˜c · ˜b|a)
= p(˜c|˜b · a))p(˜b|a)
= S[p(c|˜b · a))]S[p(b|a)]

p(c|˜b · a) = p(c · ˜b|a)
p(˜b|a) =

p(˜b · c|a)
p(˜b|a)

=
p(˜b|c · a) p(c|a)

p(˜b|a)

=
S[p(b|c · a)] p(c|a)

S[p(b|a)]
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And finally we find 
 
 
 
 
 
 
or alternatively 
 
 
 

p(c|˜b · a)) = S[p(b|c · a)] p(c|a)
S[p(b|a)] = S


S[p(c _ b|a)]
S[p(b|a)]

�

S


p(c · b|a)
p(c|a)

�
p(c|a)

S[p(b|a)] = S


S[p(c _ b|a)]
S[p(b|a)]

�
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This results hold for all propositions, and if we let  b = c · d  
we find 
 
 
 
 
 
Introducing the auxiliary variables 
 
 
 
we obtain a compact form for the functional equation for S  
 
 

S


p(c · d|a)
p(c|a)

�
p(c|a)

S[p(c · d|a)] = S


S[p(c|a)]

S[p(c · d|a)]

�

x = p(c|a); y = S[p(c · d|a)]

x S


S[y]

x

�
= y S


S[x]

y

�
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It is easy to see by substitution that the equation 
 
 
 
 
 
 
has the solution 
 
 
 
 
It can be shown that this is also the general solution if S is 
twice differentiable. 
 

(homework!) 
  

x S


S[y]

x

�
= y S


S[x]

y

�

S[p] = (1� pm)1/m
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Again, this means that 
 
 
 
 
 
 
 
and again, whatever the value of m, credibility satisfies the 
usual probability rule. Since the choice of m is conventional 
we take m = 1.  

p(˜b|a) = S[p(b|a)] = (1� p(b|a)m)1/m

) p(b|a)m + p(˜b|a)m = 1
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Summarizing, we have the following collection of 
assumptions and rules:  
 
 
 
 
 
 
 
 
 
and from these all the usual rules of probability follow.  
 
Therefore we can take probabilities as measures of 
credibility. 

p(certainty) = 1

p(impossibility) = 0

p(b|a) + p(˜b|a) = 1

p(c · b|a) = p(c|b · a)p(b|a)



The algebra of probabilities 
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Let A and B be statements that can be either true or false, 
and such that we can assign probabilities. Then the 
following rules apply: 

0 ≤ P A( ) ≤ 1
P Ω( ) = 1
P A∪ B( ) = P A( ) + P B( ) − P A∩ B( )
P A∩ B( ) = P A B( )P B( ) = P B A( )P A( )



0 ≤ P A( ) ≤ 1
P Ω( ) = 1; P A( ) + P A( ) = 1
P A∪ B( ) = P A( ) + P B( ) − P A∩ B( )
P A∩ B( ) = P A B( )P B( ) = P B A( )P A( )

A

A

Ω

A

B

A∩ B

Probability space and measure theory 
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Bayes’ Theorem 

64 

Independent events: 

P(A e B) = P(A)·P(B) 

 

Dependent events: 

P(A e B) = P(A|B)·P(B) = P(B|A)·P(A) 

 

     Bayes’ theorem 

P A∩ B( ) = P A B( )P B( ) = P B A( )P A( )

P A B( ) = P B A( )P A( )
P B( )

A

B

A∩ B
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rev. Thomas Bayes (1702-1761) 
 
Thomas Bayes was the son of a London Presbyterian minister, 
Joshua Bayes born perhaps in Hertfordshire. In 1719 he enrolled at 
the University of Edinburgh to study logic and theology. 
 
He is known to have published two works in his lifetime: Divine 
Benevolence, or an Attempt to Prove That the Principal End of the 
Divine Providence and Government is the Happiness of His 
Creatures (1731), and An Introduction to the Doctrine of Fluxions, 
and a Defence of the Mathematicians Against the Objections of the 
Author of the Analyst (published anonymously in 1736), in which he 
defended the logical foundation of Isaac Newton's calculus against 
the criticism of George Berkeley, author of The Analyst. 
 
It is speculated that Bayes was elected as a Fellow of the Royal 
Society in 1742 on the strength of the Introduction to the Doctrine of 
Fluxions, as he is not known to have published any other 
mathematical works during his lifetime. 
 
Some feel that he became interested in probability while reviewing a 
work written in 1755 by Thomas Simpson, but others think he 
learned mathematics and probability from a book by de Moivre. 
Bayes died in Tunbridge Wells, Kent. He is buried in Bunhill Fields 
Cemetery in London where many Nonconformists are buried.  
 
(from Wikipedia) 
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The ideas of Bayes were clarified, 
extended and put to good use by 
Pierre Simon, Marquis de Laplace 
 
 
“... In order to give some interesting applications of it 
I have profited by the immense work which M. 
Bouvard has just finished on the movements of Jupiter 
and Saturn ... His calculations give him the mass of 
Saturn equal to 3512th part of that of the sun. Applying 
to them my formulae of probability, I find that it is a bet 
of 11,000 against one that the error of this result is not 
1/100th of its value ...”  
 
 
(from the Philosophical essay on probabilities) 
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P A | B( ) = P B | A( )·P A( )
P(B)

P Ak | B( ) = P B | Ak( )·P Ak( )
P(B)

k = 1, ... , N 

P(B) = P B | Ak( )·P Ak( )
k=1

N

∑

if the events Ak are mutually 
exclusive, and they fill the universe A1 A2 A3

A4
A5 A6

A7 A8
A9

B

P B | A3( )·P A3( )
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P A | B( ) = P B | A( )·P A( )
P(B)

P(B) = P B | Ak( )·P Ak( )
k=1

N

∑

P Ak | B( ) = P B | Ak( )·P Ak( )
P B | Ak( )·P Ak( )

k=1

N

∑
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A simple probability model based on conditional probabilities 

A B 10 

30 

20 

20 

Here we choose a ball as follows: 

1.  We choose the urn first 

2.  We draw a ball from that urn 

What is the probability of drawing one red ball?  
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P(A) = P(B) = 1/2 (probability of choosing either A or B) 

 

P(G|A) =  1/4 (probability of drawing a yellow ball from A) 

P(R|A) =  3/4 (probability of drawing a red ball from A) 

P(G|B) =  1/2 (probability of drawing a yellow ball from B) 

P(R|B) =  1/2 (probability of drawing a red ball from A) 

 

and therefore 

 

P(R)  = P(R|A)·P(A) + P(R|B)·P(B)  

 = (3/4)·(1/2) + (1/2)·(1/2) = 5/8 = 0.625 
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Inverse problem: if we drew a red ball, what is the 
probability that we drew it from urn A?  
(NB: here we assume that the “physical model” is known, i.e., we assume we 
know how many red and yellow balls are in each urn) 

“a priori” probability: P(A) = ½  

 

Now we apply Bayes’ theorem 

 

 

 

 

This is a simple example of Bayesian inference 

P A | R( ) = P R | A( )
P(R)

·P A( ) = 3 4( ) · 1 2( )
5 8( ) =

3
5
= 0.6

posterior probability 
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We draw another red ball, still from the same urn, (however 
we do not know whether this is A or B). Since now 

P(R) = P(R|A)·P(A) + P(R|B)·P(B) = 0.65  

 

we find  

P A | R,R{ }, I( ) = P R | A, I( )·P A | R, I( )
P(R, I )

≈ 0.692308

Notice that data can be inserted one by one! 
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100 successive draws ...  
 
R,  R,  R,  Y,  Y,  R,  R,  Y,  Y,  R,  R,  R,  R,  R, R,  R,  R,  R,  R,  R,  R,  R,  R,  R,  Y, 
R,  R,  R,  R,  R,  Y,  R,  R,  R,  R,  Y,  R,  R,  R,  R, Y,  R,  R,  R,  Y,  R,  R,  R,  R,  R, 
R,  Y,  R,  R,  Y,  R,  R,  R,  R,  R,  R,  Y,  R,  R,  R,  R, Y,  R,  R,  Y,  R,  Y,  R,  R,  Y,  
Y,  R,  R,  Y,  R,  R,  R,  Y,  R,  R,  Y,  R,  R,  R,  R,  R,  R,  R,  R,  R,  R,  Y,  Y, R,  R 
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... a different starting point: here the initial prior probability is 
0.05 instead of 0.5. 



A simple application to medical tests (example of HIV test) 

P(positive | infect) = 1 P(positive | not infect) = 1.5%

what is the probability P(infect|positive) ? 

A common answer is 98.5% ... and it is wrong! 

 

Let’s use Bayes’ theorem ...  

P(infect | positive) = P(positive | infect)·P infect( )
P(positive | infect)·P infect( ) + P(positive | not infect)·P non infect( )

= P(positive | infect)
P(positive | infect)·P infect( ) + P(positive | not infect)·P non infect( )·P infect( )

P Ak | B( ) = P B | Ak( )·P Ak( )
P B | Ak( )·P Ak( )

k=1

N

∑
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The estimate depends on the size of the infect population 
i.e., on the probabilities 
 

P(infect)  P(not infect) 

P(infect | positive)

= P(positive | infect)
P(positive | infect)·P infect( ) + P(positive | not infect)·P non infect( )·P infect( )

The posterior estimate strongly depends on the prior 
probability 
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Example:  AIDS frequency in Italy 0.4 % 

  AIDS frequency in South Africa 18.1% 

P(infect | positive) = 1
1 ·0.004 + 0.015 ·0.996

·0.004 ≈ 21.1%

P(infect | positive) = 1
1 ·0.181+ 0.015 ·0.819

·0.181≈ 93.6%

the large number of false positives and the small probability of 
finding a sick person mean that the probability of being 
infected if positive is not actually very high.  

Italy 
 
 
South Africa 
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If we find a positive result in a repeated measurement:  
 
 

P infect positive, positive{ }( ) = 94.7%
P infect positive, positive{ }( ) = 99.9%

The first test changes the reference population, and the 
second test, if positive, gives a significant result. 

Italy 
 
South Africa 
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Prosecutor’s fallacy & Defendant’s fallacy 

Two common mistakes, associated to the wrong 
reference population 

P(innocent |DNAcompatible)

P(DNAcompatible | innocent)

P(innocent |DNAcompatible, I ) = P(DNAcompatible | innocent, I )
P(DNAcompatible, I )

P(innocent | I )

this is 
what we 
want! 
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DNA classification - 1: alleles 

allele: one of two or more alternative forms of the 
same gene, at the same position in a chromosome. 

example: sickle 
cell anemia 
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Database of human alleles (ALele FREquency Database: 
http://alfred.med.yale.edu/alfred/index.asp 

taken from http://www.dna-view.com/profile.htm 

DNA classification - 2: allele frequency 

 A copy 

B copy 

≈ 1/7000, frequency of 
profile in reference 
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Check the webpage:  

 
http://wwwusers.ts.infn.it/~milotti/Didattica/Bayes/2014-MiBi/Bayes.html 
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